
Improved Group Off-the-Record Messaging

Hong Liu
Department of Computing and

Information Sciences
Kansas State University

hongl@ksu.edu

Eugene Y. Vasserman
Department of Computing and

Information Sciences
Kansas State University

eyv@ksu.edu

Nicholas Hopper
Department of Computer
Science and Engineering
University of Minnesota

hopper@cs.umn.edu

ABSTRACT

Off-the-Record Messaging (OTR) is an online analogy of
face-to-face private chat – messages are confidential and au-
thenticated at the time of the conversation, but cannot later
be used to prove authorship. The original OTR protocol is
limited to two parties, and is extended by multi-party OTR
(mpOTR) to the group chat setting. In doing this, mpOTR
unintentionally weakens the security properties provided by
its two-party predecessor. We propose an improved group
OTR (GOTR) protocol that provides unconditional repudi-
ability, and show how to obtain data origin authentication
given this level of repudiability.

GOTR resists network failure, colluding and independent
malicious insiders, and provides efficient and flexible mem-
bership management. We analyze the security properties
and performance of GOTR, and present measurement re-
sults of a proof-of-concept implementation of GOTR.

Categories and Subject Descriptors

K.4.1 [Computers and Society]: Public Policy Issues—
Privacy ; K.6.5 [Computers and Society]: Security and
Protection—Authentication; H.4.3 [Information Systems

Applications]: Communications Applications—Computer

conferencing, teleconferencing, and videoconferencing ; C.4
[Performance of Systems]: Fault tolerance

Keywords

Privacy; Repudiability; Group communication; Authentica-
tion; Robustness

1. INTRODUCTION
Off-the-RecordMessaging (OTR) is a technology that pro-

tects the privacy of instant messaging users by mimicking
crucial features of face-to-face conversations [2, 5, 14]: OTR
users (let’s call them Alice and Bob) communicate using an
authenticated and confidential channel, but the content of
the conversation is repudiable afterwards. Communication

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

WPES’13, November 4, 2013, Berlin, Germany.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2485-4/13/11 ...$15.00.

http://dx.doi.org/10.1145/2517840.2517867.

is bootstrapped using Alice’s and Bob’s long-term asymmet-
ric keys, authenticating Alice to Bob and Bob to Alice, but
the conversation itself is secured using symmetric cryptog-
raphy, and thus repudiable in the sense that given a proto-
col transcript recorded by either Alice, Bob, or a 3rd party
observer, no one, including Alice or Bob, can prove who
authored a particular message in the transcript.

Unfortunately, it is nontrivial to extend two-party OTR
to a group setting. Most notably, unlike pairwise OTR,
group chat users need a way to know the identity of the
sender amongst group members, namely the data origin au-
thentication problem, but adding this feature may in turn
break users’ repudiability. Besides, membership manage-
ment, colluding malicious parties, and network partitioning
are problems specific to the group setting.

Goldberg et al. proposed a multi-party OTR protocol
(mpOTR) which provides repudiation by using two-party
deniable entity authentication, while keeping chat messages
non-repudiable among group members during protocol exe-
cution [10]. A user Alice generates an ephemeral signature
key pair, which is used only in the current session for Alice to
sign her messages. To provide repudiation, users exchange
ephemeral public signature keys in a deniable fashion, which
is achieved by by using a two-party deniable authenticated
key exchange (AKE) in the protocol setup. Deniable AKE
convinces two parties of each other’s identity during the pro-
tocol execution, but does not allow either party to convince
anyone else that authentication was successful, and therefore
provides repudiability.

However, mpOTR provides repudiability properties which
are weaker than the two-party version. First, deniable au-
thentication has many partially conflicting definitions which
differ in subtle but important ways [1, 5, 6, 8, 9]. One of the
more important distinctions is between online and offline

judges. A judge is a third party who determines whether
a given user has authenticated some message, including key
exchange parameters. Online judges are allowed to interact
with insider adversaries during the protocol execution, while
offline judges can only interact afterward. This is conceptu-
ally similar to proving something in real time, versus after
the fact using an historical transcript. Second, an mpOTR
transcript links all messages together, so if a user, e.g. dur-
ing an interrogation, shows her knowledge of any secret con-
tained in the conversation, she cannot deny that she has par-
ticipated in the protocol run, and therefore cannot repudiate
the authorship of any messages she sent, even if the proto-
col ensures plausible deniability. Third, to forge an mpOTR
transcript, a subgroup of participants must collude. While

not a problem if any single party is able to forge the tran-
script alone, in the multiparty setting it may be possible to
show that two groups of mpOTR users act independently, or
are unlikely to have colluded, severely hampering real-world
plausible deniability.

We propose a group OTR (GOTR) protocol which en-
hances both real-world and protocol-level repudiability of
group chats. GOTR achieves the same level of repudiability
as that achieved using shared group keys (i.e. information-
theoretic repudiability), while still preventing malicious in-
siders from forging a message in the name of an honest user.
GOTR utilizes a special feature of some group key agree-
ment (GKA) protocols to turn a GKA into a robust “hot-
plug” GKA, and to further turn the adverse facts that the
network may fail and users may be faulty into the security
of the senders. Furthermore, the repudiability properties of
GOTR do not rely on deniability of entity authentication
algorithms. Most operations, such as key update, run sym-
metrically and simultaneously for each group member, and
require a constant number of communication rounds. The
protocol is also flexible in membership management and is
resilient to membership churn. We instantiate our proto-
col using the Burmester-Desmedt (BD) GKA [3] and bench-
mark a proof-of-concept implementation of the protocol core
as a plugin for Pidgin.1

2. GROUP OTR PROTOCOL
In this section we give descriptions of each subroutine of

GOTR. We evaluate the efficiency and security properties
of GOTR in the next section.

The GOTR protocol consists of the following subproto-
cols:

• Setup: In the setup protocol, a new user joins the
group, establishes authenticated, private channels with
every other user, and obtains a cryptographic digest of
the conversation so far.
• KeyUpdate: Each user Ui runs a group key agreement

protocol with all other users to obtain a symmetric
circle key that every user knows, but only Ui will use to
encrypt and authenticate messages. The information
exchanged in this protocol will allow users to deduce
the owner of Ui’s circle key.
• SendMsg: When Ui has a message m to send, she uses

her circle key to encrypt and authenticate the mes-
sage, along with the chat digest, before sending the
ciphertext to the group. After sending, Ui updates her
digest.
• RecvMsg: When receiving a ciphertext c, Uj deduces

the appropriate circle key from the presence of mes-
sages sent on private channels in KeyUpdate; the mes-
sage is decrypted and integrity checked using this cir-
cle key. Uj provisionally updates his digest with the
ciphertext c. The content of the message is not au-
thenticated until the consistency check.
• ConsCheck: After receiving a ciphertext, each user ex-

changes digests with every user over private channels.
If all members have the same digest, the message is
considered to be authenticated. Since a failed consis-
tency check could also be caused by network failure
or an insider attack on chat consistency, and a sender

1Source code available from
http://www.cis.ksu.edu/~hongl/gotr/

could choose to include a forged message in her di-
gest, plausible repudiability is maintained while allow-
ing each user to detect forgeries using her circle key.

We note that no special procedure is needed to leave the
group: when a user does not respond to KeyUpdate requests,
she is assumed to have left the chat; the “hot-plug” nature
of the KeyUpdate protocol allows automated recovery from
such membership changes. If this situation results from a
temporary network failure, the user can always re-join the
group by running Setup again.

2.1 Primitives
We assume the existence of an anonymous point-to-point

network between users. We also assume the existence of the
following cryptographic primitives:

• r ← Zq : generates a random value in Zq .
• SecSend(i, j,m), m ← SecRecv(i, j): arbitrary two-

party secure communication primitives that provide
confidential and mutually authenticated message trans-
mission between Ui and Uj over a point-to-point net-
work. They can be implemented by using users’ long-
term asymmetric keys, mutually authenticated SSL/TLS,
HMQV [13], or KEIA [8]. The algorithm does not have
to be repudiable, deniable, or forward-secret.
• Σ = (Gen,EncMac,Dec): a CCA-CMA secure [7]

private-key message transmission scheme.
• (k1, k2)← KDF (κ): a Key Derivation Function which

generates random keys (k1, k2) for encryption Enc and
authentication Mac respectively.

2.2 Setup
The setup stage begins after a user Ui joins the chat. Ui

first obtains the common parameters of the chat, includ-
ing a unique session ID sid, membership set pid, and global
cryptographic parameters. We assume that these param-
eters are obtained from another application protocol and
are shared by all group members. Ui then performs mutual
entity authentication with every other user and establishes
end-to-end secure communication channels.

2.3 Key Update
In key update, Ui refreshes the keys which will be used

to protect her messages in the communication stage, by
performing a “hotplug” GKA. Key update is invoked asyn-
chronously by any user. The GKA is hotplug, in the sense
that a party participating in the GKA can dynamically add
or remove parties from the GKA without the need to re-
communicate. For example, we can turn the Burmester-
Desmedt GKA (BD GKA) [3] into a hotplug GKA.

To avoid ambiguity, we call each entity that participates
in the BD GKA a “node”. The BD GKA assumes a broad-
cast channel (a requirement we later relax). Nodes D =
{D1, . . . , Dn} negotiate a key κ in three steps:

1. ∀Dl ∈ D, Dl generates a secret key rl ∈ Zq , computes
and broadcasts the public key:

zl = grl mod p, (1)

where p is a prime, and the subgroup 〈g〉 in Z∗

p is
of prime order q and satisfies the decisional Diffie-
Hellman assumption.

http://pidgin.im
http://www.cis.ksu.edu/~hongl/gotr/

Figure 1: Key graph of the “hotplug” GKA: virtual nodes within
the bold dashed line compose U1’s circle key. Each virtual node is
labeled (ijl), l ∈ {0, 1}, which denotes the virtual node Dijl that is
generated by Ui to talk with Uj .

2. Every Dl computes and broadcasts

Xl = (zl+1/zl−1)
rl mod p, (2)

where the indices are taken in a cycle.
3. Every Dl obtains the same key

κ = κl = (zl−1)
nrl ·Xn−1

l ·Xn−2
l+1 · · ·Xl−2 mod p. (3)

In the following text we will sometimes refer to the public
keys computed from equation 1 as “z values”, and the val-
ues computed from equation 2 as “X values”. The GKA is
proved secure (κ is indistinguishable from a random session
key) against a computationally-bounded eavesdropper with
transcripts of polynomially-many executions of the GKA [4,
11].

We observe that BD has the following special properties:

• It is symmetric, in the sense that every node performs
the same operations;
• The group key is derived from the data that every node

provides;
• Contributory data {zl, Xl} provided by any node Dl

only depends on a constant number of nodes (i.e. two).

We rely on these properties to obtain a hotplug GKA, so
that the GKA can be performed over a point-to-point net-
work. We ask every user Ui to act as two “virtual nodes”
(Dij0 andDij1) when performing contributory data exchange
with user Uj , i.e. Dij0 and Dij1 will talk to Dji0 and Dji1 as
shown in Figure 1. We will use the subscript ijl, l ∈ {0, 1}
to denote a value associated with the virtual node Dijl. We
will denote (aij0, aij1) as aij and {aij |∀Uj ∈ pid \ {Ui}} as
ai for short.

First Ui generates rij and sends zij = (grij0 , grij1) to
Uj . In response, Uj sends zji to Ui, and Ui stores them
in yij = zji. To obtain a group key, the X values must

connect D into a circle. Xl relies on its own secret key
rl, and its two neighboring nodes’ public keys.

To allow Uj to obtain Uj ’s BD keys, Ui computes the X
values for the triples (Dji0, Dij0, Dij1) and (Dij0, Dij1, Dji1),
respectively:

Rij0 = (zij1/yij0)
rij0 mod p

Rij1 = (yij1/zij0)
rij1 mod p.

Ui then sends Rij to Uj . Uj does the same for Ui, and Ui

stores Uj ’s R values in Vij = Rji.
At this point, Ui and Uj have exchanged all the contrib-

utory data needed to compute the BD key for a group of
four virtual nodes. We call this four-node group a “flake”.
In Figure 1, the flake that is formed by user U1 and U4, de-
noted as flake14, is composed of the virtual nodes (D140 →
D410 → D411 → D141 → D140). Following the BD algo-
rithm in equation (3), the group key for flakeij , called a
“flake key”, can be computed as follows:

κij = z
4·rij0
ij1 · (

1

Rij0
)3 · V 2

ij0 · Vij1 mod p

= κji = z
4·rji0
ji1 · (

1

Rji0
)3 · V 2

ji0 · Vji1 mod p

Then Ui, Uj verify that they compute the same key κij =
κji with (z, y,R, V) bound with their identities and the ses-
sion, as shown in Algorithm 1. This also ensures that both
parties transmitted the correct {z,X} pairs. Because the
BD GKA is secure in the presence of eavesdroppers with a
history transcript, if Ui replays the {z,X} pairs from an-
other user, or provides incorrect data to Uj , she cannot ob-
tain a shared key with Uj . As an optimization, instead of
using a digital signature, the flake key κij can then be used
to secure the end-to-end channel between Ui and Uj .

Now Ui has obtained (N−1) disjoint flakes. She proceeds
to re-compute the X values for Dij0 and Dij1 to connect
the flakes. To do so, Ui computes Wij ,∀Uj ∈ pid \ {Ui},
which are the X values of the triples (Di(j−1)1, Dij0, Dji0)
and (Dji1, Dij1, Di(j+1)0), using ri, zi, and yi:

Wij0 = (yij0/zi(j−1)1)
rij0 mod p

Wij1 = (zi(j+1)0/yij1)
rij1 mod p.

Note that Ui computes Wi by herself without communicat-
ing with other users. The indices and the order do not mat-
ter (as long as the computation follows one direction; we can
change the direction of an X value by inverting it).

Using any element in ri and the corresponding element
in zi, together with Wi and Vi, Ui is able to compute her
BD key Ki, which is the BD group key of 4(N − 1) virtual
nodes. For the group of users {U1, . . . , U6} in Figure 1, U1

obtains a circle of virtual nodes (D140 → D410 → D411 →
D141 → D150 → D510 → . . . → D130 → D310 → D311 →
D131 → D140). Applying equation (3), U1 can use z131, r140,
W140, V140, V141, W141, W150, V150, . . ., W130, V130, V131, to
compute the BD key of 4 · (6− 1) virtual nodes:

K1 = z4·5·r140131 ·W 4·5−1
140 · V 4·5−2

140 · V 4·5−3
141

·W 4·5−4
141 ·W 4·5−5

150 · · ·V131 mod p.

Alternatively, U1 can use z161, r120, W120, . . ., V161, or other
(z, r,W,V) combinations to compute K1.

The above operation is the same for everybody. In all, N
different group keys will be generated, one for each user. In
order to differentiate them from the group key in its con-
ventional notion, we call them “circle keys”. Up to now,
every user obtains a unique circle key that is negotiated by
the entire group, but does not know other users’ circle keys
since Wi is essential to connect the circle, but is computed
by Ui alone. To obtain unconditional repudiability, every
user should know (zi, yi,Wi, Vi) (called zyWV for short).
We therefore ask every user to “broadcast” zyWV . Upon

Data: ∀Ui ∈ pid, sid, g, p, q
Result: ri, zi, yi, Ri, Vi, κi,Wi,Ki

Keyupdate(i, g, p, q)

begin

for ∀Uj ∈ pid \ {Ui} do
/* this is performed concurrently */

r′ij0 ← Zq , r
′

ij1 ← Zq

SecSend(i, j, sid|z′ij)
sid|y′

ij ← SecRecv(i,j)

SecSend(i, j, sid|R′

ij)

sid|V ′

ij ← SecRecv(i,j)

compute κ′

ij

(k1, k2)← KDF (κ′

ij)
SecSend(i, j,

sid|Mack2
(sid|Ui|Uj |z

′

ij |y
′

ij |R
′

ij |V
′

ij))
if sid|Mack2

(sid|Uj |Ui|y
′

ij |z
′

ij |V
′

ij |R
′

ij) =
SecRecv(i,j) then

update rij , zij , yij , Rij , Vij

for ∀Uj ∈ pid \ {Ui} do
compute Wij

if message to send then

for ∀Uj ∈ pid \ {Ui} do
SecSend(i,j, sid|zi|yi|Wi|Vi)

compute Ki

else

for ∀Uj ∈ pid \ {Ui} do
randomize elements z′il, y

′

il, l 6= j
re-compute W ′

i , V
′

i

SecSend(i,j, sid|z′i|y
′

i|W
′

i |V
′

i)

Algorithm 1: Keyupdate: refresh the circle key

receiving Ui’s zyWV , any Uj can compute Ui’s BD key Ki,
using the private part rjil, l ∈ {0, 1} of zjil ∈ yi.

If Ui fails to talk to any Uj in above steps, she will not
obtain the data of Dji0 and Dji1, but since she controls
2(N −1) virtual nodes within the circle, she can arrange the
circle as she wishes by changing the neighbors of her virtual
nodes. This allows Ui to do the “hotplugging” trick: the
{z,X} pairs that any Uj provided can be safely removed or
replaced, and everybody except Uj is still able to compute
the same key with Ui. Specifically, to remove Uj from the cir-
cle, Ui removes {Dij0, Dji0, Dji1, Dij1} altogether from the
circle and computes the X values for Di(j−1)1 and Di(j+1)0

using the triples (D(j−1)i1, Di(j−1)1, Di(j+1)0) and (Di(j−1)1,
Di(j+1)0, D(j+1)i0) respectively. A valid but different circle
key will be generated without affecting other users. In a sim-
ilar way, Ui can replaces Uj ’s data, and can also insert an
arbitrary number of virtual nodes into her circle to generate
a different key.

Hotplugging provides robustness against insider attacks
and network failure. In addition, since every user acts as
different virtual nodes when talking to different users, data
origin authentication is possible. This feature also enables
an optimization to enhance robustness against inside forg-
ers of limited power. If Ui modifies zyWV by removing
the neighbors of Dij0 and Dij1 and re-computing the corre-
sponding W values, then Uj will not be able to compute Ui’s
circle key. We therefore ask Ui to compute and send the real
zyWV only if she is going to send a message before her next
key update. Otherwise she removes or replaces the {z,X}
values from some Uj 6= Uk, re-computes the corresponding
W values, and sends the modified copy of zyWV to Uk. Be-

cause the circle key is hotplug, the modified zyWV is still
legitimate. Uk cannot tell if the {z,X} pairs are real or
not, but if Uk sends Uj the modified zyWV with a message
encrypted with the BD key derived from them, Uj will not
be able to compute a key and read the message. This pre-
vents inside forgers who act individually and do not control
message delivery, like average end-users, from abusing Ui’s
circle key. Note that ultimately we prevent forgery by any
inside forgers through conversation consistency checks. This
optimization enhances robustness by defending less powerful
forgers from easily disrupting the protocol execution, but is
not required to achieve the desired security properties.

In practice, when a human user is typing, the GOTR client
knows that she is planning to send a message, and will invoke
a key update if the key is old enough. Message sending may
be slightly delayed in order to use the new key.

2.4 Communication: SendMsg, RecvMsg, ConsCheck
Ui uses the keys derived from her circle key to encrypt

and authenticate messages. All the {z,X} pairs needed to
compute the circle key (i.e. zyWV) piggyback on the mes-
sage, together with the digest (as a consistency check) of the
chat log up to but not including this message. We empha-
size that the digest of the chat log is performed over the chat
message ciphertext (without decryption and with the {z,X}
pairs) from Ui’s view of the chat. In particular, the chat log
does not include data transmitted in other operations such
as key update. The whole message is then sent directly to
the underlying (anonymous) messaging service, or to each
user one by one over an anonymous network.

Specifically, Ui’s message is in the following format:

sid | Op | clen | z1, X1, . . . , zclen, Xclen |

Enck1
(m, padding, digest) |Mack2

(sid..Enc)

where sid is the session id, Op is a marker indicating that
the message is a chat message, and clen is the number of
{z,X} pairs that follow. It is also the number of exponenti-
ations needed to compute the key. K is a BD key computed
from the {z,X} pairs, together with the private part of one
element in {zi|i = 1, . . . , clen}, which is exactly the hon-
est sender Ui’s zyWV , and K is her circle key. k1, k2 are
derived by feeding a Key Derivation Function with K, and
are used for encryption Enc and authentication Mac respec-
tively. digest is the sender’s view of the chat log digest. The
Mac tag is computed over the entire message, starting from
the sid field through the end of the ciphertext.

This design is multipurpose. First, piggybacking {z,X}
pairs on the message does not break the secrecy of the key.
Second, it guarantees that all receivers who contributed to
Ui’s circle key can decrypt the message and verify its in-
tegrity, regardless of whether they have received the previ-
ously “broadcast” data or not. Third, receivers rely on the
{z,X} pairs to determine the message origin (explained be-
low). Fourth, the piggybacking {z,X} pairs provides some
robustness against DoS attacks, without the need to verify
the Mac. Fifth, the digest provides a convenient way to
perform a consistency check on the chat views without re-
vealing any chat content or sender identities. Last but not
least, computing the digest over the ciphertext instead of
the plaintext provides robustness to failure and resilience to
attacks on setup and key update.

Upon receiving a message, Uj matches {zi, Xi|i =
1, . . . , clen} to his zj and Rj , and records Ul if zjl, Rjl ∈

{zi, Xi|i = 1, . . . , clen}. If he finds at least one matching
(zjl, Rjl), he is able to compute the key and regards the
matching Ul(’s) as the message sender(s). (Because insiders
may collude and share secrets, it is possible to identify more
than one potential sender.) He then checks the message
integrity and decrypts m and the digest. Uj will confirm the
sender identity at the next consistency check with Ul over
the pairwise secure channel. If m is not from Ul, Ul creates
a consistency check failure to indicate that m is forged.

3. EVALUATION OF GOTR

3.1 Security Analysis
The high-level security goal of GOTR is to realize a “pri-

vate chatroom” over a public network. This includes several
conventional goals against outsiders such as confidentiality,
integrity, robustness and loose synchrony; for space concerns
we do not further consider these goals here. Instead we fo-
cus on the ways in which GOTR differs from prior work
on OTR in a group setting: repudiability and authentica-
tion. Throughout our analysis, we consider a group of N
parties that can communicate pairwise over an insecure net-
work. We assume a method for pairwise authenticated key
establishment, access to an anonymizing network, and allow
concurrent protocol executions, each identified by a common
(public) session identifier. We distinguish between a “chat
transcript” that lists for each party in a session, the input
messages delivered to the sendMsg subroutine and times; and
a “protocol transcript” that includes all messages exchanged
by the GOTR protocol.

Offline Repudiability. Briefly, we define strong offline repu-
diability in terms of an adversary, who controls N−1 parties
and produces a pair of chat transcripts τ, τ ′ that differ in a
single message; a single honest party that faithfully executes
the GOTR protocol with the adversarial parties given a chat
transcript τ ; a simulator that takes as input a pair of chat
transcripts τ, τ ′, a protocol transcript T corresponding to τ ,
and the private inputs s of the adversary, and produces a
protocol transcript T ′ corresponding to τ ′; and a judge that
takes as input a chat transcript τ∗, protocol transcript T ∗,
and private inputs s of the adversary, and outputs a single-
bit guess. A group messaging protocol has strong offline
repudiability if for every adversary and judge, there exists
a simulator such that the judge cannot distinguish between
the case that (T ∗, τ∗, s) result from the interaction of the
adversary and the honest party on transcript τ and the case
that (T ∗, τ∗, s) result from the output of the simulator on
input (T ′, τ ′, τ, s). Informally, the transcript may bind users
to the conversation, but every single message in the conver-
sation is repudiable after the fact.

We sketch the simulator S needed for our proof that GOTR
provides strong offline repudiability. The simulator need not
change anything in the transcript T up to the point at which
τ and τ ′ differ. In the round in which they are different,
S uses the private inputs of the adversarial parties along
with the circle key broadcast of the honest user to derive
the circle key and produce an appropriate encryption of the
message in τ ′. For all following rounds, S uses the symmet-
ric keys shared by the adversarial parties with the honest
user to simulate the honest user’s inputs following τ ′ and
runs the adversary code to produce the adversarial portion
of the transcript T ′. Note that since T and T ′ use the same

secret keys, the output T ′ is identically distributed to an
interaction between the adversary and the honest user with
transcript τ ′.

Online repudiability. We define online repudiability in terms
of a judge that controls N − 2 parties, honest parties H1

and H2 that faithfully execute the GOTR protocol given an
adversarially chosen chat transcript τ , and an environment

that controls two players, including the loss of network in-
puts to and from those players, and takes a chat transcript
τ and adversarially chosen round r as input. We say that
a protocol has online repudiability if for every judge there
exists an environment so that the judge cannot distinguish
between interacting with H1 and H2 on input τ and the en-
vironment on input τ ; and the environment never produces
a message from H1 in round r. Informally, for every message
sent by H1 there must exist a plausible alternative scenario

in which H1 does not send the message, either via collusion
with H2 or as a result of network conditions. Note that this
possibilistic notion of security against a stronger adversary
is incomparable to offline repudiability: a protocol may be
secure against either notion, both, or neither.

Informally, the environmentZ required to show that GOTR
has online repudiability works as follows. In rounds prior to
r, Z executes H1 and H2 faithfully according to the tran-
script τ . At round r, Z uses the circle key computed by H1

to send protocol messages via H2 that decrypt to H1’s mes-
sage in chat transcript τ . In subsequent rounds, Z simulates
a complete outbound network failure for H1, and uses the
pairwise symmetric keys negotiated by H1 with all judge-
controlled parties to send key update messages and protocol
messages via H2, according to the chat transcript τ . Since
Z knows all secrets associated to both parties, protocol mes-
sages sent to the judge will continue to have the same prob-
ability distribution as if H1 and H2 interact honestly. We
note that this proof can be extended to the case thatH1 does
not faithfully execute the protocol, for example by causing
an unexpected consistency check failure or leaving a chat
before the end of the transcript τ ; these actions may be
plausibly explained by network failures caused by Z.

Authentication. We define authenticated group messaging
in terms of an adversary that controls N − 2 parties and
two honest parties H1 and H2. The adversary may run any
number of concurrent sessions with H1 and H2, and request
H1 and H2 to send any chat messages in those sessions,
before sending a chat message m∗ to H1 in a target session
s∗. The adversary wins if H1 accepts m∗ with source H2,
and m∗ was never sent by H2 in s∗. A group messaging
protocol is authenticated if no efficient adversary can win
this game.

To see that GOTR is authenticated, we consider the con-
ditions required to accept m∗ from H2: (i) the circle key
applied to m∗ must include a z value sent by H1 to H2; (ii)
the protocol message Mac must verify; and (iii) H1 must
receive a consistency check message from H2 that includes
m∗ in the digest. We note that the security of the BD GKA
prevents an adversary from deriving the circle key if a pre-
vious z value sent by H1 is replayed in a different BD GKA
message. Furthermore, the security of the Mac prevents the
adversary from constructing a correct tag from an unknown
key. Finally, if a message is encrypted using H2’s circle key
and H2 did not send the message, honest H2 will never in-
clude m∗ in the digest of a consistency check; forgery of such

a message is impossible due to the security of the Mac used
in pairwise communications and the security of the pairwise
authenticated key agreement scheme.

3.2 Complexity

0

2

4

6

8

10

4 8 12 16

t
i
m
e

(
s
)

group size

Figure 2: (a) End-to-end delay.
Boxes indicate 1st and third quar-
tiles, bands inside the box indicate
medians, crosses and circles indi-
cate outliers.

Leveraging the BD
GKA, our scheme re-
quires four rounds of
contributory data ex-
change during a key up-
date, plus two more
rounds to verify the
data using the flake
key. The number of
messages to exchange
the contributory data
for each user is O(N).
The message transmit-
ted in the communi-
cation stage is of size
O(N) since all the contributory data is piggybacked with
the message. To add a member to the group chat, each
user only needs to add one flake into her circle, i.e. 3 more
messages to send and receive per key update. To remove a
member, each user removes one flake, i.e. no messages are
transmitted. If the group only has two users, the flake is
the circle, and our scheme operates in a way very similar to
two-party OTR.

0

2

4

6

8

10

12

14

4 8 12 16

t
i
m
e

(
s
)

group size

Figure 2: (b) Total execution
time, single key update.

To measure the per-
formance of our proto-
col in a more realistic
environment, we imple-
ment GOTR as a Pidgin
plugin, and run chats of
4, 8, 12, and 16 XMPP
clients using a public
server jabber.org. We
use the 2048-bit MODP
group as specified in
RFC 3526 [12] to mea-
sure the execution time
of the plugin on Intel Core i5-2500K computers running
Linux. Measurement shows that the execution time is
mostly due to the transmission delay from one Jabber client
to another. The boxplots with whiskers with maximum 1.5
IQR of the data are shown in Figure 2.

4. CONCLUSION
We proposed a group OTR protocol GOTR that provides

unconditional repudiability, in the sense that we allow users
to repudiate the authorship of session messages in the pres-
ence of a computationally unbounded online judge, with the
assistance of a subset of insiders, while forgery by mali-
cious insiders can still be detected. The repudiability of our
scheme does not rely on the deniability of the entity authen-
tication algorithm, and therefore circumvents the problems
in real-world plausible deniability. GOTR utilizes a feature
of certain GKAs, such as Burmester-Desmedt, to turn it
into a robust “hotplug” GKA, and to further turn the ad-
verse facts that the network may fail and users may be faulty
into the security of the senders. We have implemented the
core protocol as a Pidgin plugin.

Acknowledgements.

We thank Ian Goldberg, Yongdae Kim, and several anony-
mous referees for their helpful comments and discussions
about this work. This research was partially supported by
NSF grant 0917154.

References
[1] J.-M. Bohli and R. Steinwandt. Deniable group key

agreement. In Progress in Cryptology – VIETCRYPT
2006, volume 4341 of Lecture Notes in Computer Sci-
ence. 2006.

[2] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record
communication, or, why not to use PGP. In Proceed-
ings of the ACM workshop on Privacy in the electronic
society, WPES ’04, 2004.

[3] M. Burmester and Y. Desmedt. A secure and efficient
conference key distribution system. In Advances in
Cryptology – EUROCRYPT ’94, volume 950 of Lecture
Notes in Computer Science. 1995.

[4] M. Burmester and Y. Desmedt. A secure and scalable
group key exchange system. Information Processing
Letters, 94(3), 2005.

[5] M. Di Raimondo, R. Gennaro, and H. Krawczyk. Secure
off-the-record messaging. In Proceedings of the ACM
workshop on Privacy in the electronic society, WPES
’05, 2005.

[6] M. Di Raimondo, R. Gennaro, and H. Krawczyk. Deni-
able authentication and key exchange. In Proceedings of
the ACM conference on Computer and communications
security, CCS ’06, 2006.

[7] T. Diament, H. K. Lee, A. D. Keromytis, and M. Yung.
The dual receiver cryptosystem and its applications. In
Proceedings of the ACM conference on Computer and
communications security, CCS ’04, 2004.

[8] Y. Dodis, J. Katz, A. Smith, and S. Walfish. Com-
posability and on-line deniability of authentication. In
Proceedings of the Theory of Cryptography Conference
on Theory of Cryptography, TCC ’09, 2009.

[9] C. Dwork, M. Naor, and A. Sahai. Concurrent zero-
knowledge. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, STOC ’98, 1998.

[10] I. Goldberg, B. Ustaoğlu, M. D. Van Gundy, and
H. Chen. Multi-party off-the-record messaging. In Pro-
ceedings of the ACM conference on Computer and com-
munications security, CCS ’09, 2009.

[11] J. Katz and M. Yung. Scalable protocols for authenti-
cated group key exchange. J. Cryptol., 20(1), 2007.

[12] T. Kivinen and M. Kojo. More modular exponential
(MODP) Diffie-Hellman groups for Internet Key Ex-
change (IKE). RFC 3526, 2003.

[13] H. Krawczyk. HMQV: A high-performance secure
Diffie-Hellman protocol. In Advances in Cryptology –
CRYPTO 2005, volume 3621 of Lecture Notes in Com-
puter Science. 2005.

[14] M. Mannan and P. van Oorschot. A protocol for secure
public instant messaging. In Financial Cryptography
and Data Security, volume 4107 of Lecture Notes in
Computer Science. 2006.

http://xmpp.org
http://jabber.org

	Introduction
	Group OTR Protocol
	Primitives
	Setup
	Key Update
	Communication: SendMsg, RecvMsg, ConsCheck

	Evaluation of GOTR
	Security Analysis
	Complexity

	Conclusion

