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Abstract

There have been a number of protocols proposed for
anonymous network communication. In this paper we
investigate attacks by corrupt group members that de-
grade the anonymity of each protocol over time. We
prove that when a particular initiator continues com-
munication with a particular responder across path re-
formations, existing protocols are subject to the attack.
We use this result to place an upper bound on how
long existing protocols, including Crowds, Onion Rout-
ing, Hordes, Web Mixes, and DC-Net, can maintain
anonymity in the face of the attacks described. Our
results show that fully-connected DC-Net is the most
resilient to these attacks, but it suffers from scalability
issues that keep anonymity group sizes small. Addition-
ally, we show how violating an assumption of the attack
allows malicious users to setup other participants to
falsely appear to be the initiator of a connection.

1. Introduction

A variety of different methods have been proposed to
provide anonymous communication over the Internet.
Previous protocols include DC-Net [4], Crowds [13],
Hordes [16], APFS [14], Onion Routing [12, 19], and
Web Mixes [1]. Each of these works include insightful
analysis of attacks and network performance. In their
paper on Crowds, Reiter and Rubin describe an at-
tack that allows an attacker to guess the initiator of an
anonymous connection. The guess can be made based
on information about the predecessor on the path of
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proxies. The presence of the attack caused the design-
ers of Crowds to modify their protocol, which helped to
ward off, but failed to eliminate, any threat. Syverson,
et al. [19] later examined a related attack that worked
successfully against some configurations of Onion Rout-
ing and required timing analysis.

In this paper, we define the predecessor attack, a gen-
eralized version of these attacks. The attack runs sim-
ply by counting, for each node, the number of rounds
(e.g., path reformations in Crowds) in which each node
sends a message that is part of an identifiable stream of
communications through an attacker. The attack does
not require analysis of the timing or size of packets, but
instead exploits the process of path initialization. We
look more carefully at the implications of the attack
and its variations on protocols for anonymity. Specifi-
cally, we make the following contributions:

• We define a class of anonymous protocols in which
all currently proposed protocols may be placed and
prove the entire class is subject to the predecessor
attack.

• We derive upper bounds on the amount of re-
sources an attacker requires to significantly de-
grade the anonymity of users of the DC-Net, Onion
Routing, and Mix-Net (e.g., Web Mixes) proto-
cols, complementing Reiter and Rubin’s analysis
of Crowds.

• We show that modifying path lengths in Mix-Net
systems has limited value and exposes users to at-
tacks that work faster than would be possible with
fixed path lengths.

• Finally, we identify setup attacks as a new threat
that can be used to victimize Crowds, Onion Rout-
ing, and Mix-Net users so that they are falsely ac-
cused of being initiators of connections.



Our work shows that attacks against DC-Net are ex-
tremely low-cost when participants are arranged in a
logical ring (see [15]). Additionally, we argue that al-
though attacks against DC-Net where participants are
fully connected requires unreasonable resources on the
part of the attacker, DC-Net has overhead that does not
scale well with the number of participants. Moreover,
DC-Net most easily falls subject to denial-of-service
attacks that require even more overhead to avoid ef-
fectively. Our approach is probabilistic, and contrasts
with epistemic approaches to understanding anonymity
taken in the past [18].

This work has implications not only for anonymous
users with recurring Internet connections, but also for
protocols that provide responder anonymity [6, 14] that
want to support servers that remain available for long
periods of time.

The next section overviews related work. We prove a
theorem in Section 4 stating that a generalized attack
undermines anonymous protocols. We analyze attacks
against specific protocols in Section 5. We introduce a
new attack that can falsely identify the initiator of a
connection in Section 6. Section 7 discusses the merits
of these protocols in light of the attack, and Section 8
concludes.

2. Background

Previous work on anonymous communication over
the Internet has been extensive [4, 12, 13, 16]. A good
survey of previous work is presented by Martin [9].
There have also been efforts to directly compare or an-
alyze those techniques, or analyze the variety of attacks
that may reduce the anonymity of a protocol’s user over
time [16, 1, 19]. Reiter and Rubin [13] have described
an attack in the context of Crowds by which sufficiently
powerful attackers can degrade the anonymity of a user.
A related attack has been described by Syverson et
al [19] for Onion Routing. These attacks form the ba-
sis of our analysis in this paper. We distinguish our
work from those analyses in the next section.

Anonymous protocols route messages from the initia-
tor of a connection that wishes to remain anonymous
to an overt responder, which does not participate in the
protocol. A common feature of all proposed protocols
for anonymity, some of which we review here, is the
selection of a path through which messages are routed
or the selection of a group of nodes that work together
to send messages.

2.1. Crowds

Reiter and Rubin developed Crowds [13], which uses
a group of nodes that serve as proxies for a given initia-

tor from the group. An initialization message is routed
from the initiator to a series of proxies, forming a path
for all future messages from the initiator. Upon receiv-
ing this message, each proxy decides, based on a prob-
ability of forwarding (pf ), whether to extend the path
through another proxy chosen at random with uniform
probability or to become the last node on the path and
communicate with the responder directly. This path is
maintained for a limited period of time, after which all
paths must be reformed. The time limit allows nodes
that join the protocol to add their paths at the same
time as all other nodes; otherwise new paths may be
easily attributed to recently joined nodes. Paths must
also be reformed when proxies on the path leave the
session.

2.2. Onion Routing

Onion Routing [12] by Reed, Syverson, and Gold-
schlag, is similar to Crowds in that an initial message
forms a path of proxies through which the initiator
sends its future messages. The protocol gets its name
from its method of encrypting the initial packet and the
address of the proxies at each hop on the path with the
public key of the previous step. This scheme results in
layers of encryption that are peeled off at each step in
order to determine the next address to send to on the
path. This requires the initiator to predetermine the
entire path. We will explore the benefits of initiator-
determined paths and layered encryption in Section 5.

In Crowds, Onion Routing, and Mix-Net, a node that
stops forwarding messages for any reason will disrupt
the paths it is on and force new paths to be reformed
before communication for the initiators on those paths
can resume. In Crowds, not all such disruptions will
lead to full path reformation, but a substantial fraction
will [13].

Onion Routing has generally been implemented with
the onion routers being placed in the network outside
of the control of the individual users. While it can
be argued that this reduces the possibility of corrup-
tion of any particular onion router, it requires that the
users trust the operators of the onion router to main-
tain their anonymity. Accordingly, users may instead
choose to run their own onion routers locally, and band
together cooperatively to forward traffic for each other.
This local configuration distributes the trust to many
operators, but provides more opportunities for corrup-
tion of routing nodes. As described in more detail in
Section 3, we primarily analyze the local configuration.



2.3. Mix-Net

A number of protocols for anonymity, Webmixes [1],
ISDN-Mixes [11], the Java Anon Proxy [5], Stop-and-
Go-Mixes [8], Onion Routing, and others, have been
based on David Chaum’s anonymous email solution:
a network of mixes [3]. We refer to a Mix-Net as
protocol that uses Onion Routing’s layered encryption
and also employs mixing techniques to thwart timing
analysis. Such mixing techniques include sending mes-
sages in reordered batches, sending dummy messages,
and introducing random delays. It is beyond the scope
of this paper to study which protocols effectively stop
timing attacks, or, more generally, the effectiveness of
the various mixing techniques. Instead, we consider an
idealized Mix-Net protocol that guarantees that timing
analysis will be effectively stopped. Onion Routing pro-
vides no defenses against timing analysis, and we show
the difference that this makes against the predecessor
attack in Section 5.

2.4. DC-Net

Chaum’s solution for anonymous communication,
called DC-Net [4], has each participant share secret
coin flips with other participants in pairs. The parity
of the flips a participant has seen is then announced
to all other participants. Since each flip is announced
twice, the total parity should be even. To send a mes-
sage, a participant incorrectly states the parity seen.
This causes the total parity to be odd, which indi-
cates transmission of a bit. No one except the initiator
knows who sent the message, unless all of the nodes
who flipped coins with the sender reveal their coin flips
among themselves. Various techniques are available to
handle collisions similar to media access protocols for
link layer networking [2].

Any node may launch a denial-of-service attack by
choosing to send a message every round of coin flips.
Such a node is as anonymous as any initiator, and
therefore cannot be simply detected and denied access.
Strategies have been developed by Waidner and Pfitz-
mann [20] to detect such an attacker, but at a high cost
in overhead.

3. Comparison with Related Work

Reiter and Rubin were the first to identify the prede-
cessor attack [13]. In their initial analysis, they provide
analysis that could be used to derive a bound on the
number of rounds (i.e., path reformations) required for
the attack to work with high likelihood for crowds.

Syverson, et al. identified a related attack for Onion
Routing [19]. They analyzed two configurations: local-

COR configurations where individuals run their own
onion router, and remote-COR configurations where
individuals first connect to a remote untrusted COR.
Their analysis concluded that the attack they described
was not successful against the local-COR configuration
unless all other routers were compromised. Their anal-
ysis also concluded that the attack, complemented with
limited timing analysis, succeeds in the remote-COR
configuration with average probability (c/n)2, where c
is the number of attackers, and n is the total number
of nodes.

This work differs from previous work in several ways.
In this paper, we formally prove the attack Reiter and
Rubin identified is successful against all existing anony-
mous protocols. Furthermore, we extend their analysis
to calculate resources required to attack other proto-
cols, which allows a quantitative comparison of the ro-
bustness of the protocols.

This paper proves and details how the attack suc-
ceeds against the local-COR configuration. Addition-
ally, we show how Mix-Nets hold a substantial advan-
tage over Onion Routing in defending against this at-
tack.

Additionally, we analyze Mix-Nets in several differ-
ent scenarios, including variable and fixed path lengths.
Varying path lengths, which may seem like a good
method of confusing attackers, fails to significantly in-
crease the security against the predecessor attack. In
fact, we show that using a Crowds-like approach of
varying path lengths, as proposed in [19], exposes users
to much greater security risk.

We also show that the ring-based version of DC-Net
described by Chaum, and later by Schneier, is easily
attacked. Only one variation on DC-Net is safe from
the attack, though it is the most expensive protocol
and subject to simple and anonymous denial-of-service
attacks.

Finally, we are the first to identify setup attacks as
a threat to anonymous services. Setup attacks allow
malicious initiators to make it falsely seem that a third
party is the initiator of a connection.

4. A General Analysis

In this section, we define a model of anonymous pro-
tocols and an attack on such protocols. We then prove a
theorem stating that a generic attack works on all pro-
tocols in the model when specific conditions are met.

As we discuss in this section, there are two major
assumptions that the attack requires to operate: first,
that there is a recurring connection between some party
that initiates the sending of a message and the receiver
of that message; and second, that there is session-



identifying information available to the attacker in the
transported packets that uniquely identifies this recur-
ring connection.

To justify the assumption that the connection recurs
frequently, note that in the case of web browsing (which
was the main intended use of Crowds), users often re-
turn to the same site [7]. Onion Routing was designed
to support a wider variety of Internet connections (in-
cluding HTTP, FTP, NNTP, and raw sockets) [19], a
number of which encourage types of recurring activity
from users other than web browsing: USENET news-
reading, ssh or telnet connections to remote accounts,
on-going email correspondence, and IRC or other chat
programs.

4.1. Model

A protocol is a series of instructions that a set of
nodes (i.e., hosts) on a network can follow to hide the
origin of their users’ communications. A participant is a
node that follows the protocol to send messages anony-
mously and to assist others in sending their messages
anonymously. An attacker is a participant that collects
data from its interactions with other participants in the
protocol and may share its data with other attackers.
We only consider peer-to-peer systems for simplicity,
but attackers need not act as full participants to be ef-
fective. The attack works as long as attackers can send
and receive messages in the protocol.

A participant that initiates the sending of a mes-
sage is known as an initiator. The intended receiver
is known as a responder and is not a participant. We
refer to a session as continuing communications be-
tween an initiator and a responder. We use the term
sender to refer strictly to a node that sends a packet
directly to another node or to the responder; the term
receiver strictly refers to nodes accepting packets from
other nodes as part of the protocol. The receiver of any
packet can determine the identity of the sender and the
sender of a packet knows the identity of the receiver;
we equate IP addresses with identity.

We will show that sufficient attackers can col-
lect enough information over time to compromise the
anonymity of an initiator. Specifically, we show that
with time, attackers can increase the probability that
they can identify the initiator for a given session.

When a single message is transmitted from the initia-
tor, there is some set of packets that are sent between
the participants. We refer to the active set for a given
message as the set of all participants that send or re-
ceive any of these packets. Note that this means that
the initiator is always in the active set. We denote
the active set by A. In addition, there is some total

order Π on the packets, representing the global order
that the packets are received. This total order may be
influenced by both the protocol, as well as the behav-
ior of the network, since the network may deliver some
packets faster than others.

Let Πi be the ith position within the active set.
Within the total order, there is always some position
ΠI where the initiator first sends a message that can be
identified as a transmission. In our analysis, we assume
that the protocol and the network combine to give A
and Π the following property: given that the initiator
is in position ΠI the participants in the remainder of
the positions are chosen uniformly at random, either
with replacement or without replacement. When this
is without replacement, the initiator only appears in
position ΠI .

Let Amin be the minimum over all active sets A and
total orders Π that occur with non-zero probability,
of the number of attackers required to determine the
initiator and the responder. For example, in Onion
Routing, Amin = 2, since it is sufficient for an attacker
to be the first participant on the path, as well as the
last participant on the path. Note that the attackers
might not necessarily know that they have correctly
identified the initiator in this case. For the case of
the ring-based implementation of a DC-Net, Amin = 2,
since it is sufficient for the attackers to occupy positions
ΠI−1, ΠI+1, as well as the participant that forwards the
message to the responder.

Nodes do not have indefinitely stable connections to
the network. When a node disconnects, any active sets
that it was a part of become disconnected. We call
this event a reset and assume that it occurs repeatedly
without end in the operation of any protocol. We call
the period between resets a round. Note that all ac-
tive sets must be reset at once if any are reset, as it
will otherwise be obvious who the initiator of the re-
set stream must be. It is foolish to reset the active
sets immediately when a new node joins or an exist-
ing node leaves, as an attacker could then hasten the
predecessor attack by increasing the rate of resets [13].
Alternately, the protocol cannot make the rounds too
long, as users could be without the service until the
next reset. Since attackers can likely leave and join to
force resets, and protocols are constrained from long
delays between resets, we can expect that rounds occur
with short, regular intervals. For our analysis, we only
require that resets occur repeatedly.

The attack can identify all initiators that keep a ses-
sion active with the responder R. In the case that mul-
tiple initiators contact a single responder, attackers will
not be able to link specific data streams to each initia-



I Initiator of a connection.
R Responder to a connection.
A The set of of participants used by I to forward I’s messages
n The number of participants.
c the number of attackers.
T number of rounds.
Pi Total ordering of the nodes in A.
l Mix-Net or Onion Routing fixed path length

pf Crowds probability of forwarding.

Table 1. Table of variables.

tor unless there is information in at least one packet per
round that distinguishes the sessions from each other.
Even if such information is not available, the attack
can, in some cases, be considered successful if an ini-
tiator is linked to a particular responder. This case,
however, is more difficult to analyze, so we will assume
that only one initiator maintains a session with a given
responder. We shall refer to a single initiator of in-
terest to the attackers, node I , who is communicating
with responder R. Note that if information is avail-
able that distinguishes sessions with the same respon-
der from each other, that is an equivalent case.

We assume that I contacts R in every round. If I
does not contact R in every round, we only use the
rounds where R is contacted. The duration of the at-
tack will be increased by a factor equal to the ratio of
total rounds to rounds in which I contacts R.

In summary, we consider three assumptions to be key
to our later discussion:

• I maintains the session, using the protocol, with-
out end. It may leave the protocol or temporarily
halt communications with R, but it must always
resume using the protocol.

• An attacker must be able to distinguish the mes-
sages corresponding to a given session.

• The protocol’s method of selecting the active set
must be uniformly random in the sense that all
active sets of a given size are equally likely. Note
that this is how Crowds and Onion Routing are
specified to operate [13, 19]. For each Πi within a
total order Π, a node must be selected uniformly
at random.

4.2. The Attack

The attack depends on the assumption that an initia-
tor might choose to remain in contact with a responder
for an extended period of time. In that case, the ses-
sion between the initiator and responder is subject to a

number of resets. With each reset, a new active set is
constructed between the initiator and responder. For
each active set, there must be some participant that
forwards the message outside the anonymous group to
the responder. When this happens, we assume that
this participant is able to associate the message sent
with a specific session. The basic idea is that whenever
the attackers are able to determine the specific session,
there is some first attacker that sees the message. Our
attack rests on the fact that the initiator is more likely
to send the message to that first attacker than any other
participant.

We define G(n, c, T ) as the probability of correctly
guessing the initiator after T rounds with n partici-
pants and c attackers working cooperatively.
Theorem: No protocol can maintain G(n, c, T ) ≤ ε
for any ε < 1, for all T ≥ 0 when c ≥ Amin.
Proof:

Consider a protocol P . The attackers attempt to
determine the identity of initiator I , who is the only
participant communicating with responder R.

We now show that the attackers will be able to in-
crease G(n, c, T ) to be arbitrarily close to 1, and there-
fore larger than ε, given sufficient T . In any round
where the attackers can determine R (which occurs
with positive probability) and where the configuration
is such that it could be the case that they can iden-
tify I , they log the participant who first sent a message
that can be identified as a transmission to the attackers
in that round. At any step, the attackers identify the
participant that has been logged the largest number of
times as the initiator.

The key to this attack is that in the case where the
initiator can be correctly identified, it is the participant
that is logged. This occurs with positive probability.
On the other hand, in the remaining cases, due to the
uniformity assumption, all participants are logged with
equal probability. Thus, the expected number of times
that I is logged by the attackers is greater than the
expected number of times that any other node is logged



by the attackers. By the law of large numbers, as T →
∞, I will appear more often than any other node. The
probability that I is identified as the initiator will grow
larger than any value of ε < 1. 2

When attackers attempt the easier task of spending
rounds trying to compose a participant’s set of receivers
— and not the entire set A — the result of the attack
is that initiators are no longer anonymous and only the
unlinkability of the initiators is maintained. That is, it
is known to the attackers that the initiators are com-
municating, but the identity of the responders are not
known. It is an advantage for anonymous protocols
wishing to maintain more than unlinkability to have
a requirement that all participants form active sets in
all rounds (and possibly fill them with null traffic un-
der threat of monitoring by attackers). Proofs of these
statements exist that are similar in construction to the
above proof. In general, any non-uniformity in anony-
mous protocols can be exploited for attack.

5. Specific Attacks

Here we describe specific versions of the generic at-
tack given in the previous section. We provide upper
bounds on the time required for the degradation of
an initiator’s anonymity when faced with such an at-
tack. We bound the time in terms of rounds, as defined
above. Figure 1 summarizes our results.

The two resources spent by the attackers are the
number of nodes working cooperatively on the attack
and the amount of time available to attack; memory
and processing resources are generally not significant.
Attackers handle no more traffic than normal partici-
pants in the protocols. We will explore how these re-
sources can be used to effectively attack and undermine
anonymity in systems running these protocols.

Before we begin, it might be noted that some of the
results in this section suggest either very long attack-
ing times or a high proportion of attackers. While this
is true, the fact that the predecessor attack is passive
and would draw no attention to itself means that it
could continue for long periods of time without inter-
ruption and that the proportion of attackers could be
very high. We do not suggest that an unsophisticated
attacker with very limited resources could learn very
much with this attack. It is important, however, to un-
derstand the limitations of current protocols and to be
aware of the applications for which a given protocol is
appropriate.

5.1. Crowds

To attack Crowds, a number of attackers may sim-
ply join the crowd and wait for paths to be reformed

— a periodic occurrence, usually hourly [13]. Each at-
tacker can log its predecessor after each path reforma-
tion. Since the initiator I is far more likely than any
other node to appear on the path, the attackers will
see I much more often than any other node. After a
large number of path reformations, it will become clear
that the initiator is I . This attack was described by
Reiter and Rubin earlier [13]. They all but stated the
number of rounds required to break Crowds; we show
the analysis that follows directly from their results.

In terms of our generic proof from Section 4, only
one attacker is required. The attacker can appear di-
rectly after I and may then easily recover the responder
R’s address, which is in plain view, and other session-
identifying information. Multiple attackers can per-
form this attack in parallel. They must simply com-
municate their results between each other, combining
them to get larger samples.

It is helpful for attackers in Crowds to determine
whether they are the first attacker on the path. This
allows an attacker that appears after another attacker
in the path to disregard its predecessor, as that prede-
cessor is no more likely to be the initiator as any other
node. This may be coordinated by a master attacker
that can collect predecessor information from all the
other attackers. Another method is for attackers to al-
ways submit requests from the session directly to the
responder, thereby ending the path. Or the attacker
may covertly tag messages before forwarding along the
route. In any case, we can assume that only the first
attacker on any path will log its predecessor.

Now we can calculate the probability of a particular
node N being on the path just before the first attacker
on the path, if there is one. Let us call this probabil-
ity σ. Based on our assumption that paths end with
the first attacker, no other attackers are in the path
before N and the path ends after N sends the message
to the attacker. Therefore, we can write σ as the prob-
ability that N is on the path just before the end and
that an attacker is on the path not directly after the
initiator. The latter was given by Reiter and Rubin as

P (H2+) =
pf c(n−c)

n2
−npf (n−c) [13], where pf is the probabil-

ity of forwarding. This gives us σ = 1
n−c

pf c(n−c)
n2

−npf (n−c) ,

or σ =
pf c

n2
−npf (n−c) .

We apply Chernoff bounds [10] to the probability of
an attacker appearing first in the path and determine
that as long as the number of rounds is at least T =
8n
c

ln n, the initiator will appear to attackers at least
1
2T c

n
times with high probability.

We can now use σ to bound the probability that any
non-initiator appears more than that many times. We



Protocol Rounds to attack, Rounds to attack, Work required Latency from
with high probability Expectation of participants I and R

Crowds (from [13]) O
(

n
c

log n + n
c−nσ

log n
)

O
(

n
c

+ n
c−nσ

)

O

(

1
(1−p)2

(

1 + 1
n

)

)

(

p

1−p
+ 2

)

Onion Routing O

(

(

n
c

)2
ln n

)

O

(

(

n
c

)2
)

O(l) O(l)

Mix-Net

fixed path length l O

(

nl

c(c−1)l−1 lnn

)

O

(

nl

c(c−1)l−1

)

O(l) O(l)

variable path length O

(

nlmin

c(c−1)lmin−1 ln n

)

O

(

nlmin

c(c−1)lmin−1

)

O(lave) O(lave)

DC-Net
fully connected, c < (n− 1) n/a n/a O(n) O(lg n)
fully connected, c = (n− 1) 1 1 O(n) O(lg n)
ring connection O(n) O(n) O(n) O(lg n)

Figure 1. A summary of the analysis for variations on each of four protocols.

choose δ such that (1 + δ)Tσ = 1
2T c

n
. This yields

δ = c
2nσ

− 1. The number of times that a particu-
lar non-initiator is seen, B(T, σ), is a binomial random
variable that depends on the number of rounds and the
probability of seeing it, σ.

Applying the Chernoff bound:

Pr{B(T, σ) ≥ (1 + δ)Tσ} < 2−δTσ

< 2−T ( c
2n

−σ) (1)

we see that if T ≥ 2n
c−2nσ

2 log2 n, then with probability

1/n2, we know that a given non-initiator node shows
up to the attacker less than 1

2T c
n

times. And since we
have n nodes, there is a less than 1

n
chance that any

node other than the initiator shows up more than 1
2T c

n

times.
Let the number of rounds be the greater of
2n

c−2nσ
2 log2 n and 8n

c
ln n 1. Then use the following

algorithm. If exactly one node is seen more than 1
2T c

n

times, then the attackers believe that node is the initia-
tor. If more than one, or no nodes are over the thresh-
old, the attackers cannot yet determine the initiator.
For this algorithm to fail — either by not answering
or by answering incorrectly — either the initiator did
not appear sufficiently often, or some non-initiator ap-
peared too frequently. Any given non-initiator fails
with probability 1/n2, and the initiator fails with prob-
ability 1/n, so the total probability of failure is at
most 2/n. The probability that the initiator appeared
too few times and some non-initiator appeared too of-

1Note that if σ = 1 − 1
2 ln 2

c
n

, then the number of rounds is

the same. If σ is smaller, then T =
4n log2 n

c−2nσ
is the larger number

of rounds. Otherwise, T = 8n
c

lnn is more rounds. For example,

with n = 1000, c = 100, and pf = .8, about 553 rounds are

required to make sure the initiator is seen often enough, w.h.p.,

while about 401 rounds are required to make sure no other node

is seen too often, w.h.p. Thus, the attacker selects T = 553.

ten, leading to an incorrect initiator identification, is
at most 1/n2.

The results for Crowds also hold for the Hordes pro-
tocol [16] — which uses multicast paths from the re-
sponder to the initiator — because the attack takes
place on the forward path to the responder.

5.2. Onion Routing

The use of layered encryption in Onion Routing re-
sults in a substantial advantage: only the last node in
the path can recognize a particular data stream. An
attacker must compromise the first and last node on
the path, and even then must use timing analysis to
know that both compromised nodes are on the path.
There are several possible scenarios, depending on the
ability of the attackers to gain information from timing
analysis.

In one scenario, the Onion Routers see very consis-
tent latencies between nodes. This might be possible if
packet decryption and encryption dominated the mes-
sage latency, and nodes were essentially homogeneous
in computing power. Per-hop delay might also be very
consistent in some LAN’s. Timing analysis in this sce-
nario would reveal to the two attacker nodes that they
were on the same path and reveal the number of hops
between them. Given that the path length is known
and set in advance (see Section 5.3.1 for discussion of
this assumption), the attacker will know if the first at-
tacker node follows the initiator directly. In this way, if
the attackers compromise both the first and last node
on the path, they will immediately identify the initia-
tor.

This attack, as reported by Syverson, et al, has

a single-round probability of success of c2

n2 for path

lengths greater than two, and c(c−1)
n2 for path lengths

of exactly two [19]. By applying a Chernoff bound, we



see that with probability n−1
n

, the initiator of the com-

munication will be discovered in T = 2
(

n
c

)2
ln n rounds

for path lengths greater than two and T = 2 n2

c(c−1) ln n

for paths with length set to two.
Another scenario involves networks with varying la-

tencies between nodes, but no mixing. This may be
the most likely scenario when nodes are connected by
the Internet. In this case, two attackers are able to
determine that they are on the same bath by a simple
timing analysis on the initiator’s traffic. If the path
length is set to three or less, the attackers will know
whether they are in position to see the initiator, and
the attack from the above scenario applies. Otherwise,
if two attackers are on the same path, with the sec-
ond attacker in the last position on the path, they log
the predecessor to the first attacker. This leads to an
attack similar to that used against Crowds. The prob-
ability of an attacker being in the last position and an

attacker being directly after the initiator is c2

n2 . Using
a Chernoff bound, we see that the initiator is logged at

least 1
2T c2

n2 times in T ≥ 8n2

c2 ln n rounds.
The probability that any other node, N , is logged

by the attackers depends on the path length, l. Note
that if N is last on the path, or second-to-last, it can-
not be seen by the first attacker. Also, if N is third-
to-last on the path, the attackers would need to be
adjacent in order to see N and would not log it as a
possible initiator. All other positions, however, do lead
to possible observation. Thus, the probability that N

is logged in a given round is σ = 1
n

c2

n2 (l − 3). We
choose a δ = n

2(l−3) and apply the Chernoff bound to

get T ≥ 4n3

c2
1

n−2(l−3) log2 n rounds. This many rounds

ensures that N is seen less than 1
2T c2

n2 times with prob-
ability 1

n2 . The analysis now follows from the Crowds
analysis.

The final scenario is when timing attacks are not pos-
sible against the Onion Routing system. In this case,
Onion Routing becomes a Mix-Net and the analysis
from the next section applies.

5.3. Mix-Net

When no timing attacks are possible, users have an
even more substantial advantage against the attack.
Specifically, an attacker must compromise every node
in the path between the initiator and responder to iden-
tify the initiator. In terms of our proof from Section 4,
the number of attackers must be equal to the size of the
active set, which is the path length. If there is a fixed
path length of l for the network, then the probability
of the attacker determining the initiator of a particular

message is c(c−1)l−1

nl . Again, we use a Chernoff bound
and observe that this will happen at least once, with

probability n−1
n

, given T = 2 nl

c(c−1)l−1 ln n rounds.

Note that, in Mix-Nets and Onion Routing, be-
cause the initiator can directly choose the active set,
it may select only trusted nodes it expects to perform
honestly. In Crowds, initiators may similarly choose
trusted nodes, but are in control of only the first node
on their path. This strategy will defeat the attacks we
describe, but it has some drawbacks. Because the set is
static, over time an attacker may be able compromise
these systems, especially if their number is small. Ad-
ditionally, new paths are easily attributable to nodes
that join the protocol late when other nodes use estab-
lished paths.

5.3.1 Variable Path Lengths

Attackers know, with certainty, when they have found
the initiator in a Mix-Net system with fixed path
lengths. It would seem beneficial, therefore, to vary
the path length. Unfortunately, the benefits of this ap-
proach are limited. The cost, in latency and work, of
varying path lengths could be considered as a weighted
average over the cost for each possible path length. It
is likely, however, that user’s experience will be most
effected by the highest latency costs, rather than av-
erage performance. Good average performance will be
forgotten if the system sometimes performs so slowly
that it becomes unusable.

As we show below, the security of the system against
the predecessor attack is only slightly better than the
security of a system with the path length fixed to the
shortest length value. This means that the proposal
in [19] to have Crowds-like path length selection for
Onion-Routing, via a probability of forwarding, would
occasionally provide the worst-case performance of a
system with long path lengths and only offer the secu-
rity of a system with only a single possible path length
(times a constant factor of slowdown in the attack).

We now show how the security of a Mix-Net with
variable path lengths is limited in light of the predeces-
sor attack. Let us suppose that the path length is varied
by the initiator, and that the path length is chosen ran-
domly from a range. Let ls be the shortest path length
that is chosen with a probability of at least p > 1

n
. The

attackers will see the initiator in T 1
2p c(c−1)ls−1

nls
rounds

with high probability, as long as T ≥ 16
p

nls

c(c−1)ls−1 ln n.

Other nodes will be seen by attackers that get ls
nodes in a row when the actual path length is longer.
The probability, P , of the attackers seeing a non-



initiating node this way is at most 1−p
n−c

c(c−1)ls−1

nls
. Let-

ting δ = 1
2

p
1−p

(n − c) − 1 and B(T, P ) be a binomial
random variable representing be the number of times a
node is seen, we apply the following Chernoff Bound:

Pr{B(T, P ) ≥
1

2
Tp

c

n
} ≤ 2−(1+δ)TP

≤ 2−( 1
2

p
1−p

(n−c))T 1−p
n−c

c(c−1)ls−1

nls

≤ 2−
1
2 Tp

c(c−1)ls−1

nls (2)

Thus, if T ≥ 4
p

nls

c(c−1)ls−1 log2 n, this node will be seen
1
2Tp

(

c
n

)

or more times with probability of only 1
n2 .

The total probability, then, of any such node being seen
1
2Tp

(

c
n

)

times is less than 1
n
. So if T is larger than both

16
1−p

nls

c(c−1)ls−1 ln n and 4
p

nls

c(c−1)ls−1 log2 n, the initiator

will be seen at least 1
2Tp

(

c
n

)

times and will be the only
node seen that many times, with probability greater
than n−2

n
.

Note that the number of rounds has the same order
of complexity, in terms of n and c, as the attack against
the fixed path length of l = ls. Thus, the variable path
lengths increase the average and maximum delay but
provide approximately the strength of the smallest path
length against attackers using this attack.

The primary advantage of variable path lengths is in
reducing the certainty of attackers in the result. With
a fixed path length, the attackers may determine the
initiator’s identity with certainty in any single round,
including the first round of the attack. However, if
there is a non-trivial probability that the path length
will be l+1, then a set of attackers that make up a path
length of l cannot be certain that they have identified
the initiator correctly.

In general, to prevent the predecessor attack, the
greatest path length with acceptable performance char-
acteristics should be used. It may, however, be reason-
able to select a path length with a good balance of
performance and security and then vary path lengths
to higher values for greater security against attacker
certainty. Of course, against Onion Routing, timing
attacks may work independently of path length with
the same result [19]. The security of longer paths de-
pends on good general security that leaves attackers
without easier attacking options.

5.3.2 Unknown Path Lengths

Hiding a fixed path length in Mix-Nets also provides lit-
tle additional protection. One reason is that for most
interactive applications, the typical user can practically
stand performance no worse than using 10 or 20 nodes

in a path. Only an exceptionally protective user might
have a path length outside this range. However, even
if the range of possible path lengths is large, the path
length can still be determined as quickly as the prede-
cessor attack will work against that path length.

Suppose the initiator uses paths with hidden length l.
Given that the path length is fixed, the attackers know
that when they comprise the full path length, only the
initiator will be seen. They will get paths of length l−1

every nl−1

c(c−1)l−2 turns, on expectation. After only two

such times, the attackers will have seen two different
nodes at the beginning with high probability. With
two different nodes, it is clear that the path length is
greater than l − 1. Getting the same node multiple
times at a given path length suggests that the node
seen is the initiator.

However, if the attackers wanted strong proof that a
node was indeed the initiator, they might wait until the
number of turns is high enough to show that a longer
path would have been found with high probability. This
would require the amount of work necessary to attack
a one-step longer path length. Clearly, it is desirable
to hide the path length whenever possible, as more in-
formation can be useful to attackers. One should not,
however, rely on an assumption that the attackers do
not have path length information while using such a
system.

5.4. DC-Net

In DC-Net, a graph can be constructed by viewing
each shared secret as an edge between nodes. To defeat
DC-Net and expose the messages of a node N , attack-
ers can surround N by corrupting all nodes that share
an edge with N and share their secret coin flips with
each other. By doing this, they know all the coin flips
that N shared and therefore know what N ’s bit par-
ity should be and can detect any messages. To deter-
mine the initiator in a particular session, the attackers
can surround each node in turn until the initiator is
found. A good instantiation of DC-Net would not al-
low less than all pairs of participants exchanging coin
flips. Otherwise, topology reformations provide attack-
ers with opportunities to gain information.

Because data exchange with all participants can be-
come prohibitive, DC-Net as a ring is described by
Chaum [4] and others [15]. In his Ph.D. Thesis, David
Martin implemented ring-based DC-Net within the
context of a local network [9]. In the ring version
of DC-Net each participant shares two secret coin flips,
one with each of her neighbors.

In this section, we show how the attack detailed in
Section 4 can be applied to DC-net. We discuss the



attack for ring-based DC-Net, but analogous attacks
exists for other topologies. Only a fully connected DC-
Net is impervious to attackers because the active set
is the entire group, and all nodes are successors to the
initiator; in the terms of the proof, |Amin| = n−1. For
ring-based DC-net, where the topology can be parti-
tioned with just two attackers, |Amin| = 2.

5.5. Ring-based DC-Net

The anonymity of a ring-based DC-Net degrades to
zero and the initiator’s identity can be proven by only
two attackers after an average-case of Θ(n lg n) rounds.
A round only requires each attacker to leave the Chaum
ring and rejoin it — we assume that joining nodes are
placed randomly in the ring. If nodes are placed deter-
ministically based on a piece of information about the
nodes, such as a node’s IP address, an attacker can sim-
ply forge that information before joining. This allows
the attacker to effectively choose the best positions in
the ring to perform the attack, which then works much
faster. We also assume that all nodes hear all outgoing
messages. This is a requirement of DC-Net, because
the sender must hear the message to know whether it
was sent correctly or if a collision occurred. Even with
a system to prevent collisions and denial of service at-
tacks, such as found in [20], the sender must be able
to see its message to know whether a trap was set off.

During a round, two nonadjacent attackers A and B
may share their coin flips with each other. This effec-
tively creates a new edge in the DC-Net graph seen only
by the attackers. This new edge creates two sub-rings:
one new ring consists of the edges from A to B and
the new edge; while the other ring consists of the edges
from B to A and the new edge. As per Chaum’s proto-
col, the announced parities in the sub-ring without the
initiator will sum to zero, and the nodes in that ring
may be eliminated as possible initiators. The attackers
will be able to identify the initiator immediately if it is
the only node present in one of the sub-rings.

Suppose that attacker A has a position in the ring
and then attacker B joins the ring. The position of B
will partition the ring into two segments.

In a single round, there is a probability of 1
3 of B

being in the middle third of the ring relative to A’s po-
sition (i.e. B has at least bn/3c nodes between itself
and A on both sides). The expected number of rounds
for B to get such a position is three. When such a split
is achieved, the nodes will be split into two groups, each
with size at least bn/3c nodes. The worst case for the
attackers is that the smaller group is eliminated, leav-
ing the larger group to attack in a recursive manner.

Let us assume, without loss of generality, that n =
(

3
2

)k

for integral k. The total number of rounds required to
perform the attack is given by:

rounds = 3 +
9

2
+

27

4
+ . . . +

(

3

2

)k

(3)

= Σk
i=03

(

3

2

)i

(4)

= 9n − 6 (5)

This gives us an expected Θ(n) rounds for the at-
tack to reduce the initiator’s anonymity to zero. Note
that with just a few rounds, an initiator’s degree of
anonymity will often be substantially reduced. Also,
it is possible that the initiator’s anonymity may be re-
duced to zero in any single round.

6. Setting Up Third Parties

One of the key assumptions that make the above at-
tacks work is that the initiator behaves strictly accord-
ing to protocol, making random selections uniformly
from among all nodes. However, an initiator may se-
lect nodes purposefully, possibly with malicious intent.
In this section we discuss how malicious selection of the
active set by one or more collaborating nodes can be
the basis for a new attack that makes it appear that
traffic is originating from some particular victim. This
attack, which we call the set-up attack, can be used to
contrive evidence so that anyone using the degradation
attack described above will not identify the correct ini-
tiator; instead, they will locate the victim of the set-up
attack. This attack is present in any protocol where
initiators are allowed to non-randomly select any part
of the active set and includes Crowds, Onion Routing,
and Mix-Nets.

6.1. Set-up Attacks

Suppose the initiator, I , always places a victim node,
V , as its direct successor in its routing path. Then, if
attackers attempt to determine the initiator’s identity,
all messages will appear to come from V . If I has
malicious intent, it might, for example, then use the
link to launch an attack against a responder. Once
sufficient evidence existed to point to V , I could stop
the stream to ensure that V could not demonstrate its
innocence. Alternatively, I could use V to access a
responder that carries illegal content, making it appear
that V was the one receiving the data.

With multiple attackers all targeting the same node
V , the set up attack is very effective. For example,



suppose that several nodes were to purposefully route
paths through V to a specific responder. Another set of
nodes performing the degradation attack from Section 4
would see V as the mostly likely initiator.

Further optimizations are available through Mix-
Nets, in which the whole path is chosen by the ini-
tiator. If the malicious nodes conducting the set-up
attack were to know which attackers were attempt-
ing the degradation attack for particular sessions, they
could set the entire path after V to be these attackers,
thereby ensuring V gets discovered. Unless V joins the
attackers, it will appear to be the initiator and will bear
any consequences that arise from I ’s communications.

There is some risk to I in conducting this attack, as
I might either accidently choose one of the degradation
attack members as V , or the attackers might give V the
chance to join them and show that I is indeed the ini-
tiator. V might also monitor its connections and decide
not to carry any links sent from I once it appears that
it is being setup. I can mitigate this risk in Mix-Nets
and Onion Routing (but not in Crowds) by selecting
one node uniformly at random to place between itself
and V . Then all nodes will appear to V equally often
over time.

6.2. Self-Protection

Ironically, the set-up attack can be seen as a method
of self-defense against the degradation attack. Careful
selection of the nodes that will forward messages to
the responder also allows an initiator to protect itself
from degradation of anonymity. In fact, placing even a
single trusted node in Onion Routing on the path every
time ensures that the path cannot consist entirely of
attackers. By placing this trusted node at the end of
the path, the responder’s identity and other session-
identifying information is hidden from the attackers in
every round. Knowing who to trust in a random group
is difficult if not impossible, but nodes could arrange
to join a group with several other trusted nodes, and
share paths among each other.

Protection against the set-up attack described in this
section for both Crowds and Onion Routing is not a
simple task. We consider it a fundamental problem
with protocols that allow nodes to select the active
set. Detecting set-up attacks and developing methods
of countering them are among our areas of future ex-
amination.

7. Discussion

The amount of work required to establish and main-
tain anonymity can be very high, and can vary greatly
with different protocols. In this section, we discuss

picking the best protocol based on network perfor-
mance requirements as well as security, including re-
sistance to the predecessor attack.

Figure 1 summarizes the results of two performance
metrics. The fourth column shows the upper bounds
on the number of active sets in which each participant
will appear, which we refer to simply as work. The
fifth column shows the length of the active set between
the initiator and the responder, which directly affects
network latency. We discuss these results further in
this section.

7.1. Crowds, Onion Routing, and Mix-Nets

The network performance of Crowds largely depends
on the path length resulting from the chosen probabil-
ity of forwarding. Larger path lengths lead to a linear
increase in delay and result in greater work for partici-
pants in the Crowd on behalf of others, as calculated by
Reiter and Rubin [13]. Unfortunately, simply examin-
ing the analysis of Crowds’ resistance to the predecessor
attack shows that an increase in the probability of for-
warding does not significantly increase the number of
rounds required for a successful attack. The primary
advantage of a longer path in Crowds is to thwart at-
tack by traceback [22, 17, 23]. The intuition for this
is that the initiator will be seen by a collaborating at-
tacker in the first path position with probability c

n
,

regardless of the path length.
Crowds and Onion Routing have equivalent work and

latency characteristics for equal path lengths (see Fig-
ure 1). Onion Routing requires more work for encryp-
tion and decryption, but has a more consistent perfor-
mance over time. Crowds, and Onion Routing with
Crowds-based variable path lengths, have inconsistent
performance which may be a significant problem. Sup-
pose that l∗ is the path length at which the latency be-
comes too high for interactive applications. The path
will have length l∗ or greater with probability P ∗ = pl∗ .
Of course, if l∗ is large, then P ∗ will be quite small. In
any case, however, it will occur given enough users and
enough rounds. This means that the user will be un-
able to use the system for the duration of the round.
Even if average-case performance is good, this bad case
may happen often enough to significantly degrade the
user’s overall experience.

Mix-Nets face increased work and latency costs due
to the costs of effective mixing. Nodes may have to
introduce dummy messages, queue received messages
while waiting for additional traffic, randomly delay
messages, or apply other techniques. All of these in-
troduce a work cost, a latency increase, or both. We
note that the work and latency costs should continue



to be linear with respect to the path length.

7.2. DC-Net

DC-Net requires substantial work from all partici-
pants at all times. First, for every participant with
which secret coin flips are shared, a substantial amount
of data must be shared. Chaum suggests that large
quantities of random data might be shipped on a
CD [4]. A more efficient alternative would be to use
identical random number generators and share a seed
from which future numbers could be generated. Even
in this scenario, however, a node that joins the DC-
Net would need to exchange messages with every node
with which it will share coin flips; the attack described
in Section 4 is successful for any DC-Net in which fewer
than all participants are neighbors to each other.

Once nodes have joined, they must make their an-
nouncements of the parity of their coin flips. Log-
reduction message collection methods could be used to
collect parities, followed by a broadcast to let everyone
see the results. This introduces a latency of O(lg n) for
each set of bits that is sent. The latency cost is similar
to that of Crowds or Onion Routing when O(lg n) is the
same as the expected path length. As n grows, how-
ever, DC-Net latency will be much higher than most
Crowds or Onion Routing systems.

Another complication of DC-Net is collision resolu-
tion. Discussion of this issue and efficient solutions are
available elsewhere [21]. Denial of service attacks are
the cause of further inefficiencies in DC-Net. Denial
of service attacks on other users are simple to per-
form — attackers need only send a constant stream
of bits — and they can be performed under the cloak
of nearly unbreakable anonymity. A modification of
DC-net which isolates nodes launching the attack ex-
ists [20]; however, it cannot prevent the attack and
requires several steps of message exchange prior to a
message being sent. It also requires each node to send
“traps,” rather than messages, some constant fraction
of the time.

Despite the resistance of fully-connected DC-net to
the attack we described, with all of these difficulties,
DC-Net may only be usable between small groups of
trusted parties. David Martin has shown that the costs
become manageable in a locally-run system [9]. The
cost involved with using fully-connected DC-Net should
be more thoroughly examined, as the ring-based ap-
proach has the substantial pitfalls we describe in Sec-
tion 5.5. For large or dynamic groups, the additional
work required appears prohibitive for real-time and
bandwidth-intensive applications.

As both Crowds and Onion routing do not use the

entire set of participants to route messages, they are
resilient against denial-of-service attacks; whereas DC-
Net is not. Conversely, because fully-connected topolo-
gies in DC-Net use all nodes in the active set, they
are not subject to degradation of anonymity due to the
predecessor attack. Crowds and Onion routing are not.
Finally, because all variants of DC-Net do not allow
nodes to pick neighbors, they are not subject to set-up
attacks, as can occur in Crowds and Onion Routing.

8. Conclusion

Anonymity continues to be an elusive and challenging
problem. We have presented several results that show
the inability of protocols to maintain high degrees of
anonymity with low overhead in the face of persistent
attackers.

We provided upper bounds for Onion Routing and
Mix-Nets on the time required for attackers to degrade
the anonymity of a particular initiator with high prob-
ability. Figure 1 summarizes our results. Crowds’
degradation is bounded by O

(

n
c

lg n
)

rounds [13]. In
Onion Routing, the number of rounds is bounded by

O
(

(

n
c

)2
lg n

)

. With Mix-Nets, the number of rounds

required depends on the path length, l and is bounded

by O
(

nl

c(c−1)l−1 lg n
)

.

We proved that as long as attackers are selected uni-
formly at random to be a part of active set and sessions
can be identified across path reformations, the degree
of anonymity of any sender will degrade under attack.

This allows us to understand why some protocols
have a better defense against the predecessor attack
than others. For example, because the data is en-
crypted into layers so that only the final node on the
path can determine to which stream the packet be-
longs, Onion Routing holds its defense against attack-
ers longer than Crowds. Since Mix-Nets thwart timing
analysis, they further increase the defense.

With DC-Net, only when all pairs of nodes shared
coin-flips does the attacker require unreasonable re-
sources to succeed; however, this result does not hold
for other topologies. We also discussed, however, some
weaknesses in the protocol that might prevent it from
being usable in practice.

Finally, we identified set-up attacks as a new threat
to protocols that allow participants to choose part or all
of the active set. Detecting when a node is the victim of
a setup attack is difficult and is a fundamental problem
for Crowds, Onion Routing and Mix-Nets.

The predecessor attack applies to existing responder
anonymous protocols [6, 14], which are intended to pro-
vide anonymous web sites. Such responder anonymous



protocols are meant to support servers that stay up in-
definitely, though the predecessor attack insures only a
finite time is possible. Our related work [14] uses the
special properties of peer-to-peer networks to thwart
the predecessor attack we have described here.
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