
AnoA: A Framework For Analyzing Anonymous

Communication Protocols∗

Unified Definitions and Analyses of Anonymity Properties

Michael Backes1,2 Aniket Kate3

Praveen Manoharan1 Sebastian Meiser1 Esfandiar Mohammadi1

1 Saarland University, 2 MPI-SWS, 3 MMCI, Saarland University

{backes, manoharan, meiser, mohammadi}@cs.uni-saarland.de

aniket@mmci.uni-saarland.de

June 5, 2013

Abstract

Protecting individuals’ privacy in online communications has become a challenge of
paramount importance. To this end, anonymous communication (AC) protocols such as the
widely used Tor network have been designed to provide anonymity to their participating
users. While AC protocols have been the subject of several security and anonymity analyses
in the last years, there still does not exist a framework for analyzing complex systems such
as Tor and their different anonymity properties in a unified manner.

In this work we present AnoA: a generic framework for defining, analyzing, and quantifying
anonymity properties for AC protocols. AnoA relies on a novel relaxation of the notion
of (computational) differential privacy, and thereby enables a unified quantitative analysis
of well-established anonymity properties, such as sender anonymity, sender unlinkability,
and relationship anonymity. While an anonymity analysis in AnoA can be conducted in a
purely information theoretical manner, we show that the protocol’s anonymity properties
established in AnoA carry over to secure cryptographic instantiations of the protocol. We
exemplify the applicability of AnoA for analyzing real-life systems by conducting a thorough
analysis of the anonymity properties provided by the Tor network against passive attackers.
Our analysis significantly improves on known anonymity results from the literature.

∗This work will appear at CSF 2013.

1

Contents

1 Introduction 3
1.1 Contributions 3

2 Notation 4

3 The AnoA Framework 4
3.1 Protocol model 5
3.2 Generalized Computational Dif-

ferential Privacy 5
3.3 Anonymity properties 7

3.3.1 Sender anonymity 7
3.3.2 The value of ε 8
3.3.3 Sender unlinkability . . . 9
3.3.4 Relationship anonymity . 10

4 Studying our anonymity defini-
tions 10
4.1 Sender anonymity 10
4.2 Unlinkability 12
4.3 Relationship anonymity 13
4.4 Relations between anonymity no-

tions 13

5 Leveraging UC realizability 15
5.1 The UC framework 15
5.2 Preservation of α-IND-CDP . . 15

6 Analyzing Tor Anonymity 16
6.1 Tor—The OR Network 16

6.2 Anonymity Analysis 16
6.3 Anonymity Quantification 19

6.3.1 Distinguishing events . . . 19
6.3.2 Multiple Challenge Rows 20

6.4 System-Level Attacks and Adap-
tations 21
6.4.1 Traffic Analysis Attacks . 21
6.4.2 Entry Guards 21

6.5 Link-Corruption 22

7 Related Work 23

8 Conclusion and Future Directions 24

H Framework 29
H.1 Expressivity 29
H.2 Relations among the various no-

tions 34
H.3 Leveraging UC 36

I Abstracting Tor in UC 39
I.1 System and Adversary Model . . 39
I.2 Ideal functionality 39
I.3 Explicit traffic analysis 41

J Tor 41
J.1 Formal Analysis 42
J.2 Several Challenge Rows 43
J.3 Link Corruption 44

2

1 Introduction

Protecting individuals’ privacy in online communications has become a challenge of paramount
importance. A wide variety of privacy enhancing technologies, comprising many different ap-
proaches, have been proposed to solve this problem. Privacy enhancing technologies, such as
anonymous communication (AC) protocols, seek to protect users’ privacy by anonymizing their
communication over the Internet. Employing AC protocols has become increasingly popular over
the last decade. This popularity is exemplified by the success of the Tor network [Tor03].

There has been a substantial amount of previous work [STRL00, DSCP02, SD02, Shm04,
MVdV04, HO05, SW06, D0́6, FJS07a, FJS07b, GTD+08, APSVR11, FJS12] on analyzing the
anonymity provided by various AC protocols such as dining cryptographers network (DC-
net) [Cha88], Crowds [RR98], mix network (Mixnet) [Cha81], and onion routing (e.g., Tor) [RSG98].
However, most of the previous works only consider a single anonymity property for a particular AC
protocol under a specific adversary scenario. Previous frameworks such as [HS04] only guarantee
anonymity for a symbolic abstraction of the AC, not for its cryptographic realization. Moreover,
while some existing works like [FJS12] consider an adversary with access to a priori probabilities
for the behavior of users, there is still no work that is capable of dealing with an adversary that
has arbitrary auxiliary information about user behavior.

Prior to this work, there is no framework that is both expressive enough to unify and compare
relevant anonymity notions (such as sender anonymity, sender unlinkability, and relationship
anonymity), and that is also well suited for analyzing complex cryptographic protocols.

1.1 Contributions

In this work, we make three contributions to the field of anonymity analysis.
As a first contribution, we present the novel anonymity analysis framework AnoA. In AnoA

we define and analyze anonymity properties of AC protocols. Our anonymity definition is based on
a novel generalization of differential privacy, a notion for privacy preserving computation that has
been introduced by Dwork et al. [Dwo06, DMNS06]. The strength of differential privacy resides in
a strong adversary that has maximal control over two adjacent settings that it has to distinguish.
However, applying differential privacy to AC protocols seems impossible. While differential privacy
does not allow for leakage of (potentially private) data, AC protocols inherently leak to the recipient
the data that a sender sends to this recipient. We overcome this contradiction by generalizing the
adjacency of settings between which an adversary has to distinguish. We introduce an explicit
adjacency function α that characterizes whether two settings are considered adjacent or not. In
contrast to previous work on anonymity properties, this generalization of differential privacy,
which we name α-IND-CDP, is based on IND-CDP [MPRV09] and allows the formulation of
anonymity properties in which the adversary can choose the messages—which results in a strong
adversary—as long as the adjacent challenge inputs carry the same messages. Moreover, AnoA is
compatible with simulation-based composability frameworks, such as UC [Can01], IITM [KT13],
or RSIM [BPW07]. In particular, for all protocols that are securely abstracted by an ideal
functionality [Wik04, CL05, DG09, KG10, BGKM12], our definitions allow an analysis of these
protocols in a purely information theoretical manner.

As a second contribution, we formalize the well-established notions of sender anonymity,
(sender) unlinkability, and relationship anonymity in our framework, by introducing appropriate
adjacency functions. We discuss why our anonymity definitions accurately capture these notions,
and show for sender anonymity and (sender) unlinkability that our definition is equivalent to the
definitions from the literature. For relationship anonymity, we argue that previous formalizations
captured recipient anonymity rather than relationship anonymity, and we discuss the accuracy of

3

our formalization. Moreover, we show relations between our formalizations of sender anonymity,
(sender) unlinkability, and relationship anonymity: sender anonymity implies both (sender)
unlinkability and relationship anonymity, but is not implied by either of them.

As a third contribution, we apply our framework to the most successful AC protocol—Tor.
Since the underlying cryptographic model does not capture system-level attacks, we model
known system-level attacks, such as website fingerprinting and traffic correlation, as an over-
approximation of the ideal functionality. In addition, we discuss a known countermeasure for
Tor’s high sensitivity to compromised nodes: the entry guards mechanism. We show that using
entry guards dramatically reduces the adversary’s success probability and why this is the case.
We leverage previous results that securely abstract Tor as an ideal functionality (in the UC
framework) [BGKM12]. Then, we illustrate that proving sender anonymity, sender unlinkability,
and relationship anonymity against passive adversaries boils down to a combinatoric analysis,
purely based on the number of corrupted nodes in the network.

Outline of the Paper. In Section 2 we introduce the notation used throughout the paper.
Section 3 presents our anonymity analysis framework AnoA and introduces the formalizations of
sender anonymity, unlinkability, and relationship anonymity notions in the framework. Section 4
compares our anonymity notions with those from the literature as well as with each other.
In Section 5, we demonstrate compatibility of AnoA with a simulation-based composability
framework (in particular, the UC framework), and we apply the corresponding preservation result
to analyze the Tor network in Section 6. Finally, we conclude and discuss some further interesting
directions in Section 8.

2 Notation

Before we present AnoA, we briefly introduce some of the notation used throughout the paper.
We differentiate between two different kinds of assignments: a := b denotes a being assigned the
value b, and a← β denotes that a value is drawn from the distribution β and a is assigned the

outcome. In a similar fashion i
R←I denotes that i is drawn uniformly at random from the set I.

Probabilities are given over a probability space which is explicitly stated unless it is clear

from context. For example Pr[b = 1 : b
R←{0, 1}] denotes the probability of the event b = 1 in the

probability space where b is chosen uniformly at random from the set {0, 1}.
Our security notion is based on interacting Turing Machines (TM). We use an oracle-notation

for describing the interaction between an adversary and a challenger: AB denotes the interaction
of TM A with TM B where A has oracle access to B. Whenever A activates B again, B will
continue its computation on the new input, using its previously stored state. A can then again
activate B with another input value, and B will continue its computation with the new input,
using its previously stored state. This interaction continues until A returns an output, which is
considered the output of AB.

In this paper we focus on computational security, i.e. all machines are computationally
bounded. More formally, we consider probabilistic, polynomial time (PPT) TMs, which we denote
with PPT whenever required.

3 The AnoA Framework

In this section, we present the AnoA framework and our formulations of sender anonymity, sender
unlinkability, and relationship anonymity (Section 3.3). These formulations are based on a novel

4

generalization of differential privacy that we describe in Section 3.2. Before we introduce this
notion, we first describe the underlying protocol model. Using our protocol model, AC protocols
are closely related to mechanisms that process databases, a fact that enables us to apply a more
flexible form of differential privacy.

3.1 Protocol model

Anonymous communication (AC) protocols are distributed protocols that enable multiple users
to anonymously communicate with multiple recipients. Formally, an AC protocol is an interactive
Turing machine.1 We associate a protocol with a user space U , a recipient space R and an
auxiliary information space Aux. Users’ actions are modeled as an input to the protocol and
represented in the form of an ordered input table. Each row in the input table contains a user
u ∈ U that performs some action, combined with a list of possible recipients ri ∈ R together with
some auxiliary information aux. The meaning of aux depends on the nature of the AC protocol.
Based on the AC protocol, auxiliary information can specify the content of a message that is sent
to a recipient or may contain a symbolic description of user behavior. We can think of the rows
in the input table as a list of successive input to the protocol.

Definition 1 (Input tables). An input table D of size t over a user space U , a recipient space
R and an auxiliary information space Aux is an ordered table D = (d1, d2, . . . , dt) of tuples
dj = (uj , (rji, auxji)

`
i=1), where uj ∈ U , rji ∈ R and auxji ∈ Aux.

A typical adversary in an AC protocol can compromise a certain number of parties. We model
such an adversary capability as static corruption: before the protocol execution starts A may
decide which parties to compromise.

Our protocol model is generic enough to capture multi-party protocols in classical simulation-
based composability frameworks, such as the UC [Can01], the IITM [KT13] or the RSIM [BPW07]
framework. In particular, our protocol model comprises ideal functionalities, trusted machines that
are used in simulation-based composability frameworks to define security. It is straightforward to
construct a wrapper for such an ideal functionality of an AC protocol that translates input tables
to the expected input of the functionality. We present such a wrapper for Tor in Section 6.

3.2 Generalized Computational Differential Privacy

For privacy preserving computations the notion of differential privacy (DP) [Dwo06, DMNS06] is
a standard for quantifying privacy. Informally, differential privacy of a mechanism guarantees
that the mechanism does not leak any information about a single user–even to an adversary that
has auxiliary information about the rest of the user base. It has also been generalized to protocols
against computationally bounded adversaries, which has led to the notion of computational
differential privacy (CDP) [MPRV09]. In computational differential privacy two input tables are
compared that are adjacent in the sense that they only differ in one row, called the challenge row.
The definition basically states that no PPT adversary should be able to determine which of the
two input tables was used.

For anonymity properties of AC protocols, such a notion of adjacency is too strong. One of
the main objectives of an AC protocol is communication: delivering the sender’s message to the
recipient. However, if these messages carry information about the sender, a curious recipient can
determine the sender (see the following example).

Example 1: Privacy. Consider an adversary A against the “computational differential privacy”

1We stress that using standard methods, a distributed protocol with several parties can be represented by one
interactive Turing machine.

5

game with an AC protocol. Assume the adversary owns a recipient evilserver.com, that forwards
all messages it receives to A. Initially, A sends input tables D0, D1 to the IND-CDP challenger
that are equal in all rows but one: In this distinguishing row of D0 the party Alice sends the
message “I am Alice!” to evilserver.com and in D1, the party Bob sends the message “I am Bob!”
to evilserver.com. The tables are adjacent in the sense of computational differential privacy (they
differ in exactly one row). However, no matter how well the identities of recipients are hidden by
the protocol, the adversary can recognize them by their messages and thus will win the game with
probability 1. �

Our generalization of CDP allows more fine-grained notions of adjacency; e.g., adjacency for
sender anonymity means that the two tables only differ in one row, and in this row only the
user that sends the messages is different. In general, we say that an adjacency function α is a
randomized function that expects two input tables (D0, D1) and either outputs two input tables
(D′0, D

′
1) or a distinguished error symbol ⊥. Allowing the adjacency function α to also modify the

input tables is useful for shuffling rows, which we need for defining relationship anonymity (see
Definition 6).

CDP, like the original notion of differential privacy, only considers trusted mechanisms. In
contrast to those incorruptible, monolithic mechanisms we consider arbitrary protocols, and
thus even further generalize and strengthen CDP: we grant the adversary the possibility of
compromising parties in the mechanism in order to accurately model the adversary.

For analyzing a protocol P, we define a challenger Ch(P, α, b) that expects two input tables
D0, D1 from a PPT adversary A. The challenger Ch calls the adjacency function α on (D0, D1).
If α returns ⊥ the challenger halts. Otherwise, upon receiving two (possibly modified) tables
D′0,D

′
1, Ch chooses D′b, depending on its input bit b, and successively feeds one row after the

other to the protocol P.2 We assume that the protocol upon an input (u, (ri, auxi)
`
i=1), sends

(ri, auxi)
`
i=1 as input to party u. In detail, upon a message (input, D0, D1) sent by A, Ch(P , α, b)

computes (D′0,D
′
1) ← α(D0,D1). If (D′0,D

′
1) 6= ⊥, Ch runs P with the input table D′b and

forwards all messages that are sent from P to A and all messages that are sent from A to P. At
any point, the adversary may output his decision b∗.

No Our definition depends on two parameters: ε and δ. As in the definition of differential
privacy, ε quantifies the degree of anonymity (see Example 3). The anonymity of commonly
employed AC protocols also break down if certain distinguishing events happen, e.g., when an entry
guard of a Tor user is compromised. Similar to CDP, the probability that such a distinguishing
event happens is quantified by the parameter δ. However, in contrast to CDP, this δ is typically
non-negligible and depends on the degree of corruption in the AC network. As a next step, we
formally define (ε, δ)-α-IND-CDP.

Definition 2 ((ε, δ)-α-IND-CDP). Let Ch be the challenger from Figure 1. The protocol P is
(ε, δ)-α-IND-CDP for α, where ε ≥ 0 and 0 ≤ δ ≤ 1, if for all PPT-adversaries A:

Pr[b = 0 : b←ACh(P,α,0)]

≤ eε · Pr[b = 0 : b←ACh(P,α,1)] + δ

In the commonly used communication-efficient AC protocols such as Tor, ε = 0. However, we
keep the parameter ε to maintain generality, since there are AC protocols in the literature with
ε > 0 (e.g., pool mixes with dummy traffic [DP04]).

A note on the adversary model. While our adversary initially constructs the two input tables
in their entirety, our model does not allow the adversary to adaptively react to the information

2In contrast to IND-CDP, we only consider PPT-computable tables.

6

Upon message(input, D0, D1) (only once)

compute (D′0, D
′
1)←α(D0, D1)

if (D′0, D
′
1) 6= ⊥ then

run P on the input table D′b and forward all messages that are sent by P to the adversary
A and send all messages by the adversary to P.

Figure 1: The challenger Ch(P, α, b) for the adjacency function α

that it observes by changing the behaviors of users. This is in line with previous work, which also
assumes that the user behavior is fixed before the protocol is executed [FJS07a, FJS12].

As a next step towards defining our anonymity properties, we formally introduce the notion
of challenge rows. Recall that challenge rows are the rows that differ in the two input tables.

Definition 3 (Challenge rows). Given two input tables A = (a1, a2, . . . , at) and B = (b1, b2, . . . , bt)
of the same size, we refer to all rows ai 6= bi with i ∈ {1, . . . , t} as challenge rows. If the input
tables are of different sizes, there are no challenge rows. We denote the challenge rows of D as
CR(D).

3.3 Anonymity properties

In this section, we present our (ε, δ)-α-IND-CDP based anonymity definitions in which the
adversary is allowed to choose the entire communication except for the challenge rows, for which
he can specify two possibilities. First, we define sender anonymity, which states that a malicious
recipient cannot decide, for two candidates, to whom he is talking even in the presence of virtually
arbitrary auxiliary information. Second, we define user unlinkability, which states that a malicious
recipient cannot decide whether it is communicating with one user or with two different users,
in particular even if he chooses the two possible rows. Third, we define relationship anonymity,
which states that an adversary (that potentially controls some protocol parties) cannot relate
sender and recipient in a communication.

Our definitions are parametrized by ε and δ. We stress that all our definitions are necessarily
quantitative. Due to the adversary’s capability to compromise parts of the communication network
and the protocol parties, achieving overwhelming anonymity guarantees (i.e., for a negligible δ)
for non-trivial (and useful) AC protocols is infeasible.

3.3.1 Sender anonymity

Sender anonymity requires that the identity of the sender is hidden among the set of all possible
users. In contrast to other notions from the literature, we require that the adversary is not able
to decide which of two self-chosen users have been communicating. Our notion is stronger than
the usual notion, and in Section 4 we exactly quantify the gap between our notion and the notion
from the literature. Moreover, we show that the Tor network satisfies this strong notion, as long
as the user in question did not choose a compromised path (see Section 6).

We formalize our notion of sender anonymity with the definition of an adjacency function αSA

as depicted in Figure 2. Basically, αSA merely checks whether in the challenge rows everything
except for the user is the same.

7

αSA(D0, D1)

if ||D0|| 6= ||D1|| then
output ⊥

if CR(D0) = ((u0, R)) ∧ CR(D1) = ((u1, R)) then
output (D0, D1)

else
output ⊥

Figure 2: The adjacency function αSA for sender anonymity.

αUL(D0, D1)

if ||D0|| 6= ||D1|| then
output ⊥

if CR(D0) = ((u0, Ru), (u0, Rv)) =: (c0,u, c0,v)
∧CR(D1) = ((u1, Ru), (u1, Rv)) =: (c1,u, c1,v)

then
x
R← {0, 1}, y R← {u, v}

Replace cx,y with c(1−x),y in Dx

output (Dx, D1−x)
else

output ⊥

Figure 3: The adjacency function αUL for sender unlinkability.

Definition 4 (Sender anonymity). A protocol P provides (ε, δ)-sender anonymity if it is (ε, δ)-
α-IND-CDP for αSA as defined in Figure 2.

Example 2: Sender anonymity. The adversary A decides that he wants to use users Alice and
Bob in the sender anonymity game. It sends input tables D0, D1 such that in the challenge row of
D0 Alice sends a message m∗ of A’s choice to a (probably corrupted) recipient, e.g. evilserver.com,
and in D1, instead of Alice, Bob sends the same message m∗ to the same recipient evilserver.com.
The adjacency function αSA makes sure that only one challenge row exists and that the messages
and the recipients are equal. If so, it outputs D0, D1 and if not it outputs ⊥. �

Notice that analogously recipient anonymity (αRA) can be defined: the adjacency function
then checks that the challenge rows only differ in one recipient.

3.3.2 The value of ε

In Section 6, we analyze the widely used AC protocol Tor. We show that if every node is uniformly
selected then Tor satisfies sender anonymity with ε = 0. If the nodes are selected using preferences,
e.g., in order to improve throughput and latency, ε and δ may increase.3

3Previous work discusses the influence of node selection preferences on Tor’s anonymity guarantees, e.g., [AYM12].

8

αRel(D0, D1)

if ||D0|| 6= ||D1|| then
output ⊥

if CR(D0) = ((u0, Ru)) ∧ CR(D1) = ((u1, Rv)) then

x
R← {0, 1}, y R← {0, 1}

if x=1 then
Set CR(D0) to ((u1, Rv))

if y=1 then
Set CR(D1) to ((u0, Rv))

else
Set CR(D1) to ((u1, Ru))

output (D0, D1)
else

output ⊥

Figure 4: The adjacency function αRel for relationship anonymity.

Recall that the value δ describes the probability of a distinguishing event, and if this distin-
guishing event occurs, anonymity is broken. In the sender anonymity game for Tor this event
occurs if the entry guard of the user’s circuit is compromised. If a user has a preference for the
first node, the adversary can compromise the most likely node. Thus, a preference for the first
node in a circuit increases the probability for the distinguishing event (δ). However, if there is a
preference for the second node in a circuit, corrupting this node does not lead to the distinguishing
event but can still increase the adversary’s success probability by increasing ε. Consider the
following example.

Example 3: The value of ε. Assume that the probability that Alice chooses a specific node N as

second node is 1
40 and the probability that Bob uses N as second node is 3

40 . Further assume that
for all other nodes and users the probabilities are uniformly distributed. Suppose the adversary A
corrupts N . If A observes communication over the node N , the probability that this communication
originates from Bob is 3 times the probability that it originates from Alice. Thus, with such
preferences Tor only satisfies sender anonymity with ε = ln 3. �

3.3.3 Sender unlinkability

A protocol satisfies sender unlinkability, if for any two actions, the adversary cannot determine
whether these actions are executed by the same user [PH10]. We require that the adversary does
not know whether two challenge messages come from the same user or from different users. We
formalize this intuition by letting the adversary send two input tables with two challenge rows,
respectively. Each input table Dx carries challenge rows in which a user ux sends a message to
two recipients Ru, Rv. We use the shuffling abilities of the adjacency function αUL as defined in
Figure 3, which makes sure that D′0 will contain the same user in both challenge rows, whereas
D′1 will contain both users. As before, we say a protocol P fulfills sender unlinkability, if no
adversary A can sufficiently distinguish Ch(P, αUL, 0) and Ch(P, αUL, 1). This leads to the
following concise definition.

Definition 5 (Sender unlinkability). A protocol P provides (ε, δ)-sender unlinkability if it is

9

(ε, δ)-α-IND-CDP for αUL as defined in Figure 3.

Example 4: Sender unlinkability. The adversary A decides that he wants to use users Alice and
Bob in the unlinkability game. He sends input tables D0, D1 such that in the challenge rows
of D0 Alice sends two messages to two recipients and in D1, Bob sends the same two messages
to the same recipients. Although initially “the same user sends the messages” would be true for
both input tables, the adjacency function αUL changes the challenge rows in the two input tables
D0, D1. In the transformed input tables D′0, D

′
1, only one of the users (either Alice or Bob) will

send both messages in D′0 , whereas one message will be sent by Alice and the other by Bob in
D′1. �

3.3.4 Relationship anonymity

P satisfies relationship anonymity, if for any action, the adversary cannot determine sender and
recipient of this action at the same time [PH10]. We model this property by letting the adjacency
αRel check whether it received an input of two input tables with a single challenge row. We let
the adjacency function αRel shuffle the recipients and sender such that we obtain the four possible
combinations of user and recipient. If the initial challenge rows are (u0, R0) and (u1, R1), αRel

will make sure that in D′0 one of those initial rows is used, where in D′1 one of the rows (u0, R1)
or (u1, R0) is used.

We say that P fulfills relationship anonymity, if no adversary can sufficiently distinguish
Ch(P, αRel, 0) and Ch(P, αRel, 1).

Definition 6 (relationship anonymity). A protocol P provides (ε, δ)-relationship anonymity if it
is (ε, δ)-α-IND-CDP for αRel as defined in Figure 4.

Example 5: Relationship anonymity. The adversary A decides that he wants to use users Alice
and Bob and the recipients Charly and Eve in the relationship anonymity game. He wins the
game if he can distinguish between the scenario “0” where Alice sends m1 to Charly or Bob sends
m2 to Eve and the scenario “1” where Alice sends m2 to Eve or Bob sends m1 to Charly. Only
one of those four possible input lines will be fed to the protocol.
A sends input tables D0, D1 such that in the challenge row of D0 Alice sends m1 to Charly

and in D1, Bob sends m2 to Eve. Although initially ‘scenario 0” would be true for both input
tables, the adjacency function αRel changes the challenge rows in the two input tables D0,D1

such that in D′0 one of the two possible inputs for scenario “0” will be present (either Alice talks
to Charly or Bob talks to Eve) and in D′1 one of the two possible inputs for scenario “1” will be
present (either Bob talks to Charly or Alice talks to Eve). �

4 Studying our anonymity definitions

In this section, we show that our anonymity definitions indeed capture the anonymity notions
from the literature. We compare our notions to definitions that are directly derived from informal
descriptions in the seminal work by Pfitzmann and Hansen [PH10]. Lastly, we investigate the
relation between our own anonymity definitions.

4.1 Sender anonymity

The notion of sender anonymity is introduced in [PH10] as follows:

Anonymity of a subject from an attacker’s perspective means that the attacker cannot
sufficiently identify the subject within a set of subjects, the anonymity set.

10

Upon message (input, D) (only once)

if ∃! challenge row in D then
Place user u in the challenge row of D
run P on the input table D and forward all messages to A

Figure 5: The challenger SACh(P, u)

From this description, we formalize their notion of sender anonymity. For any message m and
adversary A, any user in the user space is equally likely to be the sender of m.

Definition 7 (δ-sender anonymity). A protocol P with user space U of size N has δ-sender
anonymity if for all PPT-adversaries A

Pr
[
u∗ = u : u∗←ASACh(P,u), u

R←U
]
≤ 1

N
+ δ,

where the challenger SACh as defined as in Figure 5.

Note that SACh slightly differs from the challenger Ch(P, α, b) in Figure 1: It does not
require two, but just one input table in which a single row misses its sender. We call this row the
challenge row.

This definition is quite different from our interpretation with adjacency functions. While
αSA requires A to simply distinguish between two possible outcomes, Definition 7 requires A
to correctly guess the right user. Naturally, αSA is stronger than the definition above. Indeed,
we can quantify the gap between the definitions: Lemma 8 states that an AC protocol satisfies
(0, δ)-αSA implies that this AC also has δ-sender anonymity. The proofs for these lemmas can be
found in Appendix H.2.In this section, we only present the proof outlines.

Lemma 8 (sender anonymity). For all protocols P over a (finite) user space U of size N it holds
that if P has (0, δ)-α-IND-CDP for αSA, P also has δ-sender anonymity as in Definition 7.

Proof outline. We show the contraposition of the lemma: an adversary A that breaks sender
anonymity, can be used to break α-IND-CDP for αSA. We construct an attacker B against
α-IND-CDP for αSA by choosing the senders of the challenge rows at random, running A on the
resulting game, and outputting the same as A. For A the resulting view is the same as in the
sender anonymity game; hence, B has the same success probability in the α-IND-CDP game as
A in the sender anonymity game.

In the converse direction, we lose a factor of 1
N in the reduction, where N is the size of the

user space. If an AC protocol P provides δ-sender anonymity, we only get (0, δ ·N)-αSA for P.

Lemma 9. For all protocols P over a (finite) user space U of size N it holds that if P has
δ-sender anonymity as in Definition 7, P also has (0, δ ·N)-α-IND-CDP for αSA.

Proof outline. We show the contraposition of the lemma: an adversary A that breaks α-IND-CDP
for αSA, can be used to break sender anonymity. We construct an attacker B against sender
anonymity by running A on the sender anonymity game and outputting the same as A. If
the wishes of A for the challenge senders coincide with the sender that the challenger chose at
random, the resulting view is the same as in the α-IND-CDP game for αSA; hence, B has a

11

Upon message (input, D) (only once)

if exactly 2 rows in D are missing the user then

u0
R←U , u1

R←U \ {u0}
if b = 0 then

Place u0 in both rows.
else

Place u0 in the first and u1 in the second row.
run P on input table D and forward all messages to A

Figure 6: The challenger ULCh(P, b)

success probability of δ/N in the sender anonymity game if A has a success probability of δ in
the α-IND-CDP game for αSA.

4.2 Unlinkability

The notion of unlinkability is defined in [PH10] as follows:

Unlinkability of two or more items of interest (IOIs, e.g., subjects, messages, actions,
...) from an attacker’s perspective means that within the system (comprising these
and possibly other items), the attacker cannot sufficiently distinguish whether these
IOIs are related or not.

Again, we formalize this in our model. We leave the choice of potential other items in the system
completely under adversary control. Also, the adversary controls the “items of interest” (IOI) by
choosing when and for which recipient/messages he wants to try to link the IOIs. Formally, we
define a game between a challenger ULCh and an adversary A as follows: First, A chooses a
input table D, but leaves the place for the users in two rows blank. The challenger then either
places one (random) user in both rows or two different (random) users in each and then runs the
protocol and forwards all output to A. The adversary wins the game if he is able to distinguish
whether the same user was placed in the rows (i.e. the IOIs are linked) or not.

Definition 10 (δ-sender unlinkability). A protocol P with user space U has δ-sender unlinkability
if for all PPT-adversaries A ∣∣Pr [b = 0 : b←AULCh(P,0)

]
− Pr

[
b = 0 : b←AULCh(P,1)

] ∣∣ ≤ δ
where the challenger ULCh is as defined in Figure 6.

We show that our notion of sender unlinkability using the adjacency function αUL is much
stronger than the δ-sender unlinkability Definition 10: (0, δ)-αUL for an AC protocol directly
implies δ-sender unlinkability; we do not lose any anonymity.

Lemma 11 (sender unlinkability). For all protocols P over a user space U it holds that if P has
(0, δ)-α-IND-CDP for αUL, P also has δ-sender unlinkability as in Definition 10.

12

Proof outline. We show the contraposition of the lemma: an adversary A that breaks sender
unlinkability, can be used to break α-IND-CDP for αUL. We construct an attacker B against
α-IND-CDP for αUL by choosing the senders of the challenge rows at random, running A on the
resulting game, and outputting the same as A. For A the resulting view is the same as in the
sender unlinkability game; hence, B has the same success probability in the α-IND-CDP game
for αUL as A in the sender unlinkability game.

For the converse direction, however, we lose a factor of roughly N2 for our δ. Similar to
above, proving that a protocol provides δ-sender unlinkability only implies that the protocol is
(0, δ ·N(N − 1))-α-IND-CDP for αUL.

Lemma 12 (sender unlinkability). For all protocols P over a user space U of size N it holds that
if P has δ-sender unlinkability as in Definition 10, P also has (0, δ ·N(N − 1))-α-IND-CDP for
αUL.

Proof outline. We show the contraposition of the lemma: an adversary A that breaks α-IND-CDP
for αUL, can be used to break sender unlinkability. We construct an attacker B against sender
unlinkability by running A on the sender unlinkability game and outputting the same as A. If
the senders from the challenge from of A coincide with the senders that the challenger chose at
random, the resulting view is the same as in the α-IND-CDP game for αUL; hence, B has a
success probability of δ/N(N − 1) in the sender unlinkability game if A has a success probability
of δ in the α-IND-CDP game for αUL.

Again, proofs can be found in Appendix H.2.

4.3 Relationship anonymity

While for sender anonymity and sender unlinkability our notions coincide with the definitions
used in the literature, we find that for relationship anonymity, many of the interpretations
from the literature are not accurate. In their Mixnet analysis, Shmatikov and Wang [SW06]
define relationship anonymity as ‘hiding the fact that party A is communicating with party B’.
Feigenbaum et al. [FJS07b] also take the same position in their analysis of the Tor network.
However, in the presence of such a powerful adversary, as considered in this work, these previous
notions collapse to recipient anonymity since they assume knowledge of the potential senders of
some message.

We consider the notion of relationship anonymity as defined in [PH10]: the anonymity set
for a message m comprises the tuples of possible senders and recipients; the adversary wins by
determining which tuple belongs to m. However, adopting this notion directly is not possible: an
adversary that gains partial information (e.g. if he breaks sender anonymity), also breaks the
relationship anonymity game, all sender-recipient pairs are no longer equally likely. Therefore we
think that approach via the adjacency function gives a better definition of relationship anonymity
because the adversary needs to uncover both sender and recipient in order to break anonymity.

4.4 Relations between anonymity notions

Having justified the accuracy of our anonymity notions, we proceed by presenting the relations
between our notions of anonymity. AnoA allows us to formally argue about these relations.
Figure 7 illustrates the implications we get based on our definitions using adjacency functions. In
this section, we discuss these relations. The proofs can be found in Appendix H.2.

13

αSAαUL αRel

Figure 7: The relations between our anonymity definitions

Lemma 13 (Sender anonymity implies relationship anonymity.). If a protocol P has (0, δ)-
α-IND-CDP for αSA, is also has (0, δ)-α-IND-CDP for αRel.

Proof outline. Relationship anonymity requires an adversary to acquire information about both
sender and recipient. If a protocol has sender anonymity, this is not possible. Hence, sender
anonymity implies relationship anonymity.

Similarly, recipient anonymity implies relationship anonymity.

Lemma 14 (Sender anonymity implies sender unlinkability). If a protocol P has (0, δ)-α-IND-CDP
for αSA, P also has (0, δ)-α-IND-CDP for αUL.

Proof outline. Our strong adversary can determine the behavior of all users; in other words, the
adversary can choose the scenario in which it wants to deanonymize the parties in question. Thus,
the adversary can choose the payload messages that are not in the challenge row such that these
payload messages leak the identity of their sender. Hence, if an adversary can link the message
in the challenge row to another message, it can determine the sender. Thus, sender anonymity
implies sender unlinkability.

A protocol could leak the sender of a single message. Such a message does not necessarily
help an adversary in figuring out whether another message has been sent by the same sender, but
breaks sender anonymity.

Lemma 15 (Sender unlinkability does not imply sender anonymity). If a protocol P has (0, δ)-
α-IND-CDP for αUL, P does not necessarily have (0, δ′)-α-IND-CDP for αSA for any δ′ < 1.

Proof outline. We consider a protocol Π that satisfies sender anonymity. We, moreover, consider
the modified protocol Π′ that leaks the sender of a single message. Since by Lemma 14 Π satisfies
unlinkability, we conclude that the modified protocol Π′ satisfies sender unlinkability: a single
message does not help the adversary in breaking sender unlinkability. However, Π′ leaks in one
message the identity of the sender in plain, hence does not satisfy sender anonymity.

Relationship anonymity does not imply sender anonymity in general: for example, a protocol
may reveal information about senders of the messages, but not about recipients or message
contents.

Lemma 16 (Relationship anonymity does not imply sender anonymity). If a protocol P has
(0, δ)-α-IND-CDP for αRel, P does not necessarily have (0, δ′)-α-IND-CDP for αSA for any
δ′ < 1.

Proof outline. We consider a protocol Π that satisfies sender anonymity. We, moreover, consider
the modified protocol Π′ that for each message leaks the sender. Since by Lemma 13 Π satisfies
unlinkability, we conclude that the modified protocol Π′ satisfies relationship anonymity: the
sender alone does not help the adversary in breaking relationship anonymity. However, Π′ leaks
the identity of the sender in plain, hence does not satisfy sender anonymity.

14

This concludes the formal definition of our framework.

5 Leveraging UC realizability

Our adversary model in AnoA is strong enough to capture well-known simulation-based compos-
ability frameworks (e.g., UC [Can01], IITM [KT13] or RSIM [BPW07]). In Section 6 we apply
AnoA to a model in the simulation-based universal composability (UC) framework.

In this section, we briefly introduce the UC framework and then prove that α-IND-CDP is
preserved under realization. Moreover, we discuss how this preservation allows for an elegant
crypto-free anonymity proof for cryptographic AC protocols.

5.1 The UC framework

The UC framework allows for a modular analysis of security protocols. In the framework, the
security of a protocol is defined by comparing it with a setting in which all parties have a direct
and private connection to a trusted machine that provides the desired functionality. As an
example consider an authenticated channel between two parties Alice and Bob. In the real world
Alice calls a protocol that signs the message m to be communicated. She then sends the signed
message over the network and Bob verifies the signature. In the setting with a trusted machine
T , however, we do not need any cryptographic primitives: Alice sends the message m directly to
T 4. T in turn sends m to Bob, who trusts T and can be sure that the message is authentic. The
trusted machine T is called the ideal functionality.

Security in the UC framework is defined as follows: A protocol is secure if an execution of
this protocol is indistinguishable from an execution of the corresponding ideal functionality.

More formally, the notion of indistinguishability is captured in UC in terms of realization:
A protocol π UC-realizes an ideal functionality F if for all PPT adversaries A there is a PPT
simulator S such that no PPT machine can distinguish an interaction with π and A from an
interaction with F and S. The distinguisher is connected to the protocol and the adversary (or
the simulator). A full definition can be found in Appendix H.3.

5.2 Preservation of α-IND-CDP

We prove that α-IND-CDP is preserved by UC realization. This result is motivated by the ideas
presented in the result of integrity property conservation by simulation-based indistinguishability
shown by Backes and Jacobi [BJ03, Thm. 1].

As a consequence of this lemma, it suffices to apply AnoA to ideal functionalities: transferring
the results to the real protocol weakens the anonymity guarantees only by a negligible amount.

Lemma 17 (Preservation lemma). Let P be (ε, δ)-α-IND-CDP and Π be a protocol. If Π
UC-realizes P then Π is (ε,∆)-α-IND-CDP with ∆ = δ + δ′ for some negligible value δ′.

Proof outline. The proof of the preservation lemma is straightforward: If the success probability
of an adversary in the real world differs in more than a negligible value from the ideal world, we
can use this adversary to distinguish the real from the ideal game.

The full proof can be found in Appendix H.3. This preservation lemma, in combination with
an ideal functionality for an AC protocol, is useful for analyzing the AC protocol with respect to
our strong anonymity definitions. In the next section, we exemplify approach by using an ideal

4Recall that T and Alice are directly connected, as well as T and Bob.

15

functionality for Tor [BGKM12] and showing that the anonymity analysis of Tor boils down to a
purely combinatorical analysis.

6 Analyzing Tor Anonymity

The onion routing (OR) [RSG98] network Tor [Tor03] is the most successful anonymity technology
to date: hundreds of thousands individuals all over the world use it today to protect their privacy
over the Internet. Naturally, Tor is our first choice for applying our AnoA framework.

We start our discussion by briefly describing the Tor protocol [DMS04] and its UC defini-
tion [BGKM12]. We then formally prove (ε, δ)-α-IND-CDP for Tor’s UC definition and quantify
anonymity provided by the Tor network in terms of the anonymity properties defined in Section 3.
Finally, we consider a selection of system-level attacks (e.g., traffic analysis) and adaptations
(e.g., entry guards) for Tor, and analyze their effects on Tor’s anonymity guarantees.

6.1 Tor—The OR Network

An OR network such as Tor [DMS04] consists of a set of OR nodes (or proxies) that relay traffic,
a large set of users and a directory service that maintains and provides cryptographic and routing
information about the OR nodes. Users utilize the Tor network by selecting a sequence of OR
nodes and creating a path, called a circuit, over this set. This circuit is then used to forward
the users’ traffic and obscure the users’ relationship with their destinations. It is important
that an OR node cannot determine the circuit nodes other than its immediate predecessor and
successor. In the OR protocol, this is achieved by wrapping every message in multiple layers of
symmetric-key encryption. Symmetric keys are agreed upon between each OR node in the circuit
and the user during the circuit construction phase.

Tor was designed to guarantee anonymity against partially global attackers, i.e., attackers
that do not only control some OR nodes but also a portion of the network. However, an accurate
anonymity quantification is not possible without formally modeling the OR protocol and its
adversary. In an earlier work, Backes et al. [BGKM12] presented a formal UC definition (an
ideal functionality For) for the OR network, and proposed a practical cryptographic instantiation
which is currently employed in the Tor network. We employ this ideal functionality For for
instantiating the AnoA framework.

6.2 Anonymity Analysis

We start our Tor analysis with a brief overview of the For functionality and refer the readers to
[BGKM12] for more details. An excerpt of relevant details can also be found in Appendix I. For

presents the OR definition in the message-based state transitions form, and defines sub-machines
for all OR nodes in the ideal functionality. These sub-machines share a memory space in the
functionality for communicating with each other. For assumes an adversary who might possibly
control all communication links and destination servers, but cannot view or modify messages
between uncompromised parties due to the presence of secure and authenticated channels between
the parties. In For these secure channels are realized by having each party store their messages in
the shared memory, and create and send corresponding handles 〈P, Pnext , h〉 through the network.
Here, P and Pnext are the sender and the recipient of a message respectively and h is a handle, or
pointer, for the message in the shared memory. Only messages that are visible to compromised
parties are forwarded to A.

16

Upon input (ri,mi)
`
i=0

P ← RandomParties(Pu)
send message (createcircuit,P) to Pu
wait for response (created, C)
for all (ri,mi), i ∈ {1, . . . , `} do

send message (send, C,mi) to Pu

RandomParties(Pu):

l
R←{1, . . . , n}
N := {1, . . . , n}
for j = 1 to l do

ij
R←N

N := N \ {ij}
return (Pu, Pi1 , . . . , Pil)

Figure 8: Wrapper module Envu for onion proxy Pu

Upon message m from Fnet or For

send m to the challenger
reflect the message m back to sender

Figure 9: Dummy-adversary in For

We consider a partially global, passive adversary for our analysis using AnoA, i.e., A decides
on a subset of nodes before the execution, which are then compromised. The adversary A then
only reads intercepted messages, but does not react to them.

Tor sets a time limit (of ten minutes) for each established circuit. However, the UC framework
does not provide a notion of time. For models such a time limit by only allowing a circuit C to
transport at most a constant number (say ttlC) of messages.

In the context of onion routing, we interpret an input table D = (d1, d2, . . . , dt) as follows:
each row di = (u, (rj , auxj)

`
j=1) defines a session transmitted through the OR-network, where

auxj is the message sent from the user to recipient rj . An input table thus defines a sequence of
sessions sent through the OR-network.

We assume that for each row in an input table, a new circuit in the OR-network is drawn, as
each row defines a newly started OR session. Furthermore, the number of messages per row (or
session) is bounded by ttlC .

In order to make For compatible with our α-IND-CDP definition, we require an additional
wrapper functionality, which processes the input rows forwarded from the challenger Ch. This
functionality is defined in Figure 8. Envu receives a row, which had u as its user, as its input.
It then initiates the circuit construction for the new session and sends all messages in the row
through this circuit.

Messages intercepted by compromised nodes are sent to a network adversary Fnet described

17

in Fig. 9. Fnet forwards all intercepted messages to the challenger, who in turn forwards them to
A.

We show that the Tor analysis can be based on a distinguishing event D, which has already
been identified in the first onion routing anonymity analysis by Syverson et al. [STRL00, Fig. 1].
The key observation is that the adversary can only learn about the sender or recipient of some
message if he manages to compromise the entry- or exit-node of the circuit used to transmit this
message. We define the distinguishing event Dα for each of the anonymity notions defined in
section 3.

Sender Anonymity (αSA). Let DαSA
be the event that the entry-node of the challenge row

is compromised by A. This allows A to determine the sender of the challenge row and
therefore break sender anonymity.

Sender Unlinkability (αUL). Let DαUL be the event that A successfully compromises the entry
nodes for both challenge rows in the unlinkability game. This allows A to determine whether
the sessions defined by the challenge rows are linked or not, and hence break the unlinkability
game.

Relationship Anonymity (αRel). Let DαRel
be the event that A successfully compromises

entry- and exit-node of the challenge row. This allows him to link both sender and recipient
of the sessions associated with the challenge row.

We first prove Lemma 18. It captures anonymity provided by For in case D does not happen.
We then use Lemma 18 to prove (ε, δ)-α-IND-CDP for For in general.

We introduce random strings rA and rCh as additional input to the adversary and the challenger
respectively. This allows us to handle them as deterministic machines and simplifies the proof for
Lemma 18. Accordingly, all subsequent probabilities are taken over those random strings. In the
following, we present a proof outline here.

The full proof is available in Appendix J.1.

Lemma 18. Let rA, rCh
R←{0, 1}p(η). Given two input tables D1,D0 which are adjacent for

α ∈ {αSA, αUL, αRel}, it holds that

Pr[ACh(For,α,0,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

= Pr[ACh(For,α,1,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

Proof outline. We fix the random string rCh. This in turn fixes the circuits drawn by For for
each row. As circuits are drawn independently from the transmitted messages, For draws the
same set of circuits to transmit either input table.

We assume the event ¬Dα. For αSA and αUL, the messages intercepted by A do not carry
critical information and look the same, regardless of which input table was chosen by the challenger.
If we now also fix rA, A returns the same value after processing the set of intercepted messages,
for either input table.

For αRel, A might learn partial information. But there are always at least two of the four
input tables, each of which could have only been chosen by one of the challengers, for which the
intercepted messages are consistent. Again, if we fix rA, A will return the same value, regardless
of which challenger he is interacting with. Hence we get

Pr[ACh(For,α,0,rCh)(rA) = 0 | ¬D(rCh, rA), rCh]

= Pr[ACh(For,α,1,rCh)(rA) = 0 | ¬D(rCh, rA), rCh]

18

and from this

Pr[ACh(For,α,0,rCh)(rA) = 0 | ¬D(rCh, rA)]

= Pr[ACh(For,α,1,rCh)(rA) = 0 | ¬D(rCh, rA)]

as required.

With this result we obtain (ε, δ)- α-IND-CDP for For by simple manipulation of equations.

Theorem 19. For is (0, δ) - α-IND-CDP for α ∈ {αSA, αUL, αRel}, i.e

Pr[ACh(For,α,0,rCh)(rA) = 0]

≤Pr[ACh(For,α,1,rCh)(rA) = 0]) + δ

with δ = Pr[Dα(rCh, rA)].

Here δ is exactly the probability for the event Dα that allows A to distinguish between both
input tables. Interestingly, we get the parameter value ε = 0. This implies that as long as Dα
does not happen, For provides perfect anonymity for its users.

6.3 Anonymity Quantification

We now evaluate the guarantees provided by Theorem 19 and consider further results we can
derive from it for the special case of sender anonymity.

6.3.1 Distinguishing events

We measure the probability of the distinguishing event D using combinatorial observations. For
an OR network of n OR nodes such that k of those are compromised, probabilities associated
with the various anonymity notions are as follows:

Sender Anonymity (αSA). The probability that DαSA happens and sender anonymity is broken,
is

Pr[DαSA
] = 1−

(
n−1
k

)(
n
k

) =
k

n

Sender Unlinkability (αUL). The probability that DαUL happens and sender unlinkability is
broken, is

Pr[DαUL
] =

(
k

n

)2

Relationship Anonymity (αRel). The probability thatDαRel
happens and relationship anonymity

is broken, is

Pr[DαRel
] =

(
n−2
k−2

)(
n
k

) =
k(k − 1)

n(n− 1)

Figure 10 illustrates these results. The graph shows the probability of the distinguishing
events depending on the fraction k

n of corrupted OR nodes. We assume a system with 3000
OR nodes, which is consistent with current numbers in the real world Tor network [Tor]. We
observe that the success probability of event DαSA

always remains above the success probabilities
of events DαUL

and DαRel
. Therefore, sender anonymity is indeed a stronger notion than both

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

s
u

c
c
e
s
s
 p

ro
b
a

b
ili

ty
 f
o

r
e

v
e
n

t
D

corruption fraction (k/n)

SA
UL

REL

Figure 10: Probability of D for the different anonymity notions, depending on the corruption k
n

for 3000 OR nodes

relationship anonymity and sender unlinkability, and correspondingly more difficult to achieve.
Moreover, for the usually assumed 20% corruption, the adversary’s success probabilities are small
for all three anonymity properties.

Note that the above analysis and the underlying model assume all OR nodes to be identical,
and can perform all roles. Respecting OR node operators’ legal boundaries, the real-world Tor
network allows OR nodes to function in specific roles. To some extent, this simplifies A’s task of
identifying entry- or exit-nodes for circuits.

6.3.2 Multiple Challenge Rows

Considering more than one challenge row will be necessary if we want to know how the anonymity
of a single user changes if he uses Tor for more than one session or we want to consider the
anonymity of a group of people which act as one entity.

If we want to extend our (ε, δ)- α-IND-CDP result w.r.t αSA for Tor to more than one
challenge row, we can use the direct amplification approach also known from differential privacy
analysis [DKM+06]: Given two input tables D and D′ with d challenge rows, we create d − 1
intermediate input tables Di, such that D and D1, Dd−1 and D′ and Di and Di+1 are adjacent.
Repeatedly applying Theorem 19, we get the same result as for the adjacent case, but with
δ = d · Pr[DαSA

].
We can do better by realizing that the only thing that changes compared to our original

analysis is the distinguishing event: Whereas before the adversary A could compromise only a
single entry node, he now has up to d entry nodes at his disposal.

Let m be the number of distinct entry nodes used during the execution and let D∗αSA
be the

event that one of those m nodes is compromised. As noted above m ≤ d. The probability for
D∗αSA

happening computes to

Pr[D∗αSA
] = 1−

(
n−m
k

)(
n
k

) .

Using this approach we get a strictly better bound for our δ compared to using the straightforward

20

amplification approach, i.e.,
Pr[D∗αSA

] < dPr[DαSA
].

The extent to which this is better varies and depends on the parameters n, k and m and is further
elaborated on in Appendix J.2.

6.4 System-Level Attacks and Adaptations

Next, we consider attacks that are not directly covered by our model and explore how the strong
adversary we employ helps to deal with them. We then analyze the entry guard mechanism, a
feature of the Tor protocol, and its influence on sender anonymity.

6.4.1 Traffic Analysis Attacks

Many of the known attacks on Tor nowadays depend on so called side-channel information, i.e.
throughput and timing information an adversary might gather while watching traffic routed
through the Tor network. Since the UC framework does not allow time-sensitive attacks, traffic
analysis is outside of the scope of this work. However, due to the strong adversary we deploy, we
can still cover all known attacks by making suitable assumptions. In the following we look at two
well known traffic analysis attacks and how we can cover them in our model.

Traffic Correlation. These forms of traffic analysis attacks observe traffic going out from the
sender and into the receiver and try to correlate them based on different features like volume,
direction or inter-packet delay [OB09, WRW02]. We cover these attacks by assuming that the
adversary knows which row of the input tables was being transmitted for each of the messages he
intercepts. This enables him to find out who communicates with whom by simply compromising
entry- and exit-node of the same circuit. This is made explicit in our extension of For for traffic
analysis which can be found in Appendix I.3.

Website Fingerprinting. Fingerprinting attacks try to classify user traffic based on a catalog
of fingerprints derived for a large set of web pages beforehand and matching the observed traffic
to those fingerprints [PNZE11, CZJJ12, DCRS12]. This kind of attack can be modeled by
assuming that it is enough for the adversary to compromise the entry node (i.e. we define a new
distinguishing event DWF that captures this) to find the recipient, as he will then be able to
launch the fingerprinting attack. The δ in Theorem 19 then changes to

δ = Pr[DWF] · Pr[S]

where S is the event that the website fingerprinting attack successfully classifies the traffic.

6.4.2 Entry Guards

Using the formulation for more than one challenge row, we can also motivate entry guards [WALS03,
ØS06], which are used in the current implementation of Tor. Entry guards are a small subset of the
whole set of onion routers that are chosen by a user before the initiation of a Tor communication.
They are then used as entry nodes for any subsequent communication. The advantage of this
concept becomes apparent if we look at the following scenario:5 Consider a single user u who
communicates using Tor over a long period of time, initiating a total of d new sessions. Without
entry guards, the probability that A de-anonymizes u is bounded by

1−
(
n−d
k

)(
n
k

)
5We consider the sender anonymity setting, i.e. we are only interested in entry nodes.

21

which converges to 1 the bigger d gets. If we do use a set of m entry guards on the other hand,
the probability for de-anonymizing u will stay constant at

1−
(
n−m
k

)(
n
k

) .

In order to prevent loss of performance, entry guards are also replaced at regular intervals. Let
l be the maximum number of sessions possible per entry-guard-interval. The probability for
de-anonymization can then be bounded by

1−
(n−d dl em

k

)(
n
k

)
which is smaller than the original value, but still converges to 1 at some point. Note that these
upper bounds only make sense if the sessions initiated per entry-guard-interval also use each
entry-guard at least once. Dropping this assumption requires a more fine-grained analysis.

The problem with entry guards is the following: while the probability for de-anonymization
is smaller, u will effectively stay de-anonymized as soon as A manages to find u’s entry guards
(for as long as these entry guards are used). Also, while the above value attains its minimum for
m = 1, choosing a small value for m will realistically also incur loss in performance for the whole
system. The exact analysis is unfortunately out-of-scope for our approach, but further elaboration
on the parameters and their influence on anonymity and performance using simulation can be
found in Elahi et al. [EBA+12].

6.5 Link-Corruption

So far we have only been concerned with an adversary A that compromises nodes in the onion
routing network in order to learn about the transmitted messages. But our model also supports an
adversary that compromises links between nodes and learns about messages transmitted through
these links.

Thus, the event DαSA
alone is not enough to capture all bad events. For sender anonymity, we

also lose if the adversary manages to compromise the link between the user and the entry node
of the circuit used to transmit the challenge row. Let LαSA be the event that this entry link is
compromised and let q be the number of compromised links. Naturally, it is in the best interest
of the adversary to not compromise links between user/server and already compromised nodes, as
he will not learn anything new that way. Hence we have that

Pr[LαSA
] ≤ q

n− k

In order to extend our δ by the event LαSA
, we can now consider the “bad event” BαSA

depending
on DαSA

:

Pr[BαSA
] = Pr[BαSA

|DαSA
] · Pr[DαSA

]

+ Pr[BαSA
|¬D] · Pr[¬DαSA

]

= Pr[DαSA
] + Pr[LαSA

] · Pr[¬DαSA
]

≤ k

n
+

q

n− k
n− k
n

=
k + q

n

22

For more than one challenge row this can be extended in a similar way as before, by just adjusting
the event for successful link corruption. Let L∗αSA

be the event that in one of the challenge rows,
an entry-link was successfully compromised. Doing a similar analysis as for the node corruption,
we get the following upper bound, which is tight if the user for all challenge rows is the same.

Pr[L∗αSA
] ≤ 1− (1− q

n− k
)d (1)

The full derivation of Inequality 1 can be found in Appendix J.3.
This concludes the formal analysis of the Tor network with the AnoA framework. We

illustrated how AnoA can be used by using it on For. We showed that For is (0, δ)-α-IND-CDP
for the different anonymity notion we defined in Section 3 and also explored further aspects of OR
anonymity accessible through the AnoA framework. Still, we barely scratched the surface with
our analysis and see many different directions for future work in the Tor analysis with AnoA.
We further elaborate on these directions in Section 8.

Note that, although we only considered the ideal functionality For in our analysis, Theorem
17 allows us to lift our results to any (cryptographic) protocol that realizes For.

7 Related Work

Pfitzmann and Hansen [PH10] develop a consistent terminology for various relevant anonymity
notions; however, their definitions lack formalism. Nevertheless, these informal definitions form
the basis of almost all recent anonymity analysis, and we also adopt their terminology and
definitions in our AnoA framework.

Our relaxation of differential privacy is not the first variation of differential privacy. Gehrke
et al. recently introduced the stronger notion of zero-knowledge privacy [GLP11] and the relaxed
notion of crowd-blending privacy [GHLP12]. Similar to differential privacy, these notions are
not well suited for the analysis of AC protocols. However, extending the crowd-blending privacy
notion with corruptible distributed mechanisms and flexible adjacency functions would allow
capturing the notion of k-anonymity for AC protocols. We could imagine applying the resulting
concept to Mixnets, in which each mix waits for a certain amount of time: if at least k messages
arrived, these messages are then processed, otherwise they are discarded; however, discarding
messages in such a way may not be acceptable in a real world application.

Efforts to formally analyze anonymity properties have already been made using communicating
sequential processes (CSP) [SS96], epistemic logic [SS99, HO05], Kripke structures [HS04], and
probabilistic automata [APSVR11]. However, these formalisms have only being applied to simple
protocols such DC-net. Since it’s not clear if these frameworks can capture an adversary with
auxiliary information, it seems difficult to model complex protocols such as onion routing and its
traffic analysis attacks. It still presents an interesting challenge to relate the probabilistic notions
among those mentioned above (e.g. [HO05, APSVR11]) to our anonymity framework.

There have been analyses which focus on a particular AC protocol, such as [SD02, D0́6,
SW06, GTD+08] for Mixnet, [BP05, APSVR11] for DC-net, [DSCP02, Shm04] for Crowds, and
[STRL00, MVdV04, FJS07a, FJS07b, FJS12] for onion routing. Most of these study a particular
anonymity property in a particular scenario and are not flexible enough to cover the emerging
system-level attacks on the various AC protocols. (We refer the readers to [FJS12, Sec. 5] for
a detailed survey.) The most recent result [FJS12] among these by Feigenbaum, Johnson and
Syverson models the OR protocol in a simplified black-box abstraction, and studies a notion of
relationship anonymity notion which is slightly different from ours: here the adversary wishes
to identify the destination of a user’s message. As we discussed in Section 4.3, this relationship

23

anonymity notion is slightly weaker than ours. Moreover, their model is not flexible enough to
extend to other system-level scenarios such fingerprinting attacks [PNZE11, CZJJ12, DCRS12].

Hevia and Micciancio [HM08] introduce an indistinguishability based framework for the
analysis of AC protocols. While they take a similar approach as in AnoA, there are some notable
differences: The first difference is that their anonymity definition does not consider compromised
parties; as a consequence, they only define qualitative anonymity guarantees. While the authors
discuss corruption as a possible extension, for most real world AC protocols they would have to
adjust their notion to a quantitative anonymity notion as in AnoA. The second difference is the
strength of the adversary: we consider a stronger adversary which determine the order in which
messages are sent through the network, whereas Hevia and Micciancio only allow the attacker to
specify which party sends which messages to whom.

8 Conclusion and Future Directions

In this paper we have presented our generic framework AnoA. We have defined new, strong
variants of anonymity properties like sender anonymity, sender unlinkability and relationship
anonymity based on a novel relaxation of computational differential privacy, and presented how
to concisely formulate them in AnoA. We have shown that our definitions of the anonymity
guarantees accurately model prominent notions in the literature. We have also applied AnoA to
the UC framework and shown that the results shown for ideal functionalities carry over to their
secure cryptographic protocols.

Additionally, we have conducted an extensive analysis of the Tor network. We have validated
the inherent imperfection of the current Tor standard in the presence of a significant fraction of
compromised nodes, and we have given quantitative measures of the different forms of anonymity
against passive adversaries that statically corrupt nodes.

Future directions. In our analysis of Tor we did not consider the impact of preferences. If
certain nodes are more likely for a given user (e.g. for efficiency reasons), anonymity can (and will)
decrease. As illustrated in Example 3, when analyzing Tor with preferences, the value for ε may
be larger than zero. We plan to analyze the influence of Tor’s node selection preferences [DM09]
on Tor’s anonymity guarantees.

The next step will be to investigate adaptively corrupting adversaries and active attacks on
Tor such as selective DoS attacks [BDMT07]. We also plan to revisit the approach of using specific
a priori probability distributions over the users [FJS12] and analyze Tor’s anonymity properties
for such cases. Moreover, we will apply AnoA to other AC protocols such as Mixnets [Cha81]
and the DISSENT system [CGF10].

On the framework level we will investigate other anonymity notions such as unobservability
and undetectability [PH10], and their relation to the notions we already defined in this paper.

Acknowledgment

We thank Aaron Johnson and the anonymous reviewers for their useful suggestions. This work was
partially supported by the German Universities Excellence Initiative, the ERC Grant End-2-End
Security, and the Center for IT-Security, Privacy and Accountability (CISPA).

24

References

[APSVR11] E. Andrés, Miguel, Catuscia Palamidessi, Ana Sokolova, and Peter Van Rossum.
Information Hiding in Probabilistic Concurrent System. Journal of Theoretical
Computer Science (TCS), 412(28):3072–3089, 2011.

[AYM12] Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha. LASTor: A Low-Latency
AS-Aware Tor Client. In Proc. of the 2012 IEEE Symposium on Security and Privacy
(S& P), pages 476–490. IEEE Computer Society, 2012.

[BDMT07] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. Denial of
Service or Denial of Security? In Proc. 14th ACM Conference on Computer and
Communications Security (CCS), pages 92–102, 2007.

[BGKM12] Michael Backes, Ian Goldberg, Aniket Kate, and Esfandiar Mohammadi. Provably
Secure and Practical Onion Routing. In Proc. 26st IEEE Symposium on Computer
Security Foundations (CSF), pages 369–385, 2012.

[BJ03] Michael Backes and Christian Jacobi. Cryptographically Sound and Machine-Assisted
Verification of Security Protocols. In Proceedings of 20th International Symposium
on Theoretical Aspects of Computer Science (STACS), pages 675–686, 2003.

[BMP00] V. Boyko, P. D. MacKenzie, and S. Patel. Provably Secure Password-Authenticated
Key Exchange Using Diffie-Hellman. In Advances in Cryptology — EUROCRYPT,
pages 156–171, 2000.

[BP05] Mohit Bhargava and Catuscia Palamidessi. Probabilistic Anonymity. In CONCUR,
pages 171–185, 2005.

[BPW07] Michael Backes, Birgit Pfitzmann, and Michael Waidner. The Reactive Simulatability
(RSIM) Framework for Asynchronous Systems. Information and Computation,
205(12):1685–1720, 2007.

[Can01] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In Proc. 42nd IEEE Symposium on Foundations of Computer Science
(FOCS), pages 136–145, 2001.

[CGF10] Henry Corrigan-Gibbs and Bryan Ford. Dissent: Accountable Anonymous Group
Messaging. In Proc. 17th ACM Conference on Computer and Communication Security
(CCS), pages 340–350, 2010.

[Cha81] D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.
Communications of the ACM, 4(2):84–88, 1981.

[Cha88] David Chaum. The Dining Cryptographers Problem: Unconditional Sender and
Recipient Untraceability. J. Cryptology, 1(1):65–75, 1988.

[CL05] J. Camenisch and A. Lysyanskaya. A Formal Treatment of Onion Routing. In
Advances in Cryptology — CRYPTO, pages 169–187, 2005.

[CZJJ12] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching from a
distance: Website fingerprinting attacks and defenses. In Proc. 19th ACM Conference
on Computer and Communication Security (CCS), pages 605–616, 2012.

25

[D0́6] Claudia D́ıaz. Anonymity Metrics Revisited. In Anonymous Communication and its
Applications, 2006.

[DCRS12] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. Peek-a-
Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures Fail. In Proc.
33th IEEE Symposium on Security and Privacy, pages 332–346, 2012.

[DG09] G. Danezis and I. Goldberg. Sphinx: A Compact and Provably Secure Mix Format.
In Proc. 30th IEEE Symposium on Security and Privacy, pages 269–282, 2009.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our Data, Ourselves: Privacy Via Distributed Noise Generation. In Advances
in Cryptology — EUROCRYPT, pages 486–503, 2006.

[DM09] R. Dingledine and S.J. Murdoch. Performance Improvements on Tor or, Why
Tor is slow and what we’re going to do about it. Online: http://www. torproject.
org/press/presskit/2009-03-11-performance. pdf, 2009.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
Noise to Sensitivity in Private Data Analysis. In Proc. 10th Theory of Cryptography
Conference (TCC), pages 265–284, 2006.

[DMS04] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-Generation Onion
Router. In Proc. 13th USENIX Security Symposium (USENIX), pages 303–320,
2004.

[DP04] Claudia Dı́az and Bart Preneel. Reasoning About the Anonymity Provided by Pool
Mixes That Generate Dummy Traffic. In Information Hiding, pages 309–325, 2004.

[DSCP02] Claudia Dı́az, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards Measuring
Anonymity. In Proc. 2nd Workshop on Privacy Enhancing Technologies (PET),
pages 54–68, 2002.

[DvOW92] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and Authenticated
Key Exchanges. Des. Codes Cryptography, 2(2):107–125, 1992.

[Dwo06] Cynthia Dwork. Differential Privacy. In ICALP (2), pages 1–12, 2006.

[EBA+12] Tariq Elahi, Kevin S. Bauer, Mashael AlSabah, Roger Dingledine, and Ian Goldberg.
Changing of the Guards: A Framework for Understanding and Improving Entry
Guard Selection in Tor. In Proc. 11th ACM Workshop on Privacy in the Electronic
Society (WPES), pages 43–54, 2012.

[FJS07a] J. Feigenbaum, A. Johnson, and P. F. Syverson. A Model of Onion Routing with
Provable Anonymity. In Proc. 11th Conference on Financial Cryptography and Data
Security (FC), pages 57–71, 2007.

[FJS07b] J. Feigenbaum, A. Johnson, and P. F. Syverson. Probabilistic Analysis of Onion
Routing in a Black-Box Model. In Proc. 6th ACM Workshop on Privacy in the
Electronic Society (WPES), pages 1–10, 2007.

[FJS12] Joan Feigenbaum, Aaron Johnson, and Paul F. Syverson. Probabilistic Analysis
of Onion Routing in a Black-Box Model. ACM Transactions on Information and
System Security (TISSEC), 15(3):14, 2012.

26

[GHLP12] Johannes Gehrke, Michael Hay, Edward Lui, and Rafael Pass. Crowd-Blending
Privacy. In Advances in Cryptology — CRYPTO, pages 479–496, 2012.

[GL01] O. Goldreich and Y. Lindell. Session-Key Generation Using Human Passwords Only.
In Advances in Cryptology — CRYPTO, pages 408–432, 2001.

[GLP11] Johannes Gehrke, Edward Lui, and Rafael Pass. Towards Privacy for Social Networks:
A Zero-Knowledge Based Definition of Privacy. In Proc. 8th Theory of Cryptography
Conference (TCC), pages 432–449, 2011.

[GTD+08] Benedikt Gierlichs, Carmela Troncoso, Claudia Dı́az, Bart Preneel, and Ingrid
Verbauwhede. Revisiting a Combinatorial Approach toward Measuring Anonymity.
In Proc. 7th ACM Workshop on Privacy in the Electronic Society (WPES), pages
111–116, 2008.

[HM08] Alejandro Hevia and Daniele Micciancio. An Indistinguishability-Based Charac-
terization of Anonymous Channels. In Proc. 8th Privacy Enhancing Technologies
Symposium (PETS), pages 24–43, 2008.

[HO05] Joseph Y. Halpern and Kevin R. O’Neill. Anonymity and Information Hiding in
Multiagent Systems. Journal of Computer Security, 13(3):483–512, 2005.

[Hof11] D. Hofheinz. Possibility and Impossibility Results for Selective Decommitments. J.
Cryptology, 24(3):470–516, 2011.

[HS04] Dominic Hughes and Vitaly Shmatikov. Information Hiding, Anonymity and Privacy:
a Modular Approach. Journal of Computer Security, 12(1):3–36, 2004.

[KG10] A. Kate and I. Goldberg. Using Sphinx to Improve Onion Routing Circuit Construc-
tion. In Proc. 14th Conference on Financial Cryptography and Data Security (FC),
pages 359–366, 2010.

[KT13] Ralf Küsters and Max Tuengerthal. The IITM Model: a Simple and Expressive
Model for Universal Composability. IACR Cryptology ePrint Archive, 2013:25, 2013.

[MPRV09] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil P. Vadhan. Computational
Differential Privacy. In Advances in Cryptology — CRYPTO, volume 5677, pages
126–142, 2009.

[MVdV04] S. Mauw, J. Verschuren, and E. de Vink. A Formalization of Anonymity and Onion
Routing. In Proc. 9th European Symposium on Research in Computer Security
(ESORICS), pages 109–124, 2004.

[OB09] G. O’Gorman and S. Blott. Improving Stream Correlation Attacks on Anonymous
Networks. In Proceedings of the 2009 ACM Symposium on Applied Computing (SAC),
pages 2024–2028, 2009.

[ØS06] L. Øverlier and P. F. Syverson. Locating Hidden Servers. In Proc. 27th IEEE
Symposium on Security and Privacy, pages 100–114, 2006.

[PH10] Andreas Pfitzmann and Marit Hansen. A Terminology for Talking about Pri-
vacy by Data Minimization: Anonymity, Unlinkability, Undetectability, Un-
observability, Pseudonymity, and Identity Management. http://dud.inf.tu-
dresden.de/literatur/Anon Terminology v0.34.pdf, August 2010. v0.34.

27

[PNZE11] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website
Fingerprinting in Onion Routing Based Anonymization Networks. In Proc. 10th
ACM Workshop on Privacy in the Electronic Society (WPES), pages 103–114, 2011.

[RR98] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for Web Transactions.
ACM Transactions on Information and System Security (TISSEC), 1(1):66–92, 1998.

[RSG98] M. Reed, P. Syverson, and D. Goldschlag. Anonymous Connections and Onion
Routing. IEEE J-SAC, 16(4):482–494, 1998.

[SD02] Andrei Serjantov and George Danezis. Towards an Information Theoretic Metric
for Anonymity. In Proc. 2nd Workshop on Privacy Enhancing Technologies (PET),
pages 41–53, 2002.

[Shm04] Vitaly Shmatikov. Probabilistic Analysis of an Anonymity System. Journal of
Computer Security, 12(3-4):355–377, 2004.

[SS96] Steve Schneider and Abraham Sidiropoulos. CSP and Anonymity. In Proc. 4th
European Symposium on Research in Computer Security (ESORICS), pages 198–218,
1996.

[SS99] Paul F. Syverson and Stuart G. Stubblebine. Group Principals and the Formalization
of Anonymity. In World Congress on Formal Methods, pages 814–833, 1999.

[STRL00] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr. Towards an Analysis of
Onion Routing Security. In Proc. Workshop on Design Issues in Anonymity and
Unobservability (WDIAU), pages 96–114, 2000.

[SW06] Vitaly Shmatikov and Ming-Hsiu Wang. Measuring Relationship Anonymity in
Mix Networks. In Proc. 7th ACM Workshop on Privacy in the Electronic Society
(WPES), pages 59–62, 2006.

[Tor] Tor Metrics Portal. https://metrics.torproject.org/. Accessed Feb 2013.

[Tor03] The Tor Project. https://www.torproject.org/, 2003. Accessed Feb 2013.

[WALS03] Matthew Wright, Micah Adler, Brian Neil Levine, and Clay Shields. Defending
Anonymous Communication Against Passive Logging Attacks. In Proc. 24th IEEE
Symposium on Security and Privacy, pages 28–43, 2003.

[Wik04] Douglas Wikström. A Universally Composable Mix-Net. In Proc. of the 1st Theory
of Cryptography Conference (TCC), pages 317–335, 2004.

[WRW02] Xinyuan Wang, Douglas S. Reeves, and Shyhtsun Felix Wu. Inter-Packet Delay
Based Correlation for Tracing Encrypted Connections through Stepping Stones. In
Proc. 7th European Symposium on Research in Computer Security (ESORICS), pages
244–263, 2002.

28

https://metrics.torproject.org/
https://www.torproject.org/

H Framework

In this section we provide the proofs for the claims made in section 4.

H.1 Expressivity

We first recall the definition of δ-sender anonymity derived from the literature.

Definition 7 [sender anonymity]A protocol P with user space U of size N has δ-sender anonymity
if for all ppt-adversaries A

Pr
[
u∗ = u : u∗←ASAChu(P), u

R←U
]
≤ 1

N
+ δ

where the challenger SACh is as defined in Figure 5.

Our definition with the adjacency function αSA implies definition 7.

Lemma 8 [sender anonymity] For all protocols P over a (finite) user space U of size N it holds
that if P has (0, δ)-α-IND-CDP for αSA, P also has δ-sender anonymity as in Definition 7.

Proof. We proof this by contradiction: given an adversary A∗ that breaks δ-sender anonymity, we
construct an adversary A that breaks (0, δ)− α-IND-CDP for αSA. Let A∗ be a ppt-adversary
that wins against Chb(P, αSA) with probability more than 1

N + δ. Let A be defined as follows:

A with oracle access to Chb(P, αSA)

Call A∗ and receive a input table D
if ∃! challenge line in D then

u0
R←U , u1

R←U \ {u0}
Let D0 be D with u0 in the challenge line.
Let D1 be D with u1 in the challenge line.
Send (input, D0, D1) to the oracle Chb(P, αSA)
Send every message from Ch to A∗.
Receive u∗ ← A∗
if u∗ =∈ {u0, u1} then

Output b∗

else
output c

R←{0, 1}
else

Halt.

Note that independent of the bit of our challenger Chb, we simulate a perfect challenger SACh
for sender anonymity. The choice for u1 is completely ignored by Ch0 and the choice for u0 is
ignored by Ch1 as the adjacency function αSA for sender anonymity does not modify its inputs.

We calculate the success probability for our adversary A. Since the probability of success is
independent of the bit b, we will show the calculation parametric in b. For readability we will use
the following notation:

• Ab(ub) := AChb(P,αSA) the adversary A with oracle access to Chb(P , αSA) that chooses the

value ub
R←U respectively.

• A∗ub := A∗Ab(ub), The adversary A∗ that has oracle access to the simulated challenger

SAChub(P) as simulated by A, where ub
R←U is chosen by A.

29

Pr [b←Ab(ub)]
=Pr

[
b←Ab(ub)|u∗ = ub;u

∗←A∗ub
]
· Pr

[
u∗ = ub;u

∗←A∗ub
]

+Pr
[
b←Ab(ub)|u∗ 6= ub;u

∗←A∗ub
]
· Pr

[
u∗ 6= ub;u

∗←A∗ub
]

(1)
=1 · Pr

[
u∗ = ub;u

∗←A∗ub
]

+

(
1

2
· N − 2

N − 1

)
· Pr

[
u∗ 6= ub;u

∗←A∗ub
]

=Pr
[
u∗ = ub;u

∗←A∗ub
]

+

(
1

2
· N − 2

N − 1

)
·
(
1− Pr

[
u∗ = ub;u

∗←A∗ub
])

=Pr
[
u∗ = ub;u

∗←A∗ub
]
·
(

1− 1

2
· N − 2

N − 1

)
+

(
1

2
· N − 2

N − 1

)
(2)
>

(
1

N
+ δ

)
·
(

1− 1

2
· N − 2

N − 1

)
+

(
1

2
· N − 2

N − 1

)
=

(
1

N
+ δ

)
·
(

1− 1

2
·
(

1− 1

N − 1

))
+

(
1

2
·
(

1− 1

N − 1

))
=

(
1

N
+ δ

)
·
(

1

2
+

1

2
· 1

N − 1

)
+

(
1

2
− 1

2
· 1

N − 1

)
=

1

2

((
1

N
+ δ

)
·
(

1 +
1

N − 1

)
+

(
1− 1

N − 1

))
=

1

2

(
1

N
+

1

N(N − 1)
+ δ +

δ

N − 1
+ 1− 1

N − 1

)

=
1

2

(
N − 1

N(N − 1)
+

1

N(N − 1)
+ δ +

δ

N − 1
+ 1− N

N(N − 1)

)
=

1

2

(
δ +

δ

N − 1
+ 1

)
=

1

2
+

1

2
δ +

δ

2(N − 1)

≥1

2
+

1

2
δ

Equation (1) holds true since:

• If A∗ guesses the correct u∗ = ub, A will always output the correct b.

• If A∗ guesses a wrong u∗, A will output the correct b only if the coin toss c
R←{0, 1} matched

b (which happens with probability 1
2) and if additionally A∗ did not guess u∗ = u1−b by

chance (which happens with probability N−2
N−1 independently of the behavior of A∗, since

u1−b is drawn uniformly at random, but is discarded by Chb(P , αSA) and thus never actually
used).

30

For equation (2) we make use of our assumption that A∗ indeed wins against an honest challenger
SAChu(P) with probability more than 1

N + δ.
Finally we can compute the difference:

Pr
[
b = 0 : b←ACh0(1η,P,α)(1η)

]
−Pr

[
b = 0 : b←ACh1(1η,P,α)(1η)

]
=Pr [0←A0(u0)]− Pr [0←A1(u1)]

=Pr [0←A0(u0)]− (1− Pr [1←A1(u1)])

=Pr [0←A0(u0)] + Pr [1←A1(u1)]− 1

>
1

2
+

1

2
δ +

1

2
+

1

2
δ − 1 = δ,

Thus, A is a ppt-adversary that breaks (0, δ)-α-IND-CDP for αSA for P.

The otehr direction also holds, i.e. sender anonymity implies α-IND-CDP for αSA, but only with
a changed parameter

Lemma 9 For all protocols P over a (finite) userspace U of size N it holds that if P has δ
N -sender

anonymity as in Definition 7 P also has (0, δ)-α-IND-CDP for αSA.

Proof. Given an adversary A∗ that breaks (0, δ)-α-IND-CDP for αSA, we construct an adversary
against δ

N -sender anonymity as follows:

A with oracle access to SAChu(P)

Call A∗ and receive two input tables D0, D1

if αSA(D0, D1) 6= ⊥ then
Let u0, u1 be the users in the challenge-rows of D0, D1.
Send (input, D′) to the oracle SAChu(P), where D′ is D0 without u0 in the challenge-row.
Send every message from the oracle to A∗.
Receive b∗ ← A∗
Output ub∗

else
Halt.

If by chance one of the users u0, u1 has been picked by SACh, A∗ has an advantage. Otherwise,
ub∗ will hit the correct uniformly drawn user with probability 1

N−2 .
We now compute the success probability of A. For readability we use the following notation:

• Aub := AA∗b (ub), The adversary A that has oracle access to the challenger SAChub(P)

where ub
R←U is chosen by this challenger.

• A∗b(ub) := A∗Chb(P,αSA) the adversary A∗ with oracle access to the simulated challenger

Chb(P, αSA) that chooses the value ub
R←U respectively.

31

Pr [u←A(u)]

=Pr [u←A(u)|u = u0] · Pr [u = u0]

+Pr [u←A(u)|u = u1] · Pr [u = u1]

+Pr [u←A(u)|u /∈ {u0, u1}] · Pr [u /∈ {u0, u1}]
=Pr [0←A∗0(u0)] · Pr [u = u0] + Pr [1←A∗1(u1)] · Pr [u = u1]

+Pr [u←A(u)|u /∈ {u0, u1}] · Pr [u /∈ {u0, u1}]
=Pr [0←A∗0(u0)] · Pr [u = u0]

+Pr [1←A∗1(u1)] · Pr [u = u1] + 0

=Pr [0←A∗0(u0)] · Pr [u = u0]

+(1− Pr [0←A∗1(u1)]) · Pr [u = u1]

=
1

N
· (Pr [0←A∗0(u0)]− Pr [0←A∗1(u1)] + 1)

>
1

N
· δ +

1

N

We recall the definition of δ-sender unlinkability

Definition 10 [δ-sender unlinkability] A protocol P with user space U has δ-sender unlinkability
if for all ppt-adversaries A∣∣∣Pr [b = 0 : b←AULCh0(P)

]
− Pr

[
b = 0 : b←AULCh1(P)

]∣∣∣ ≤ δ
where the challenger ULCh is as defined in Figure 6.

Lemma 11 [sender unlinkability] For all protocols P over a user space U it holds that if P has
(0, δ)-α-IND-CDP for αUL, P also has δ-sender unlinkability as in Definition 10.

Proof. We proof the lemma by contradiction. Given an adversary A∗ that breaks δ-unlinkability,
we will construct an adversary A that breaks (0, δ) − α-IND-CDP for αUL. Let A∗ be a
ppt-adversary that wins against ULCh with probability more than δ. We define A as follows:

A with oracle access to Chb(P, αUL)

Call A∗ and receive a input table D
if in exactly 2 rows i and j in x the user is missing then

u0
R←U , u1

R←U \ {u0}
Let D0 be D with u0 put in rows i and j.
Let D1 be D with u1 put in rows i and j.
Send (input, D0, D1) to oracle Chb(P, αUL).
Send every message from the oracle to A∗.
Upon receiving b∗←A∗, output b∗.

else
Halt.

The adjacency function αUL changes the data sets such that D0 contains only one of the users
u0, u1, while in D1 both will be present. Together with the challenger Chb(P , αUL) we simulate a
challenger ULCh perfectly.

Whenever b∗ is the correct answer for the (simulated) challenger ULCh, it also is the correct
answer for Chb(P, αUL).

32

Since by assumption A∗ breaks δ-sender unlinkability with probability more than δ, A breaks
(0, δ)-α-IND-CDP.

Lemma 12 For all protocols P over user space U of size N it holds that if P has 1
N(N−1)δ-sender

unlinkability as in Definition 10, P also has (0, δ)-α-IND-CDP for αUL.

Proof. Assume P provides δ
N(N−1) -sender unlinkability and assume we have an adversary A∗

which breaks (0, δ)-α-IND-CDP. We construct an adversary A for δ
N(N−1) -sender unlinkability.

A with oracle access to ULChb(P, αUL)

Call A∗ and receive two input tables D0, D1

if αUL(D0, D1) 6= ⊥ then
Let u0, u1 be the users in the challenge-rows of D0, D1.
Send (input, D′) to oracle,where D′ is D0 with no users in the challenge rows.
Send every message from the oracle to A∗.
Receive b∗ ← A∗
Output b∗

else
Halt.

We directly compute the difference |Pr[AULCh0 = 0]− Pr[AULCh1 = 0]|. Let u and u′ be the
users chosen by ULCh. The first part then computes to

Pr[AULCh0 = 0]

=Pr[AULCh0 = 0|u ∈ {u0, u1}] · Pr[u ∈ {u0, u1}]
+ Pr[AULCh0 = 0|u /∈ {u0, u1}] · Pr[u /∈ {u0, u1}]

=Pr[A∗Ch0(αUL) = 0] · 2

N

+ Pr[A∗ULCh0 = 0|u /∈ {u0, u1}] · (1−
2

N
)

and Pr[AULCh1 = 0] computes to

Pr[AULCh1 = 0]

=Pr[AULCh1 = 0|{u, u′} = {u0, u1}]
· Pr[{u, u′} = {u0, u1}]
+ Pr[AULCh1 = 0|{u, u′} 6= {u0, u1}]
· Pr[{u, u′} 6= {u0, u1}]

=Pr[A∗Ch1(αUL) = 0] · 2

N(N − 1)

+ Pr[A∗ULCh1 = 0|{u, u′} 6= {u0, u1}] · (1−
2

N(N − 1)
)

For readability we use following place holders for the different events

• M0 : A∗Ch0(αUL) = 0

• M1 : A∗Ch1(αUL) = 0

33

• L0 : A∗ULCh0 = 0 | u 6= {u0, u1}

• L1 : A∗ULCh1 = 0 | {u, u′} 6= {u0, u1}

With this we get by suitably adding 0 several times

|Pr[AULCh0 = 0]− Pr[AULCh1 = 0]|

=| 2

N(N − 1)
(Pr[M0]− Pr[M1])

+ (
2

N
− 2

N(N − 1)
)Pr[M0]

− (
2

N
− 2

N(N − 1)
)Pr[L0]

+ (1− 2

N(N − 1)
)(Pr[L0]− Pr[L1])|

Here we make following assumptions

• Pr[M0] ≥ Pr[L0]: As A∗ is an adversary especially constructed for Chb(αUL) we can assume
that he also works better against this adversary. Otherwise we can construct an even better
adversary A∗′ which makes the same decisions as A∗ with oracle ULChb and use him
instead of A∗.

• − 1
N(N−1) ≤ Pr[L0] − Pr[L1] ≤ 1

N(N−1) , as otherwise A∗ already is an adversary which

breaks δ-unlinkability, which is a contradiction.

Together with our initial assumption, that A∗ breaks (ε, δ)- α-IND-CDP for αUL, we get

| 2

N(N − 1)
(Pr[M0]− Pr[M1])

+ (
2

N
− 2

N(N − 1)
)Pr[M0]

− (
2

N
− 2

N(N − 1)
)Pr[L0]

+ (1− 2

N(N − 1)
)(Pr[L0]− Pr[L1])|

>
2

N(N − 1)
δ − (1− 2

N(N − 1)
)

δ

N(N − 1)

>
δ

N(N − 1)

as required.

H.2 Relations among the various notions

In this section we explore the relations among our notions of sender anonymity, sender unlinkability
and relationship anonymity.

Below follow the lemmas and their proofs for the various relations between the anonymity
notions, as visualized in Fig. 7.

34

Lemma 13 [Sender anonymity implies relationship anonymity.] If a protocol P has (0, δ)-
α-IND-CDP for αSA, is also has (0, δ)-α-IND-CDP for αRel.

Proof. Given an adversary A∗ against (0, δ)-α-IND-CDP for αRel, we construct an adversary
against (0, δ)-α-IND-CDP for αSA as follows: A with oracle access to Chb(P, αSA)

Call A∗ and receive input tables D0, D1.

Let b
R←{0, 1}.

Replace Rc = (r, aux)k in the challenge-row of Db by Rc in D1−b.
Send (input, D0, D1) to oracle.
Send every message from the oracle to A∗.
Upon receiving b∗ from A∗, output b∗.

The adversary A perfectly simulates a challenger against relationship anonymity. However,
since he chooses Rc to be the same before sending the input tables to its oracle, it also fits the
requirements for sender anonymity. Whenever A∗ wins the relationship anonymity game, A wins
the sender anonymity game.

Lemma 14 [Sender anonymity implies sender unlinkability] If a protocol P has (0, δ)-α-IND-CDP
for αSA, P also has (0, δ)-α-IND-CDP for αUL.

Proof. Given an adversary A∗ against (0, δ)-α-IND-CDP for αUL, we construct an adversary
against (0, δ)-α-IND-CDP for αSA as follows: A with oracle access to Chb(P, αSA)

Call A∗ and receive input tables D0, D1.
Let (D′0, D

′
1)←αUL.

Send (input, D′0, D
′
1) to oracle.

Send every message from the oracle to A∗.
Upon receiving b∗ from A∗, output b∗.

The adversary A perfectly simulates a challenger against sender unlinkability (αSA does not
change the input tables). However, since exactly one challenge row exists in (D′0, D

′
1) it also fits

the requirements for sender anonymity. Whenever A∗ wins the relationship anonymity game, A
wins the sender anonymity game.

Lemma 15 [Sender unlinkability does not imply sender anonymity] If a protocol P has (0, δ)-
α-IND-CDP for αUL, P does not necessarily have (0, δ′)-α-IND-CDP for αSA for any δ′ < 1.

Proof. Consider the following counterexample protocol P. It processes the input table row by
row, perfectly hiding all information about the user and broadcasting the message. At any
point, an adversary might ask it to reveal the user of a given message, but only once. Obviously
this protocol does not have sender anonymity, as the adversary can deanonymize any user. For
unlinkability, however, deanonymizing the user of one single message does not suffice.

Lemma 16 [relationship anonymity does not imply sender anonymity] If a protocol P has
(0, δ)-α-IND-CDP for αRel, P does not necessarily have (0, δ′)-α-IND-CDP for αSA for any
δ′ < 1.

Proof. Consider the following counterexample protocol P. It processes the input table row by
row, perfectly hiding all information about the message and possible recipients, but leaking the
users that send messages. An adversary can easily distinguish input tables, where e.g. a user only
is present in D1 but not in D0, but for breaking relationship anonymity, information about the
messages and/or recipients has to be present.

35

H.3 Leveraging UC

In this section we derive the proof for Lemma 17. We first give the required definitions from the
UC-framework and then give the proof.

Definition 20 (Indistinguishability [Can01]). Two binary distribution ensembles X and Y are
indistinguishable, denoted X ≈ Y , if for every c ∈ N there is a η0 ∈ N such that for all η > η0

and all x we have that

|Pr[X(η, x)] = 1− Pr[Y (η, x)] = 1| < δ′ = η−c

The real world. For the process in the real world we introduce the random variable
RealΠ,A,D(η, x) which captures the interaction of a protocol Π with an adversary A, observed by
a distinguisher D.RealΠ,A,D will denote the ensemble of all those distributions. Note that as we
try to argue about α-IND-CDP, our input x will be a tuple of input tables (D0, D1).

The ideal world. Similarly, we introduce the random variable IdealF,S,D(η, x) which cap-
tures the interaction of an ideal functionality F , a simulator S and the distinguisher. IdealF,S,D
will again denote the ensemble of such random variables.

Definition 21 (Realization in UC). A protocol Π UC-realizes an ideal functionality F if for every
PPT adversary A of Π there exists a PPT simulator S such that for every PPT distinguisher D
it holds that

RealΠ,A,D ≈ IdealF,S,D

In order to stay consistent with the notation used in the main body of the paper, but still
catch all technical details of UC, we adopt following notation: The adversary we used in AnoA
in order to define α-IND-CDP is now part of the environment Env. We capture the interaction
of adversary – as denoted above, and protocol by taking both as arguments into the challenger
Ch, i.e. we write Chb(Π, A, α) instead of just Chb(Π, α).

Given the realization of a (ε, δ)-differentially-private ideal functionality by a protocol Π, we
get differential privacy for Π.

Lemma 17 Let F be (ε, δ)-α-IND-CDP and Π be a protocol. If Π UC-realizes F then Π is
(ε,∆)-α-IND-CDP with ∆ = δ + δ′ for some negligible value δ′.

Proof. Given an (ε, δ)-α-IND-CDP functionality F , assume Π UC-realizes F , but Π is not
(ε,∆)-α-IND-CDP, i.e. there exist an adversary A and two input tables D0 and D1 s.t.

Pr[b = 0 : b←EnvCh0(Π,A,α)]

> eεPr[b = 0 : b←EnvCh1(Π,A,α)] + ∆

where ∆ ≥ δ + δ′ for a non negligible value δ′.We construct the following PPT distinguisher D
that uses A in order to separate Π from F :

1. choose b
R← {0, 1} uniformly at random

2. send Db through the network

3. depending on the output b∗ of the environment:

36

(a) if the environment returns b∗ = b, decide that you observed (Π, A) and output 1

(b) otherwise decide that you observed (F , S) and output 0

We now bound the probabilities Pr[RealΠ,A,D(η, (D0, D1)) = 1] and Pr[IdealF,S,D(η, (D0, D1)) =
1] as required for Lemma 17. Using the assumption that Π is not (ε,∆)-differentially private, the
first expression computes to

Pr[RealΠ,A,D(η, (D0, D1)) = 1]

= Pr[b = b∗ : b←EnvChb∗ (Π,A,α)]

= Pr[b = 1 : b←EnvCh1(Π,A,α)] · Pr[D chooses D1]

+ Pr[b = 0 : b←EnvCh0(Π,A,α)] · Pr[D chooses D0]

= Pr[b = 1 : b←EnvCh1(Π,A,α)] · Pr[b = 1 : b
R←{0, 1}]

+ Pr[b = 0 : b←EnvCh0(Π,A,α)] · Pr[b = 0 : b
R←{0, 1}]

=
1

2

(
Pr[b = 1 : b←EnvCh1(Π,A,α)]

+ Pr[b = 0 : b←EnvCh0(Π,A,α)]
)

>
1

2

(
Pr[b = 1 : b←EnvCh1(Π,A,α)]

+eε Pr[b = 0 : b←EnvCh1(Π,A,α)] + ∆
)

=
1

2

(
1− Pr[b = 0 : b←EnvCh1(Π,A,α)]

+eε Pr[b = 0 : b←EnvCh1(Π,A,α)] + ∆
)

=
1

2

(
(eε − 1) Pr[b = 0 : b←EnvCh1(Π,A,α)] + ∆ + 1

)

(2)

37

Using the (ε, δ)-differential privacy of F , the second expression can be bound as follows

Pr[IdealF,S,D(η, (D0, D1)) = 1]

= Pr[b = b∗ : b←EnvChb∗ (F,S,α)]

= Pr[b = 1 : b←EnvCh1(F,Sα)] · Pr[D chooses D1]

+ Pr[b = 0 : b←EnvCh0(F,Sα)] · Pr[D chooses D0]

= Pr[b = 1 : b←EnvCh1(F,S,α)] · Pr[b = 1 : b
R←{0, 1}]

+ Pr[b = 0 : b←EnvCh0(F,S,α)] · Pr[b = 0 : b
R←{0, 1}]

=
1

2

(
Pr[b = 1 : b←EnvCh1(F,S,α)]

+ Pr[b = 0 : b←EnvCh0(F,S,α)]
)

≤1

2

(
Pr[b = 1 : b←EnvCh1(F,S,α)]

+ eε Pr[b = 0 : b←EnvCh1(F,S,α)] + δ
)

=
1

2

(
1− Pr[b = 0 : b←EnvCh1(F,S,α)]

+eε Pr[b = 0 : b←EnvCh1(F,S,α)] + δ
)

=
1

2

(
1 + (eε − 1) Pr[b = 0 : b←EnvCh1(F,S,α)] + δ

)

(3)

Putting Equations 2 and 3 together, we get

Pr[RealΠ,A,D(η, (x0, x1)) = 1]

− Pr[IdealF,S,D(η, (x0, x1)) = 1]

>
1

2

(
(eε − 1)(Pr[b = 0 : b←ACh1(Π,α)]

−Pr[b = 0 : b←SCh1(F,α)]) + ∆− δ
)

=
1

2

(
(eε − 1)(Pr[b = 0 : b←ACh1(Π,α)]

−Pr[b = 0 : b←SCh1(F,α)]) + δ′
)

(4)

By assumption, Π UC-realizes F . Hence Pr[b = 0 : b←ACh1(Π,α)]−Pr[b = 0 : b←SCh1(F,α)] is
negligible. As δ′ is not negligible, the difference 4 stays non-negligible, and positive. Hence we
get that

|Pr[RealΠ,A,D(η, (x0, x1)) = 1]

− Pr[IdealF,S,D(η, (x0, x1)) = 1]|
> δ′′

for some non negligible value δ′′, contradicting the UC-realization of F by Π (Def. 21). Therefore
our initial assumption is wrong and Π is (ε,∆)-α-IND-CDP.

38

I Abstracting Tor in UC

We cite the the description of the ideal functionality For. Sections I.1 and I.2 are taken from
[BGKM12], and in section I.3 we give an extension of the model in order to handle traffic analysis
attacks.

I.1 System and Adversary Model

We consider a fully connected network of n+m parties N = {P1, . . . , Pn, . . . , Pn+1, . . . , Pn+m}.
We consider the parties P1, . . . , Pn to be OR nodes, and the parties Pn+1, . . . , Pn+m to only be
users. We furthermore assume that the set of OR nodes is publicly known. The onion routers
can be compromised by the attacker by sending compromise messages. The users, however, can
in our model not be compromised, since the attacker can just act as a user of the OR network.
Formally, Pn+1, . . . , Pn+m, consequently, do not react towards compromise messages.

Tor has not been designed to resist against global attackers. Such an attacker is too strong
for many practical purposes as it can simply break the anonymity of an OR protocol by holding
back all but one onion and tracing that one onion though the network. However, in contrast
to previous work, we do not only consider local attackers, which do not control more than the
compromised OR routers, but also partially global attackers that control a certain portion of the
network. Analogous to the network functionality Fsyn proposed by Canetti [Can01], we model
the network as an ideal functionality Fnet , which bounds the number of attacker-controlled links
to q ∈ [0,

(
n
2

)
]. For attacker-controlled links the messages are forwarded to the attacker; otherwise,

they are directly delivered.
Let S represent all possible destination servers {S1, . . . , S∆} which reside in the network

abstracted by a network functionality Fnetq .
We stress that the UC framework does not provide a notion of time; hence, the analysis of

timing attacks, such as traffic analysis, is not in the scope of this work.

Adaptive Corruptions. Forward secrecy [DvOW92] is an important property for onion routing.
In order to analyze this property, we allow adaptive corruptions of nodes by the attacker A. Such
an adaptive corruption is formalized by a message compromise, which is sent to the respective
party. Upon such a compromise message the internal state of that party is deleted and a long-term
secret key sk for the node is revealed to the attacker. A can then impersonate the node in the
future; however, A cannot obtain the information about its ongoing sessions. We note that this
restriction arises due to the currently available security proof techniques and the well-known
selective opening problem with symmetric encryptions [Hof11], and the restriction is not specific
to our constructions [BMP00, GL01]. We could also restrict ourselves to a static adversary as in
previous work [CL05]; however, that would make an analysis of forward secrecy impossible.

I.2 Ideal functionality

The presentation of the ideal functionality For is along the lines of the description OR protocol
Πor from Section [BGKM12, Section 2.4]. We continue to use the message-based state transitions
from Πor, and consider sub-machines for all n nodes in the ideal functionality. To communicate
with each other through messages and data structures, these sub-machines share a memory space
in the functionality. The sub-machine pseudocode for the ideal functionality appears in Figure 11
and three subroutines are defined in Figure 12. As the similarity between pseudocodes for the
OR protocol and the ideal functionality is obvious, rather than explaining the OR message flows
again, we concentrate on the differences.

39

The only major difference between Πor and For is that cryptographic primitives such as
message wrapping, unwrapping, and key exchange are absent in the ideal world; we do not have
any keys in For, and the OR messages WrOn and UnwrOn as well as the 1W-AKE messages
Initiate, Respond , and ComputeKey are absent.

The ideal functionality also abstracts the directory server and expects on the input/output
interface of FNreg (from the setting with Πor) an initial message with the list 〈Pi〉ni=1 of valid
nodes. This initial message corresponds to the list of onion routers that have been approved by
an administrator. We call the part of For that abstracts the directory servers dir. For the sake of
brevity, we do not present the pseudocode of dir. Upon an initial message with a list 〈Pi〉ni=1 of
valid nodes, dir waits for all nodes Pi (i ∈ {1, . . . , n}) for a message (register, Pi). Once all nodes
registered, dir sends a message (registered, 〈Pi〉ni=1) with a list of valid and registered nodes to
every party that registered, and to every party that sends a retrieve message to dir.

Messages from A and Fnet . In Figure 11 and Figure 13, we present the pseudocode for the
attacker messages and the network functionality, respectively. For our basic analysis, we model an
adversary that can control all communication links and servers in Fnet , but cannot view or modify
messages between parties due to the presence of the secure and authenticated channel. Therefore,
sub-machines in the functionality store their messages in the shared memory, and create and send
handles 〈P, Pnext , h〉 for these messages in Fnet . The message length does not need to be leaked
as we assume a fixed message size (for all M(κ)). Here, P is the sender, Pnext is the receiver
and h is a handle or a pointer to the message in the shared memory of the ideal functionality.
In our analysis, all Fnet messages flow to A, which may choose to return these handles back
to For through Fnet at its own discretion. However, Fnet also maintains a mechanism through
observedLink flags for the non-global adversary A. The adversary may also corrupt or replay the
corresponding messages; however, these active attacks are always detected by the receiver due to
the presence of a secure and authenticated channel between any two communicating parties and
we need not model these corruptions.

The adversary can compromise a party P or server S by sending a compromise message to
respectively For and Fnet . For party P or server S, the respective functionality then sets the
compromised tag to true. Furthermore, all input or network messages that are supposed to be
visible to the compromised entity are forwarded to the adversary. In principle, the adversary runs
that entity for the rest of the protocol and can send messages from that entity. In that case, it
can also propagate corrupted messages which in Πor can only be detected during UnwrOn calls
at OP or the exit node. We model these corruptions using corrupted(msg) = {true, false} status
flags, where corrupted(msg) status of messages is maintained across nodes until they reach end
nodes. Furthermore, for every corrupted message, the adversary also provides a modification
function T (·) as the end nodes run by the adversary may continue execution even after observing
a corrupted flag. In that case, T (·) captures the exact modificaiton made by the adversary.

We stress that For does not need to reflect reroutings and circuit establishments initiated
by the attacker, because the attacker learns, loosely speaking, no new information by rerouting
onions.6 Similar to the previous work [CL05], a message is directly given to the adversary if all
remaining nodes in a communication path are under adversary control.

6More formally, the simulator can compute all responses for rerouting or such circuit establishments without
requesting information from For because the simulator knows all long-term and session keys. The only information
that the simulator does not have is the routing information, which the simulator gets in case of rerouting or circuit
establishment.

40

I.3 Explicit traffic analysis

The UC framework does not allow the attacker to measure time. A machine is still until it
is activated again, and upon an activation a machine does not know how much time evolved.
Against Tor, however, traffic analysis attacks (requiring the attacker to measure the distance
between messages) are well known . Naturally, our analysis does not cover all these attacks. In
the same way as Syverson and Johnson , we model a variety of these timing vulnerabilities by the
user and the server for an onion circuit if first and last node of the circuit is compromised.

We defined a modified ideal functionality For
′ by adding a data structure circuits, which

assigns to every circuit id cid the full circuit 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`〉 = circuits(cid) to
which this cid belongs. Moreover, upon a data cell at an exit node, For

′ calls a subroutine
SendMessage ′(cid , P, S, sid ,m′), where cid is the circuit id with the previous node in the circuit.
SendMessage ′ leaks the user and sender is leaked if the first node P1 and last node P` in the
circuit is compromised.

It does, however, not suffice to only check whether the first and the last node is compromised,
we also have to check whether the link from the user to the the first node and from the exit node
to the exit node is compromised. Technically, however, the information whether these links are
compromised resides in Fnetq and not in For. Therefore, we consider For

′ to comprise Fnetq as a
submachine and do not consider Fnetq as a separate entity anymore. This is a mere technicality
since in the work of Backes, Goldberg, Kate, and Mohammadi Fnetq only was a separate entity
to present a unifying treatment of partially global attackers in UC. As part of For

′, it is possible
to let the subroutine SendMessage ′ check which links are compromised.

The subroutine SendMessage ′ is depicted in Figure 14.
For the backward messages, For

′ analogously leaks the server. Since a circuit can be used
to communicate to several servers (even at the same time), For

′ have to track the single onions
in order to be able to determine the server from which each onion came. We introduce a
data structure origin(h) that tracks for each handle the party O = origin(h) it was sent from.
This origin O is additionally passed to the subroutine SendMessage. We accordingly modify
SendMessage to check whether Pnext is an onion proxy, i.e., a user, and whether the entry node
(or the link from the user to the entry node) and the exit node (or the link from the exit node to
the server) is compromised. In that case additionally, the server is leaked.
For

′ leaks strictly more information than For; consequently, For trivially UC realizes For
′.

Lemma 22 (For UC realizes For
′). For UC realizes For

′.

Proof. The simulator merely redirects all messages from the environment to the attacker and
For

′. Only if a message (P,P`, S, sid ,m) is sent (by an exit node) by For
′, the simulator sends

(P`, S, sid ,m) to the attacker. Moreover, since the environment expects an ideal functionality
Fnetq , the simulator implements a redirection for Fnetq . In other words, all messages that are
sent to Fnetq are sent to For

′ marked as a message for the submachine Fnetq ; analogously, all
messages from For

′ that are sent from the submachine Fnetq are sent from the simulated Fnetq .
There is another technicality. For

′ sends along with every handle a value server , which either
contains the identity of the server or the symbol −. The simulator removes this entry from
every leakage, i.e., from every tuple that contains a handle. This simulator produces a perfectly
indistinguishable view from the interaction of the attacker with For.

J Tor

In this section we show the proofs for the claims from the Tor-Analysis section 6.

41

J.1 Formal Analysis

We prove that For is (0, δ)-α-IND-CDP. For this, we first prove Lemma 18, which we then use
in order to proof Theorem 19.

Lemma 18 Let rA, rCh
R←{0, 1}p(η). Given two input tables D1,D0 which are adjacent for

α ∈ {αSA, αUL, αRel}, it holds that

Pr[ACh0(For,α,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

= Pr[ACh1(For,α,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

Proof. We fix the random string rCh. This in turn fixes the circuits drawn by For for each row.
As circuits are drawn independently from the messages transmitted, For draws the same set of
circuits to transmit either input table.

Considering any message m the adversary A intercepts, all he can learn from it is

a) which party in For the message m comes from,

b) where m is supposed to be send,

c) which circuit was used by the curcuit-ID (cid).

Note that in the ideal functionality, no actual message contents are sent through the network, as
message passing is realized via handles. Furthermore, we assume ¬Dα. For α ∈ {αSA, αUL} A
cannot learn anything about the sender directly. Let R ⊆ {0, 1}p(η) be the subset of all random
strings rA, for which ACh0(For,α,rCh)(rA) = 0. As AChb(For,α,rCh)(rA) is a deterministic machine,
also ACh1(For,α,rCh)(rA) = 0 exactly for every rA ∈ R, as both Ch0 and Ch1 forward the same
messages to A.

If α = αRel, A might learn partial information by compromising either entry- or exit-node.
But this only allows him to reduce the set of possible input tables to two, each of which could
have been selected by only one of the challengers. By the same argument as above, if we fix rA,
A returns the same value, regardless of which challenger he interacts with.

Hence A does not learn about the challenger’s decision on one of the input tables, and we get
for any random string rCh

Pr[ACh0(For,α,rCh)(rA) = 0 | ¬Dα(rCh, rA), rCh]

= Pr[ACh1(For,α,rCh)(rA) = 0 | ¬Dα(rCh, rA), rCh]
(5)

As the probabilities are the same for any random string rCh, we then get

Pr[ACh0(For,α,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

=
1

2p(η)
·

∑
rF∈{0,1}p(η)

Pr[ACh0(For,α,rCh)(rA) = 0 | ¬Dα(rCh, rA), rCh]

(5)
=

1

2p(η)
·

∑
rCh∈{0,1}p(η)

Pr[ACh1(For,α,rCh)(rA) = 0 | ¬Dα(rCh, rA), rCh]

= Pr[ACh1(For,α,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

Using Lemma 18, we now prove the main theorem.

42

Theorem 19 For is (0, δ) - α-IND-CDP for α, i.e

Pr[ACh0(For,α,rCh)(rA) = 0]

≤Pr[ACh1(For,α,rCh)(rA) = 0] + δ

with δ = Pr[Dα(rCh, rA)].

Proof.

Pr[ACh0(For,α,rCh)(rA) = 0]

= Pr[ACh0(For,α,rCh)(rA) = 0 | Dα(rCh, rA)]

· Pr[Dα(rCh, rA))]

+ Pr[ACh0(For,α,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

· Pr[¬Dα(rCh, rA)]

J.1
= Pr[ACh0(For,α,rCh)(rA) = 0 | Dα(rCh, rA)]

· Pr[Dα(rCh, rA)]

+ Pr[ACh1(For,α,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

· Pr[¬Dα(rCh, rA)]

≤Pr[Dα(rCh, rA))]

+ Pr[ACh1(For,α,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

· Pr[¬Dα(rCh, rA)]

≤Pr[Dα(rCh, rA)]

+ Pr[ACh1(For,α,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

· Pr[¬Dα(rCh, rA)]

+ Pr[ACh1(For,α,rCh)(rA) = 0 | Dα(rCh, rA)]

· Pr[Dα(rCh, rA)]

= Pr[Dα(rCh, rA)] + Pr[ACh1(For,α,rCh)(rA) = 0]

J.2 Several Challenge Rows

We show that directly analyzing the scenario with more than one challenge row gives better
results than the simple amplification approach.

Lemma 23. Pr[D∗αSA
] < dPr[DαSA

]

Proof.
Pr[D∗αSA

] < dPr[DαSA
]

1− Pr[¬D∗αSA
] < d(1− Pr[¬DαSA

])

dPr[¬DαSA
]− Pr[¬D∗αSA

] < d+ 1

(6)

43

Combinatorial observations give us

Pr[¬DαSA
] =

(
n−1
k

)(
n
k

)
Pr[¬D∗αSA

] =

(
n−m
k

)(
n
k

) (7)

The probability for D∗αSA
is the highest for m = d. Substituting this and equations (7) into (6)

gives us

d

(
n− 1

k

)
−
(
n− d
k

)
< (d− 1)

(
n

k

)
using the recurrence relation for the binomial coefficient(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
we then get the equivalences in Fig. 16, which are true for d > 1.

The difference between Pr[D∗αSA
] and d ·Pr[DαSA

] can be bounded using the recursive formula
for the binomial coefficient:

dPr[DαSA
]− Pr[D∗αSA

]

=d− dPr[¬DαSA
]− 1 + Pr[¬D∗αSA

]

=d− 1 +

(
n−m
k

)(
n
k

) − d
(
n−1
k

)(
n
k

)
≥d− 1 +

(
n−d
k

)(
n
k

) − d(n−1
k

)(
n
k

)
=d− 1 +

−(
∑d
i=2

(
n−i
k−1

)
)− (d− 1)

(
n−1
k

)(
n
k

)
=

(d− 1)(
(
n
k

)
−
(
n−1
k

)
)−

∑d
i=2

(
n−i
k−1

)(
n
k

)
≥

(d− 1)(
(
n−1
k−1

)
−
(
n−2
k−1

)
)(

n
k

)
J.3 Link Corruption

We extend link corruption for more than one challenge row. Let L∗αSA
be the event that in one

of the challenge rows, an entry-link is successfully compromised. Let ij , 1 ≤ j ≤ d denote the
number of possible entry links compromised by A for the user of the jth challenge-row. We then
get

Pr[¬L∗αSA
] =

(
n−k−i1

1

)(
n−k

1

) (
n−k−i2

1

)(
n−k

1

) · · · (n−k−id1

)(
n−k

1

)
=

(n− k − i1)(n− k − i2)− . . .− (n− k − id)
(n− k)d

44

The probability Pr[L∗] is maximal if the ij are maximal. This happens when the users for all
challenge rows are the same and the adversary can invest all link corruptions for this single user.
We then get

Pr[LαSA] ≤ 1− Pr[¬LαSA]

= 1− (
n− k − q
n− k

)d

= 1− (1− q

n− k
)d

45

upon an input (setup):

draw a fresh handle h; a set registered flag← true
store lookup(h)← (dir, registered,N)
send (h, register, P) to A
wait for a msg (dir, registered,N) via a handle
output (ready, (Pj)

n
j=1) = (ready,N)

upon an input (createcircuit,P = 〈P, P1, . . . , P`〉):
store P and C ← 〈P 〉; ExtendCircuit(P, C)

upon an input (send, C = 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`〉,m):

if Used(cid1) < ttlC then
Used(cid1)++; SendMessage(P1, cid1, relay, 〈data,m〉)

else
DestroyCircuit(C, cid1); output (destroyed, C,m)

upon receiving a handle 〈P, Pnext , h〉 from Fnet :

send (msg)← lookup(h) to a receiving submachine Pnext

upon receiving a msg (Pi, cid , create) through a handle:

store C ← 〈Pi
cid⇐⇒ P 〉; SendMessage(Pi, cid , created)

upon receiving a msg (Pi, cid , created) through a handle:

if prev(cid) = (P ′, cid ′) then
SendMessage(P ′, cid ′, relay, extended)

else if prev(cid) = ⊥ then
ExtendCircuit(P, C)

upon receiving a msg (Pi, cid , relay, O) through a handle:

if prev(cid) = ⊥ then
if next(cid) = ⊥ then

get (type,m) from O
else {P ′, cid ′} ← next(cid)

else
(P ′, cid ′)← prev(cid)

switch (type)
case extend:

get Pnext from m; cidnext←{0, 1}κ

update C ← 〈Pi
cid⇐⇒ P

cidnext⇐⇒ Pnext〉
SendMessage(Pnext , cidnext , create)

case extended:
update C with Pex; ExtendCircuit(P, C)

case data:
if (P = OP) then output (received, C,m)
else if m = (S,m′)

generate or lookup the unique sid for cid
send (P, S, sid ,m′) to Fnetq

case corrupted : /*corrupted onion*/
DestroyCircuit(C, cid)

case default: /*encrypted forward/backward onion*/
SendMessage(P ′, cid ′, relay, O)

upon receiving a msg (sid ,m) from Fnet :

obtain C = 〈P ′ cid⇐⇒ P 〉 for sid
SendMessage(P ′, cid , relay, 〈data,m〉)

upon receiving a msg (Pi, cid , destroy) through a handle:

DestroyCircuit(C, cid)

upon receiving a msg (Pi, P, h, [corrupt, T (·)])from A:

(message)← lookup(h)
if corrupt = true then

message ← T (msg); set corrupted(message)← true
process message as if the receiving submachine was P

upon receiving a msg (compromise, P) from A:

set compromised(P)← true
delete all local information at P

Figure 11: The ideal functionality FNor (short For) for Party P [BGKM12, Fig.5]

46

ExtendCircuit(P = (Pj)
`
j=1, C = 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`′〉):

determine the next node P`′+1 from P and C
if P`′+1 = ⊥ then

output (created, C)
else

if P`′+1 = P1 then
cid1←{0, 1}κ; SendMessage(P1, cid1, create)

else
SendMessage(P1, cid1, relay, {extend, P`′+1})

DestroyCircuit(C, cid):

if next(cid) = (Pnext , cidnext) then
SendMessage(Pnext , cidnext , destroy)

else if prev(cid) = (Pprev , cidprev) then
SendMessage(Pprev , cidprev , destroy)

discard C and all streams

SendMessage(Pnext , cidnext , cmd, [relay-type], [data]):

create a msg for Pnext from the input
draw a fresh handle h and set lookup(h)← msg
if compromised(Pnext) = true then

let Plast be the last node in the continguous compromised path starting in Pnext

if (Plast = OP) or Plast is the exit node then
send the entire msg to A

else
send 〈P, Pnext , . . . , Plast , cidnext , cmd, h〉 to A

else
send 〈P, Pnext , h〉 to Fnetq

Figure 12: Subroutines of For for Party P [BGKM12, Fig.6]

upon receiving a msg (obverse, P, Pnext) from A:

set observedLink(P, Pnext)← true

upon receiving a msg (compromise, S) from A:

set compromised(S)← true; send A all existing sid

upon receiving a msg (P, Pnext/S,m) from For:

if Pnext/S is a For node then
if observedLink(P, Pnext) = true then

forward the msg (P, Pnext ,m) to A
else

reflect the msg (P, Pnext ,m) to For

else if Pnext/S is a Fnet server then
if compromised(S) = true then

forward the msg (P, S,m) to A
else

output (P, S,m)

upon receiving a msg (P/S, Pnext ,m) from A:

forward the msg (P/S, Pnext ,m) to For

Figure 13: The Network Functionality Fnet [BGKM12, Fig.7]: A/B denotes that as a variable
name either A or B is used.

47

SendMessage ′(cid , P`, S, sid ,m):

lookup 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`〉 = circuits(cid)
if (compromised(P1) or observedLink(P, P1)) and (compromised(P`) or observedLink(P`, S)) then

send (P, P`, S, sid ,m) to Fnetq

else
send (P`, S, sid ,m) to Fnetq

Figure 14: Subroutines of For for Party P

SendMessage(O,Pnext , cidnext , cmd, [relay-type], [data]):

create a msg for Pnext from the input
draw a fresh handle h and set lookup(h)← msg

lookup 〈Pnext
cid1⇐⇒ P1 ⇐⇒ · · ·P`〉 = circuits(cidnext)

if (compromised(P1) or observedLink(P, P1)) and (compromised(P`) or observedLink(P`, O)) then
set server := O

else
server := −

if compromised(Pnext) = true then
let Plast be the last node in the continguous compromised path starting in Pnext

if (Plast = OP) or Plast is the exit node then
send the entire msg to A

else
send 〈P, Pnext , . . . , Plast , server , cidnext , cmd, h〉 to A

else
send 〈P, Pnext , server , h〉 to Fnetq

Figure 15: Subroutines of For for Party P

d

(
n− 1

k

)
−
(
n− d
k

)
< (d− 1)

(
n

k

)
d

(
n− 1

k

)
−
(
n− d
k

)
< d(

(
n− 1

k − 1

)
+

(
n− 1

k

)
)−

(
n

k

)
−
(
n− d
k

)
< d

(
n− 1

k − 1

)
−
(
n

k

)
(
n

k

)
<

(
n− d
k

)
+ d

(
n− 1

k − 1

)
(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
+ . . .+

(
n− d
k − 1

)
+

(
n− d
k

)
<

(
n− d
k

)
+ d

(
n− 1

k − 1

)
(
n− 1

k − 1

)
+ . . .+

(
n− d
k − 1

)
< d

(
n− 1

k − 1

)

Figure 16: Calculation for Lemma 23

48

