
RZ 3724 (# 99734) 01/05/2009 (updated 08/03/2009)
Computer Science 22 pages

Research Report

Secure Pseudonymous Channels
(Updated version of August 3, 2009)

Sebastian Mödersheim

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon, Switzerland
E-mail: smo@zurich.ibm.com

Luca Viganò

Department of Computer Science
University of Verona
Verona, Italy
E-mail: luca.vigano@univr.it

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Secure Pseudonymous Channels

Sebastian Mödersheim1 Luca Viganò2

1 IBM Zurich Research Laboratory, Switzerland, smo@zurich.ibm.com
2 Department of Computer Science, Verona, Italy, luca.vigano@univr.it

Abstract

Different kinds of channels can be employed in security
protocols and web services as a means of securing the com-
munication. We consider here three basic kinds of channels:
authentic, confidential, and secure.

We define channels as assumptions, i.e. when the mes-
sages of a protocol may be transmitted over such chan-
nels. More specifically, we define the Ideal Channel Model,
which describes the ideal functionality of a channel, and
the Cryptographic Channel Model, which employs concrete
cryptographic messages on insecure channels. We relate
these two models by showing that attacks in either model
can be simulated in the other.

We also define the meaning of channels as goals, i.e. when
a protocol has the goal of establishing a particular kind of
channel. This gives rise to an interesting question: given
that we have verified that a protocol P2 provides its goals
under the assumption of a particular kind of channel, can we
then replace the assumed channel with an arbitrary protocol
P1 that provides such a channel? In general, the answer is
negative, while we prove that under certain restrictions such
a compositionality result is possible.

Finally, we generalize all our results to channels where
agents may be identified by pseudonyms rather than by
their real names, and also consider channels that ensure
the freshness of messages by suppressing message replay.

1. Introduction

Context and motivation. In recent years, a number of
works have appeared that provide formal definitions of the
notion of channel and how different kinds of channels
(e.g. authentic, confidential, secure) can be employed in
security protocols and web services as a means of securing
the communication. These works range from the definition
of a calculus for reasoning about what channels can be
created from existing ones [28] to the investigation of a
lattice of different channel types [20], [21].

In this paper, we consider three basic kinds of channels:
authentic, confidential, and secure channels. We use an
intuitive notation from [28], where a secure end-point of
a channel is marked by a bullet with the following informal
meaning (that we define precisely below):

• Authentic channel: A •→B : M represents an authentic
channel from A to B. This means that B can rely that
A has sent the message M .

• Confidential channel: A→•B : M . This means that A
can rely that only B can receive the message M .

• Secure Channel: A •→•B : M . This is a channel that
is both authentic and secure.

While [28] uses the bullet notation to reason about the exis-
tence of channels, we use it to specify message transmission
in security protocols and web services in two ways. First,
we may use channels as assumptions, i.e. the messages of
a protocol may be transmitted over such channels. Second,
the protocol may have the goal of establishing a particular
kind of channel.

Contributions. We provide four main contributions. First,
for channels as assumptions, we formally define two models:
• the Ideal Channel Model ICM describes the ideal

functionality of a channel, and
• the Cryptographic Channel Model CCM describes the

implementation of channels by cryptographic means.
We formally relate these two models by showing that attacks
in either model can be simulated in the other. On the the-
oretical side, relating ideal functionality and cryptographic
implementation gives us insight in the meaning of channels
as assumptions. On the practical side, it allows us to use both
models interchangeably in verification tools which may have
different preferences.

Second, we formally define the meaning of channels as
goals. Specifying the use of channels both as assumptions
and goals gives rise to an interesting question: given that
we have verified that a protocol P2 provides its goals under
the assumption of a particular kind of channel, can we then
replace the assumed channel with an arbitrary protocol P1

that provides such a channel? In general, the answer is
negative, while we prove that under certain restrictions such
a compositionality result is possible.

On the theoretical side, this proof has revealed several
subtle properties of channels that had not been recognized
before, so we contribute to a clearer picture of channels and
protocol goals. The most relevant issue is the following.
We discovered that the standard authentication goals that
are widely used in formal protocol verification are too
weak for our compositionality result, as we illustrate with

smo@zurich.ibm.com
luca.vigano@univr.it

a simple example protocol. We propose a strictly stronger
authentication goal that, to our knowledge, has never been
considered before and that is sufficient for compositionality.

On the practical side, such compositionality results are
vital for the verification of larger systems. For example,
when using an application protocol on top of a protocol for
establishing a secure channel such as TLS/SSL, one may
try to verify this as one large protocol, but this has several
drawbacks in terms of complexity and reuseability. With our
approach, one can instead verify each of the two protocols in
isolation and reuse the verification results of either protocol
when employing them in a different composition, i.e. when
using the channel protocol for a different application, and
when running the application protocol over a different chan-
nel protocol.

Third, we generalize all the above models and theorems
to include channels where agents may alternatively be
identified by pseudonyms rather than by their real names.
A typical example is the channel established by an TLS-
connection without a client certificate, where the client is not
authenticated but we have kind of a secure channel nonethe-
less. Such a channel between an unauthenticated client and
an authenticated server (if we assume that this authentication
works) is then sufficient to run, e.g., a password-based login
protocol on it, as follows from our compositionality result.
In addition to the practical value of this result we are, again,
able to theoretically understand better the concepts, namely
relating the notion of sender/receiver invariance as goals [22]
with the ideal functionality as assumption and its possible
cryptographic realization.

Fourth, and last, we consider a variant of channels that
ensure freshness of messages, i.e. suppress the replay of
messages.

Organization. In § 2 and § 3, we briefly describe the formal
languages that we use in this paper. In § 4, we specify
standard channels as assumptions and define the ICM and
the CCM, and then prove their equivalence. In § 5, we
specify standard channels as goals. In § 6, we consider
compositional reasoning for standard channels. In § 7, we
consider pseudonymous channels, both as assumptions and
as goals, and in § 8, we discuss channels that ensure
freshness of messages. In § 9, we discuss related work and
draw conclusions. To ease the flow, proofs are given in an
appendix.

2. A Simple Notation

The definitions and results that we present in this paper
deal with the notion of secure pseudonymous channels in
general, as employed in, or provided by, security protocols
and web services. We thus introduce a formal language to
specify transition systems that employ or provide secure
channels. To motivate and illustrate our contributions, let

us begin with a limited, but simple and intuitive (and very
popular) way to specify security protocols: Alice and Bob
(AnB) notation.

2.1. Alice and Bob (AnB) notation

While this notation is often used in an informal way,
it has provided a basis for several formal specification
languages, e.g. [7], [17], [24], [27], [29], [31]. Semantically,
a security protocol specification in AnB notation (or an AnB
specification, for short) describes a set of processes, one for
each protocol role, in terms of the sequence of messages that
the role sends and receives when executing the protocol.
Such a semantics can be implemented in a compiler that
translates an AnB specification into a low-level description
suitable for protocol verification tools. For instance, [31]
formalizes (and describes a prototype implementation of) a
compiler that translates AnB specifications into the AVISPA
Intermediate Format IF [7], a more low-level (with respect
to AnB) language that has itself a clear and well-defined
semantics and that is designed to specify transition systems
in a way that is feasible for protocol analysis tools. While
AnB has a quite limited expressiveness (e.g. we cannot
express protocols with repeated parts), IF does not have
such limitations and allows one to specify the evolution of
arbitrary concurrent processes. In particular, IF is the input
language of a variety of tools, most notably the AVISPA
Tool itself [3] and its back-ends.

The details of how AnB-style languages work, in par-
ticular how honest agents compose, decompose and check
messages, is a topic of its own and unrelated to this work
on channels. In order to formally define our extensions to
AnB without going into all these details, we describe the
extension of our own language AnB [31] with the “bullet”
(•) notation for channels that we borrow from [28], and
thereby use the existing translator/semantics as a black box.

More precisely, we proceed as shown in Figure 1: given
an AnB specification that uses our notion of channels, we
translate it into one that uses only the syntactic expressions
of the existing language (without using the channel bullets)
with additional annotations that we will need later on in
the translation process. We then use the existing AnB2IF
compiler to translate the resulting AnB specification into an
IF specification with annotations, and then further transform
the IF file exploiting the annotations we introduced on the
AnB level. In particular, we define two different ways to
encode the channels on the IF side, the Ideal Channel Model
ICM and the Cryptographic Channel Model CCM. The result
of this whole translation process is then a compiler for our
channel extension of AnB.

The different steps of this translation are described in
detail for standard channels in the next sections. In § 7 we
will then also consider the use of pseudonyms instead of real
agent names and modify the translations accordingly. Let us

2

AnB• specification

A •→B : M
· · ·

���� ���� ��AnB Transformation

��
AnB specification

A→ B : M + annotations
· · ·

���� ���� ��AnB2IF compiler

��
IF specification

IF + annotations

uukkkkkkkkkkkkkkkk

))SSSSSSSSSSSSSSSS

�� ���� ��ICM Transformation

��

�� ���� ��CCM Transformation

��
ICM specification

IF/ICM

CCM specification

IF/CCM

Figure 1. The translations between the models.

begin by considering AnB•, our extension of (specifications
written in) the AnB notation with the • annotations for
secure (standard) channels borrowed from [28].

2.2. AnB• notation (for standard channels)

As already said, the bullet annotations are used in [28]
to reason about the existence of certain channels between
agents. In contrast, we here use the extended AnB notation
to specify the properties of message exchanges over different
kinds of channels, either as an assumption or as a goal. To
clarify this, let us begin with the following three kinds of
channels, giving informal definitions that we will later make
precise:
• Authentic channel: A •→B : M . This means that B

can rely that A has sent the message M . Moreover, as
we explain in more detail below, our work has revealed
the subtle fact that an authentic channel should ensure
more, namely that A has meant to say this message
to B, i.e. the receiver name is part of what should be
authenticated.1

1. In fact, the composability results that we prove below based on our
definition cannot be achieved without this additional property.

• Confidential channel: A→•B : M . This means that A
can rely that only B can receive the message M .

• Secure Channel: A •→•B : M . This is a channel that
is both authentic and secure.

The AnB• notation introduces these bullets at two places
in specifications written in the AnB notation. First, we can
use the channels — as assumptions — in the message
exchange itself. Intuitively, this means that we assume that
the transmission of the respective message has the properties
of the channel type (by whatever mechanism this is ensured).

Second, we can use these channels also to specify goals
of a protocol. Intuitively, this means that the protocol should
ensure the authentic, confidential, or secure transmission of
the respective message.

As we will see, these goals are similar to standard authen-
tication and secrecy goals. There are however two important
differences, which are motivated by our desire to show a
composability result of the following form: given a verified
protocol P1 that has a particular kind of channel as a goal,
and a verified protocol P2 that assumes this kind of channel,
we can use P1 to implement the channel in P2, whenever
P1 and P2 meet certain criteria. For such a result, the
standard authentication and secrecy goals are not sufficient,

3

A •→ B : exp(g ,X)

B •→ A : exp(g ,Y)

A → B : {|Payload |}exp(exp(g,X),Y)

A •→• B : Payload

Figure 2. Example protocol in AnB• notation (excerpt).

and we need a stronger goal. Moreover, authentication and
secrecy goals are usually formulated for arbitrary messages
transmitted in the protocol, e.g. freshly generated keys, etc.
For the composability, we need something more specific:
P1 deals with transmitting a Payload message that can be
arbitrarily instantiated by a higher-level protocol like P2 that
uses P1. For such Payload messages, we assume a reserved
data type that is left as a black-box in the protocol P1.

Figure 2 shows an example protocol in AnB• notation
(omitting the declaration of types and initial knowledge).
This protocol, which we will use as running example, is
the Diffie-Hellman key-exchange over authentic channels
(as assumptions) plus a payload message symmetrically
encrypted with the agreed key exp(exp(g,X), Y), where
we use {| · |}· to denote symmetric encryption. Below the
horizontal line, we have the goal that the payload message
is transmitted securely. We may rephrase this protocol and
(intended) goal as follows: Diffie-Hellman allows us to
obtain a secure channel out of authentic channels. We have
a similar setup in TLS, for instance, but we have selected
this example for brevity. Note that the translation to IF
requires that the translator is aware of the properties of
exponentiation. In particular, A will receive some message
GY from B (she cannot check that it is indeed a term
of the form exp(g, Y)), and she will generate the key as
exp(GY , X) which, for the correct input GY = exp(g, Y)
indeed equals exp(exp(g,X), Y). We will continue our
example below, giving concrete IF transition rules. For more
details on the IF translation, see [31].

2.3. From AnB• to AnB

We now begin with the formalization of the transforma-
tions and translations between the different models depicted
in Figure 1. Let a protocol specification be given in AnB•
notation where channels are used as assumptions and goals.
In order to exploit our AnB2IF compiler as a black box,
we first transform a specification written in AnB• notation
into a specification in AnB notation where messages are
annotated in a particular way that reflects the channels
(both as assumptions and as goals). This is the step “AnB
Transformation” in Figure 1. The resulting AnB specification
is then fed into the AnB2IF compiler, which translates it
into an IF specification in which messages are annotated

analogously. From this annotated IF specification we then
finally derive the actual IF specification that corresponds to
the given AnB• specification in two variants, the ICM and
the CCM. The annotations thus serve as a marking that we
“tunnel through” the existing AnB2IF translation process in
order to define the extended AnB•2IF translation without
opening the AnB2IF black-box.

To that end, we introduce nine new symbols2 aAnnA,
cAnnA, sAnnA, aAnnGS, cAnnGS sAnnGS, aAnnGR,
cAnnGR, and sAnnGR. These symbols are used to annotate
the messages of the AnB specification for the channels as
assumptions (those ending on A), and as goals for the sender
(those ending on GS) and the receiver (those ending on GR).

We now define the “AnB Transformation” as follows.
For channels as assumptions, the transformation replaces
each message exchange in the AnB• notation in the second
column of Table 1 with the corresponding annotated message
exchange in the AnB notation in the third column of the
table, e.g. A •→B : M is replaced with A → B :
aAnnA, A,B,M .

For channels as goals, the transformation is more com-
plicated, and we use two annotations for each channel type
as shown in the last column of the table. For simplicity, we
assume for a goal of the form A channel B : M that M
is atomic and freshly generated by A during the protocol.
We allow that the message is not directly sent from A to B
and that it is part of a complex message. Consider the first
occurrence of M in the protocol; this must be a message
sent by A (because A created it). We annotate this step
in the AnB specification with aAnnGS, A,B, h(M) if the
goal is an authentic transmission of M (and analogously
for the other channel types). Consider then the step where
B first receives M in the sense that B can obtain M
from the received message.3 This may be, but need not
be, the same step where A first sends M . We annotate this
step with aAnnGR, A,B, h(M) if the goal is the authentic
transmission of M (and analogously for the other channel
types). The reason for hashing the message M will become
apparent below when we describe the transformation on the
IF level.

The result of the “AnB Transformation” step is thus an
AnB specification without channels but with annotations
that will appear in the IF output and that are sufficient to
transform the annotated IF output in such a way that we
define the channels (both in a cryptographic and an ideal
model) in a meaningful way. Before we discuss these IF
transformations, it is thus necessary to first summarize the
main characteristics of IF and its extensions we consider
here.

2. We introduce here and elsewhere “new” keywords and symbols,
i.e. ones for which we assume that they do not occur in the given AnB•
specification.

3. If there is no such step than the specification is rejected as ill-goaled.

4

AnB (+ annotations) for AnB (+ annotations) for
Channel type AnB• channels as assumptions channels as goals (sender/receiver side)
Authentic A •→B : M A→ B : aAnnA, A, B, M aAnnGS, A, B, h(M) and aAnnGR, A, B, h(M)
Confidential A→•B : M A→ B : cAnnA, B, M cAnnGS, A, B, h(M) and cAnnGR, A, B, h(M)
Secure A •→•B : M A→ B : sAnnA, A, B, M sAnnGS, A, B, h(M) and sAnnGR, A, B, h(M)

Table 1. Transformation between AnB• and AnB specifications for standard channels as assumptions and goals.

3. The Intermediate Format IF

The AVISPA Intermediate Format IF is a more low-level
(with respect to AnB) language that is designed to specify
transition systems in a way that is feasible for protocol
analysis tools. As we remarked above, it is convenient to
define the semantics of AnB by translation to IF (see [7],
[31] and similarly [17], [24], [27], [29]) which has itself a
clear and well-defined semantics. While AnB has a quite
limited expressiveness (e.g. we cannot express protocols
with repeated parts), IF does not have such limitations: we
can specify the evolution of arbitrary concurrent processes.

In this paper, we use IF as part of a formal framework
in which we define and relate channels. In particular, we
introduce new symbols in IF for the different channel types
when used as assumptions and as goals. A priori, these new
symbols are not interpreted in a special way and we define
their precise meaning in the following.

An IF specification P = (I,R,G) consists of an initial
state I , a set R of rules that induces a transition relation on
states, and a set G of “attack rules” (i.e. goals) that specifies
which states count as attack states. As expected, a protocol
is called safe when no attack state is reachable from the
initial state using the transition relation.

An initial state is a finite set of ground terms. More
generally, a state is a set of facts such as iknows(m), which
expresses that in this state the intruder knows message
m. This kind of fact has the particular property that it is
persistent: when it is present in a state, then it is also present
in all successor states, because the intruder never forgets
messages. This simplifies the formulation of rules below.

Another central kind of fact is stateA(A,m1, . . . ,mn),
which characterizes the local state of an honest agent during
the protocol execution by the messages A,m1, . . . ,mn (the
local knowledge of that agent). The constant A identifies
the role of that agent, and, by convention, the first message
A is the name of the agent.4 We will later introduce further
kinds of facts.

The rules of an IF specification are of the form

l⇒ r

for sets of facts l and r, where the variables of r are a
subset of the variables of l. For a ground state S (that has

4. In contrast, the AnB notation does not distinguish between a role name
such as A and the protocol variable A that is instantiated in the protocol
execution with a concrete agent name like a playing role A.

no variables), the rule defines transitions to the ground states
{(S \ lσ) ∪ rσ | lσ ⊆ S}, where σ is a substitution of the
rule variables that matches the left-hand side l with a subset
of S, and the successor states are obtained by removing the
matched facts from the state and introducing the respective
right-hand side facts under σ.

For instance, we can define the intruder model (in the
style of Dolev-Yao) by a set of rules as follows:

iknows(M).iknows(K) ⇒ iknows({M}K)
iknows({M}K).iknows(inv(K)) ⇒ iknows(M)

iknows({M}inv(K)) ⇒ M

The persistence of iknows(·) allows us to omit the left-
hand side iknows(·) facts on the right-hand side (they are
not removed). The first rule describes both asymmetric
encryption and signing. The second rule expresses that an
encrypted message can be decrypted when knowing the
corresponding private key (denoted by inv(·)), and the third
rule expresses that one can always obtain the text of a
digital signature (the verification of signatures is expressed
in transition rules of honest agents using pattern matching).

We may have several further rules of the above form
for intruder deduction. As it is standard, we assume that a
subset of all function symbols are public, such as encryption,
concatenation, public-key tables, etc. The intruder can use
these symbols to form new messages, namely for each public
symbol f of arity n, we have the following rule:

iknows(T1). · · · .iknows(Tn)⇒ iknows(f(T1, . . . , Tn)) .

We assume that all constants that represent agent names and
public keys are public symbols (of arity 0).5 In addition
to this, we may also consider algebraic properties such as
exp(exp(g,X), Y) ≈ exp(g, Y), X) that we need for Diffie-
Hellman key-exchanges. Moreover, one may model decryp-
tion by algebraic properties such as {{M}K}inv(K) ≈ M .
While we allow for algebraic properties in general, for the
results we are interested in here we assume that the symbols
{·}· and 〈·, ·〉 that we use in our model are interpreted in
the free algebra. In § 4.1, we will extend this intruder model
with rules for channels.

There are several extensions to this rule notion: first, a
rule may contain the creation of fresh values, denoted as

l =[V]⇒ r

5. This assumption is also possible in case of an infinite set of agents,
e.g. using an initialization theory like the one in [30].

5

for a list of variables V . The semantics of this extension
is that the variables are replaced for some fresh constants
during rule application. Further, one may write

l | cond =[V]⇒ r

to denote the addition of negative conditions and facts to
the left-hand side of a rule, namely conditions of the form
not(f) and s 6= t for a fact f and terms s and t; but
note that iknows(·) facts may not occur negatively. The
semantics is that this excludes from the transition all the
substitutions under which f is contained in the current state
(for a substitution of the remaining variables) and under
which s and t are equal.

The transition rules of honest agents usually have the form

stateR(msglist).iknows(msgin)
=[V]⇒ iknows(msgout).stateR(msglist′) .

This rule describes the transitions of an honest agent who
plays the roleR of the protocol and whose current local state
is described by the list of messages msglist. This agent can
receive a message msgin, create a list of fresh values V ,
update its local state to msglist′ and send the msgout as
a reply. Here, both the incoming and the outgoing message
are on a completely insecure channel: the message that the
agent receives is chosen by the intruder, and the message
that it sends is received by the intruder (see also [30]).

For instance, the second transition of A for our example
of Figure 2 looks as follows when using insecure channels:

stateA(A, 1, B, g, X).iknows(GY)
=[Payload]⇒
iknows({|Payload|}exp(GY ,X)).
stateA(A, 2, B, g, X,GY , Payload)

(1)

The attack states are described in IF by a set of attack
rules of the form

l | cond ⇒ l.attack

for a special fact symbol attack. (For simplicity, we will
just write the left-hand side for such attack rules.) Thus,
these rules describe a set of states to which the attack rule
matches, adding the attack fact. We can then define attack
states simply as those that contain the attack fact.

4. Standard Channels as Assumptions

We now define two formal models for channels as as-
sumptions: the ideal channel model, ICM, which describes
the functionality of a channel in an ideal way, and the
cryptographic model, CCM, which employs cryptography
to achieve the same properties on the basis of insecure
channels. We also show that the CCM implements the ICM
in a certain sense. As summarized in Table 2, the basic idea
is the following. For insecure channels, the incoming and

outgoing messages in the rules of honest agents are repre-
sented by iknows(M) on the left-hand side and right-hand
side, respectively. In the ICM, we replace these iknows(·)
facts by new fact symbols that represent messages sent on
the particular type of channel — and we describe rules about
the intruder sending and receiving such messages below. In
the CCM, in contrast, we ensure the channel properties by
encrypting and signing messages.

It is straightforward to extend the AnB language with
the concept of channels as assumptions for the ICM and
CCM: the translation from AnB to IF is the same except
that incoming and outgoing messages on the authentic,
confidential, and secure channels in the rules of honest
agents have to be appropriately wrapped by channel facts or
encryptions as in Table 2. The formal definition extending
an arbitrary AnB compiler with channels is covered in § 4.2
and § 4.4.

4.1. The Ideal Channel Model ICM

We introduce new facts athChA,B(M), cnfChB(M) and
secChA,B(M) to express that an incoming or outgoing
message is transmitted on a particular kind of channel.
We refer to these three facts with the term ICM facts
or channel facts. Note that in contrast to the insecure
channels, the authentic and secure channels also have sender
and receiver names, and the confidential channels only the
receiver names, because this information is relevant for their
definition. By the IF requirement that the right-hand side
variables must be a subset of the left-hand side and fresh
variables, at least the sender must know the name of the
receiver when sending the message (and its own name, of
course). Also, like for the iknows(·) facts, we define the
athChA,B(M), cnfChB(M) and secChA,B(M) facts to be
persistent (i.e. every such fact that holds in some state also
holds in all successor states). Thus, once a message is sent on
any of these channels, it “stays there” and can be received an
arbitrary number of times by any receiver. Therefore, these
channels do not include a freshness guarantee (or protection
against replay) like the channel variant that we discuss in
§ 8. Moreover, like for iknows(·) facts, we do forbid the
channel facts to occur negatively in rules.

Finally, we require that the channel facts do not occur
in the initial state or the goals. For instance, the second
transition of A for our example of Figure 2 looks as follows
(cf. (1)):

stateA(A, 1, B, g, X).athChB,A(GY)
=[Payload]⇒
iknows({|Payload|}exp(GY ,X)).
stateA(A, 2, B, g, X,GY , Payload)

(2)

A thus processes the incoming message only if the sender
and receiver names of the authentic channel fact agree with
the variables in the state fact of A. Note that, due to

6

Channel AnB• IF (+ annotations) ICM CCM
Insecure A→ B : M iknows(M) iknows(M) iknows(M)
Authentic A •→B : M aAnnA, A, B, M athChA,B(M) iknows({atag, B, M}inv(ak(A)))
Confidential A→•B : M cAnnA, B, M cnfChB(M) iknows({ctag, M}ck(B))
Secure A •→•B : M sAnnA, A, B, M secChA,B(M) iknows({{stag, B, M}inv(ak(A))}ck(B))

Table 2. Translation from IF with annotations to the ICM and the CCM for channels as assumptions.

persistence, the left-hand side fact athChB,A(GY) is not
removed by applying this rule.

Note also that with this, we have already defined part of
the properties of the channels implicitly, namely the behavior
of honest agents for channels: they can send and receive
messages as described by the transition rules. In particular,
since we have defined channel facts to be persistent, an agent
can receive a single message on such a channel any number
of times. What is left to define is the intruder behavior.

We consider here a Dolev-Yao-style intruder model, in
which the intruder controls the network as explained above,
including that he can send messages under an arbitrary
identity. Moreover, he may act, under his real name, as a
normal agent in protocol runs. We generalize this slightly
and allow the intruder to have more than one “real name” i,
i.e. he may have several names that he controls, in the
sense that he has the necessary long-term keys to actually
work under a particular name. This reflects a large number
of situations, like an honest agent who has been compro-
mised and whose long-term keys have been learned by the
intruder, or when there are several dishonest agents who
all collaborate. This worst case of a collaboration of all
dishonest agents is simply modeled by one intruder who
acts under different identities. For now, we do not further
consider this, and simply assume that dishonest(A) holds
for any dishonest agent name A in the initial state (i.e. only
for A = i in the classical intruder model). In general, we
can allow IF rules that model the compromise of an agent
A or the creation of a new dishonest identity A, where
we have the predicate dishonest(A) on the right-hand side.
However, our main motivation for the generalization is that
we consider pseudonyms in § 7 including the possibility to
arbitrarily generate new pseudonyms; whenever the intruder
generates a pseudonym P this immediately induces the fact
dishonest(P).

We conclude the definition of the ICM with its most
essential part, namely the rules for the intruder sending and
receiving on the channels. The rules in Table 3 define the
abilities of the intruder on these channels and thus their ideal
functionality:

(3) He can send messages on an authentic channel only
under the name of a dishonest agent A to any agent

iknows(B).iknows(M).dishonest(A) ⇒ athChA,B(M) (3)
athChA,B(M) ⇒ iknows(M) (4)

iknows(B).iknows(M) ⇒ cnfChB(M) (5)
cnfChB(M).dishonest(B) ⇒ iknows(M) (6)

iknows(B).iknows(M).dishonest(A) ⇒ secChA,B(M) (7)
secChA,B(M).dishonest(B) ⇒ iknows(M) (8)

Table 3. The intruder rules for the ICM.

B.6

(4) He can receive any message on an authentic channel.
(5) He can send messages on a confidential channel to any

agent B.
(6) He can receive messages on a confidential channel only

when they are addressed to a dishonest agent B.
(7) He can send messages on a secure channel to any agent

B but only under the name of a dishonest agent A.
(8) He can receive messages on a secure channel whenever

the messages are addressed to a dishonest agent B.
Note that all occurrences of “only” in these explanations are
due to the fact that we do not describe further rules for the
intruder that deal with the channels.

4.2. Translating AnB• to ICM

We now define how to transform an IF specification with
annotations into a specification in the Ideal Channel Model
ICM, which describes the functionality of a channel in
an ideal way. This transformation completes the translation
process of an AnB• specification into an ICM specification
(cf. Figure 1).

For this transformation, we transform the rules by replac-
ing iknows(m) facts that carry any of the aAnnA, cAnnA,
or sAnnA annotations, i.e. that match an entry in the second
column of Table 2, with the fact for the corresponding
channel type for the incoming or outgoing message, i.e. as
in the third column of the table.

Consider again the second transition of A for our example
of Figure 2 (cf. (1) and (2)). The annotated IF rule that
comes out of the standard AnB compiler for A receiving this

6. The intruder knows all agent names by assumption, but we need
iknows(B) on the left-hand side because IF requires all variables that
appear on the right-hand side to be already present on the left. (Similarly
for other rules.)

7

message looks as follows (where the next outgoing message
of A is on an insecure channel, as in Figure 2 (cf. (1)):

stateA(A, 1, B, g, X).iknows(aAnnA, B, A,GY)
=[Payload]⇒
iknows({|Payload|}exp(GY ,X)).
stateA(A, 2, B, g, X,GY , Payload)

This rule is translated in the ICM transformation into the
rule (2).

4.3. The Cryptographic Channel Model CCM

We have now defined channels in an abstract way by their
ideal behavior. This behavior can be realized in a number
of different ways, including non-electronic implementations,
such as sealed envelopes or a face-to-face meetings of
friends. The CCM that we present now is one correct (as
we show below) cryptographic realization.

For this model, we introduce new symbols atag, ctag,
stag, ak and ck. Here, atag, ctag, and stag are tags to
distinguish the channel types, while ak and ck are tables
of public keys, for signing and encrypting, respectively.
Thus, ak(A) and ck(A) are the public keys of agent A, and
inv(ak(A)) and inv(ck(A)) are the corresponding private
keys. We refer to all these keys and tags with the term
CCM material. We assume that every agent, including the
intruder, knows initially both keytables and its own private
keys. Thus the additional initial intruder knowledge of the
crypto channel model is

{ak, ck, inv(ak(i)), inv(ck(i)), atag, ctag, stag} . (9)

For instance, the second transition of A for our example
of Figure 2 looks as follows (cf. (1) and (2) in the ICM):

stateA(A, 1, B, g, X).iknows({atag, A,GY }inv(ak(B)))
=[Payload]⇒
iknows({|Payload|}exp(GY ,X)).
stateA(A, 2, B, g, X,GY , Payload)

A thus processes the incoming message only if the sender
and receiver names of the authentic channel fact agree with
the variables in the state fact of A.

The encoding we have chosen is sufficient for our pur-
poses, but there are several possible alternatives for such
an implementation. For instance, one may choose not to
distinguish between signing and encryption keys (and thus
identify ak with ck), but has to ensure then that signing never
accidentally decrypts an encrypted message.

Observe that for the authentic and secure channels, we
include the name of the intended recipient in the signed part
of the message. This inclusion ensures that a message cannot
be redirected to a different receiver. To see that, consider
the alternative encoding of a secure channel (and similarly
for the authentic channel) that does not include the name:
{{stag,M}inv(ak(A))}ck(B). A dishonest B can decrypt the
outer encryption to obtain {stag,M}inv(ak(A)) and re-encrypt

it for any other agent C, i.e. {{stag,M}inv(ak(A))}ck(C). This
message would erroneously appear as one from A for C.
Such a mistake was indeed often a source of problems in se-
curity protocols, e.g. [14]. Such attacks are prevented by our
construction to include the receiver name in the signed part
of the message. For an authentic channel, this corresponds
to our previous observation that the channel should also
include the authentic transmission of the intended receiver
name. This also ensures that a secure channel combines the
properties of an authentic and a confidential channel.

The tags are public constants that determine the meaning
of a message (from the point of view of the agent that
generated the message), and the receiver will only accept
messages that have the correct tag according to the protocol.
The encryption should ensure that:
• only the agent that can generate the message in the

CCM can then send it on the respective channel in the
ICM, and similarly, that

• only the agent that can receive the message in the CCM
can then receive it on the respective channel in the ICM.

In fact, this will be shown in the following section.

4.4. Translating AnB• to CCM

We transform the rules by replacing messages that carry
any of the aAnnA, cAnnA, or sAnnA annotations, i.e. that
match an entry in the second column of Table 2, with the
corresponding encoding in the rightmost column.7

For instance, the example rule (∗) is translated in the CCM
transformation into the following rule:

stateB(B, . . .).iknows({atag, B,M}inv(ak(A)))
=[V]⇒ iknows(M ′).stateB(B, . . .)

4.5. Relating the two channel models

We now show that we can simulate in a certain sense
every behavior of the ICM also in the CCM. This means
that it is safe to verify protocols in the CCM since every
attack in the ICM has a counter-part in CCM.

A simulation in the other direction does not directly
work (since the intruder can use the cryptographic tables
to produce messages that cannot appear in the ICM), but
requires further assumptions related to typing.

The two directions of the simulation together show that
the two models are in some sense equivalent, in particular
that the cryptographic channels correctly implement ideal
channels. This result guarantees that we do not have any
false positives with respect to the ICM, i.e. attacks that only
work in the CCM.

7. Alternatively, we could obtain a CCM specification from an ICM one,
e.g. by replacing all transition rules of honest agents in the ideal channel
model specification with encrypted messages on the insecure (intruder-
controlled) channel according to Table 1.

8

It should be intuitively clear what we mean when we talk
about, for instance, an ICM protocol specification and the
corresponding CCM specification or corresponding states in
such models. However, to formally prove anything about
such corresponding specification, we need to define the
notions:

Definition 1. Consider two IF specifications P1 =
(I,R1, G) and P2 = (I ′, R2, G), where
• I is an initial state that contains no ICM channel facts

and no CCM material, and I ′ is I augmented with the
knowledge of (9),

• G is a set of goals that does not refer to ICM channel
facts and CCM material, and

• R1 and R2 are sets of rules for honest agents where
– the rules of R1 contain no CCM material,
– the rules of R2 contain no ICM channel facts,
– and f(R1) = R2 for a translation func-

tion f that replaces every ICM channel fact
(e.g. athChA,B(M)) that occurs in the rules of R1

with the corresponding intruder knowledge of the
CCM (e.g. iknows({atag, B,M}inv(ak(A)))).

We then say that P1 is an ICM specification and P2 is a
CCM specification, and that P1 and P2 correspond to each
other.

We define an equivalence relation ∼ for states Si: we say
that S1 ∼ S2 iff
• S1 and S2 contain the same facts besides ICM facts

and iknows(·) facts,
• the intruder knowledge in S1 and S2 is the same when

removing all messages that contain CCM material, and
• the channel facts and intruder knowledge of crypto-

encodings are equivalent in both states modulo the
mapping in Table 2.

In the ∼ relation, we do not consider an intruder knowl-
edge that is closed under intruder deduction, but rather
only the iknows(·) facts. We then have the following two
theorems; actually, since Theorem 1 and Theorem 2 are
special cases of the more general theorems for pseudonyms
(Theorem 4 and Theorem 5), we state these first results here
and prove only the more general results in the following.

Theorem 1. Consider an ICM specification and the corre-
sponding CCM specification. For a reachable state S1 of the
ICM specification, there is a reachable state S2 of the CCM
specification such that S1 ∼ S2.

To establish the converse direction, we need two addi-
tional assumptions. First, we need a typed model, where
every message term has a unique type. There are sev-
eral atomic types such as nonce , publickey , etc., and we
have type constructors for the cryptographic operations, e.g.
{atag, B,M}inv(ak(A)) is of type {tag , agent , τ}privatekey if
M is of type τ .

The messages that an honest agent expects according to
the protocol are described by a pattern (i.e. a message with
variables) and this pattern has a unique type. This does not
ensure, however, that the agent accepts only correctly typed
messages, i.e. the intruder can send ill-typed messages. For
many protocols one can ensure, e.g. by a tagging scheme,
that every ill-typed attack can be simulated by a well-typed
one [23], so one can focus on well-typed attacks without
loss of generality. We will not prescribe any particular
mechanism here, but simply assume a well-typed attack.

The second assumption is that a message can be fully
analyzed by an honest receiver in the sense that its message
pattern contains only variables of an atomic type. This means
for instance, that we exclude (in the following theorem)
protocols like Kerberos where A sends to B a message
encrypted with a shared key KAC between A and C where
B does not know KAC and so B cannot decrypt that part
of a message. Therefore, the message pattern of B would
contain a variable of type {| · |}· which is not atomic. When
all its messages can be fully analyzed by honest receivers,
then we say that a protocol specification is with full receiver
decryption.

Note that these assumptions are sufficient for the follow-
ing theorem but not necessary.

Theorem 2. Consider an ICM specification and the cor-
responding CCM specification, both with full receiver de-
cryption, and consider a well-typed attack on the CCM
specification that leads to the attack state S2. Then there
is a reachable attack state S1 of the ICM specification such
that S1 ∼ S2.

These two theorems together formally relate the ICM
and the CCM by showing that attacks in either model can
be simulated in the other. On the theoretical side, relating
ideal functionality and cryptographic implementation gives
us insight in the meaning of channels as assumptions.
On the practical side, it allows us to use both models
interchangeably in protocol analysis tools that may have
different preferences.8

5. Standard Channels as Goals

We now specify goals of a protocol using the different
kinds of channels. Intuitively, this means that the protocol
should ensure the authentic, confidential, or secure transmis-
sion of the respective message. These definitions are close to
standard ones of security protocols, e.g. [7], [26], [30]. We
first discuss this for IF in general and then for the translation
from AnB•to IF.

8. For example, constraint-based approaches like OFMC [9] do not have
a problem with complex message terms (as present in the CCM), but
rather with models that allow for many interleavings of the actions (which
is the case for ICM). For SATMC [6], for instance, the situation is just
the opposite. Also, the CCM requires only cryptographic features that all
protocol analysis tools offer, so it can be used without extending tools.

9

In order to formulate the goals in a protocol-independent
way, we use a set of auxiliary events of the protocol
execution as an interface between the concrete protocol
and the general goals. In addition to the standard auxiliary
events witness(·) and request(·) of IF, we consider here the
events whisper(·) and hear(·). These auxiliary events express
information about honest agents’ assumptions or intentions
when executing a protocol: they provide a language over
which we then define protocol properties and they are, in
general, added to the protocol description by the protocol
modeler at specification time. The intruder can neither
generate auxiliary events nor modify those events generated
by honest agents.

For simplicity, we assume for a goal of the form

A channel B : M

that M is atomic and freshly generated by A during the
protocol in a uniquely determined rule rA. Similarly, we
assume that there is a uniquely determined rule rB where the
message M is learned by B. (If there is no such rule where
B learns the message, then the goal is not meaningful.) This
allows for protocols where the message M is not directly
sent from A to B, and for protocols where B receives a
message that contains M as a subterm, but from which B
cannot learn M yet.

For the goal A •→B : M , we add the fact
witness(A,B, P,M) to the right-hand side of rA and the
fact request(A,B, P,M) to the right-hand side of rB . Here,
P is an identifier for the protocol.9

For the goal A→•B : M , we add the fact
whisper(B,P,M) to the right-hand side of rA and the fact
hear(B,P,M) to the right-hand side of rB .

For the goal A •→•B : M , we add both the facts of au-
thentic and confidential channels to rA and rB , respectively.

Intuitively, the additional facts for rA express the intention
of A to send M to B on the respective kind of channel, and
the fact for rB expresses that B believes to have received M
(from A in a request(·) fact for an authentic channel, and
from an unspecified agent in a hear(·) fact for a confidential
channel) on the respective kind of channel.

When the goal is a confidential or secure channel, then M
must be confidential from its creation on; otherwise there can
be trivial attacks. This excludes some protocols (as insecure),
namely those that first disclose M to an unauthenticated
agent, and consider M as a secret only after authenticating
that agent. Such protocols are however not suitable for

9. One may consider a variant where the P is replaced by a unique
identifier for the protocol variable M so to distinguish implicitly several
channels from A to B. (In fact, this is standard in authentication goals,
distinguishing the interpretation of data.) This identifier has then to be
included in the ICM and CCM as well to achieve the compositionality
result below. We have chosen not to bind an interpretation to the messages
sent on the channels in this paper but note that the results are similar,
mutatis mutandum.

implementing confidential or secure channels anyway, while
they may be fine for, e.g., a key exchange.

We can now define attacks in a protocol-independent way
based on the attack states in Table 4. The rules (10) and (12)
reflect the standard definition of secrecy and authentication
goals (non-injective agreement in the terminology of [26];
the injective variant is considered in § 8). For authentic
messages, a violation occurs when an honest agent B —
B must be honest since the intruder never creates any
request(·) facts — accepts a message as coming from an
honest agent A but A has never said it. For confidential
messages, a violation occurs when M was sent by an honest
agent A — since whisper(·) is never generated by the
intruder — for an honest agent B and the intruder knows M .
Note that with respect to the standard definitions of goals,
we have generalized the notion of the intruder name i to
arbitrary identities controlled by the intruder (in accordance
to what we said about the intruder model in § 4.1).

Additionally, we have the two goals (11) and (13) that are
usually not considered in protocol verification, and that we
found missing when proving the composability result in § 6.
These concern the cases when an intruder is the sender of an
authentic or confidential message. In these cases, the intruder
can of course send whatever he likes, but we consider it as
an attack if the intruder is able to convince an agent that
he authentically or confidentially said a particular message
when in fact he does not know this message. To illustrate
this, consider the simple protocol

A→ B : {M}k(B), {h(M)}inv(k(A))

with the goal A •→B : M . The intruder can intercept such
a message and send to B the modified message

{M}k(B), {h(M)}inv(k(i)) ,

thereby acting as if he had said M , even though he does
not know it. For the classical authentication goals, this is
not a violation, but our attack rule (11) matches with this
situation. Intuitively, we count this as a flaw since sending
a message that one does not know on an authentic channel
is not a possible behavior of the ideal channel model.

5.1. Translating AnB• goals to IF

We use the annotations for the goals that we have intro-
duced in the transformation from AnB• to AnB and that
the IF is annotated with. We perform the transformation
summarized in Table 5 on the IF file. We must distinguish
here between sending and receiving messages, i.e. right-
hand side and left-hand side, respectively, iknows(·) facts
of the IF transition rules. We look first for occurrences
of the annotation aAnnGS, A,B, h(M). If it occurs on a
left-hand side of a rule, we simply remove it (because the
message is not sent in this rule). If it occurs on the right
hand side, we remove it from the message and add the

10

request(A, B, P, M) | not(witness(A, B, P, M)), not(dishonest(A)) (10)
request(A, B, P, M).dishonest(A) | not(iknows(M)) (11)

whisper(B, P, M).iknows(M) | not(dishonest(B)) (12)
hear(B, P, M) | not(whisper(B, P, M)), not(iknows(M)) (13)

Table 4. Attack states for defining channels as goals.

Channel Annotated IF Goal Facts
Authentic/Sending aAnnGS, A, B, M witness(A, B, P, M)
Confidential/Sending cAnnGS, B, M whisper(B, P, M)
Secure/Sending sAnnGS, A, B, M witness(A, B, P, M).whisper(B, P, M)
Authentic/Receiving aAnnGR, A, B, M request(A, B, P, M)
Confidential/Receiving cAnnGR, B, M hear(B, P, M)
Secure/Receiving sAnnGR, A, B, M request(A, B, P, M).hear(B, P, M)

Table 5. Second part of the IF transformation for channels as goals.

fact witness(A,B, P, h(M)) to the right-hand side, where
P is a unique identifier of the protocol (which we need
for the composability later). We handle occurrences of the
annotations cAnnGS and sAnnGS in a similar way.

For what concerns aAnnGR, A,B,X , we simply remove
it when it occurs on a right-hand side (since here it is
not received). If it occurs on the left-hand side, we first
check that X = h(M). If this is not the case, then the
receiver cannot see the message M at this point from the
received message and thus not check the hash value here.
In this case we have simply a specification mistake: the
channel implementation is broken such that the receiver
cannot receive the message. Otherwise, if X = h(M), we
remove the term and add to the right-hand side the fact
request(A,B, P,M), where again P is the identifier of the
protocol. We proceed similarly for occurrences of the tags
cAnnGR and sAnnGR.

Using our annotations, we are thus able to generate
variants of the rules where special predicates are introduced
for sending and receiving the messages whose authentic,
confidential, or secure transmission was declared as a goal
of the protocol.

6. Compositional Reasoning for Standard
Channels

We now show that, under certain conditions, a protocol
providing a particular channel as goal can be used to
implement a channel that another protocol assumes (in the
ICM). This composition problem is related to many other
problems, such as running several protocols in parallel.
There is a variety of literature on this, offering different sets
of sufficient conditions for such a parallel composition, e.g.
using disjoint key-spaces for the protocol. We do not want to
commit to particular such composition arguments nor to dive
into the complex argumentations behind this. For this reason,

we provide an abstract notion of horizontal and vertical
composability that does not require a particular composition
argument. We then prove that the implementation of a
channel by a protocol providing that channel is possible for
any protocols that satisfy our composability notion.

We first consider the horizontal composition of protocols,
running different protocols in parallel, in contrast to using
one protocol over a channel provided by another.

Definition 2. Let Π be a set of protocols and P be a
protocol. We denote with Par(P) the system that results
from an unbounded number of parallel executions of P , and
with ‖P∈Π Par(P) the system that results from running an
unbounded number of parallel executions of the protocols of
Π. We call Π horizontally composable if an attack against
‖P∈Π Par(P) implies an attack against Par(P) for some
P ∈ Π. (Here, an attack against ‖P∈Π Par(P) means that
the goal of some P ∈ Π is violated.)

Trivially, a set of protocols is horizontally composable iff
any of them has an attack. One may thus wonder whether
this definition is useful at all. To see that it is indeed
useful, consider a set of protocols for which their individual
correctness is not obvious, but may be established by some
automated method (which may fail on the composition of the
protocols due to the complexity of the resulting problem).
The compositionality may however follow from a static
argument about the construction of the protocols, such as
the use of encryption with keys from disjoint key-spaces.
Such an argument in general does not tell us anything about
the correctness of the individual protocols, but rather, if they
are correct, then so is also their composition.

For our result for reasoning about channels, we need at
least that the “lower-level” protocols that implement the
different channels are horizontally composable. But we need
a further assumption, since we want to use one protocol to
implement channels for another. For the rest of this section,

11

we consider only protocol specifications P1 and P2 that are
given in AnB• notation and where only one transmission
over an authentic, confidential, or secure channel in P2

is replaced by P1. A definition on the IF level would be
technically complicated (although intuitively clear) and we
avoid it here. Multiple uses of channels can be achieved by
applying our compositionality theorem several times (given
that the protocols are suitable for multiple composition).

Definition 3. Let P1 be a protocol that provides a channel
A′ •→B′ : M ′ as a goal, and P2 be a protocol that assumes
a channel A •→B : M for some protocol message M . Let
M ′ in P1 be freshly generated by A′, and let all protocol
variables of P1 and P2 be disjoint. We denote with P2[P1]
the following modification of P2:

• Replace the line A •→B : M with the protocol P1σ
under the substitution σ = [A′ 7→ A,B′ 7→ B,M ′ 7→
M].

• Augment the initial knowledge of A in P2 with the
initial knowledge of A′ in P1 under σ and the same for
B. Also add the specification of the initial knowledge
of all other participants of P1 (if there are any) to P2.

We use the same notation for compositions for confidential
and secure channels, where we additionally require that the
term M in P2 contains a nonce that A freshly generates
and that does not occur elsewhere in the protocol.

The inclusion of a fresh nonce in the message M of
P2 for confidential and secure channels is needed since
otherwise we may get trivial attacks (with respect to P1) if a
confidential or secure channel is used for a message that the
intruder already knows (for instance an agent name). Note
that in our model a message is either known or not known
to the intruder, but indistinguishability is not considered.
The simple inclusion of some unpredictable element in the
payload message implies that the intruder cannot a priori
know it.

We now define the vertical composition of two protocols
P1 and P2. Intuitively, it means that P1 and P2 are compos-
able in the previous, horizontal sense, when using arbitrary
messages from P2 in place of the payload-nonce in P1.

Definition 4. Let P1 and P2 be as in Definition 3. For
every honest agent A and every agent B, let MA,B denote
the set of concrete payload messages (i.e. instances of M)
that A sends in any run of P2 to agent B.10 Let P ∗1 be
the variant of protocol P1 where in each run each honest
agent A chooses the payload message M ′ arbitrarily from
MA,B instead of a freshly generated value. We say that P2 is
vertically composable with P1, if P ∗1 and P2 are horizontally
composable.

10. Assuming that the fresh data included in payload messages is taken
from pairwise disjoint sets XA,B (which is not a restriction) then also the
MA,B are disjoint.

With this, we have set out two challenging problems: a
verification problem and a horizontal composition problem
where one of the protocols, P ∗1 , uses payload messages from
an, in general, infinite universe. We do not consider how to
solve these problems here, and merely propose that under
some reasonable assumptions these problems can be solved.
In particular, we need to ensure that the messages and
submessages of the protocols cannot be confused and that
the behavior of P ∗1 is independent from the concrete payload
message, e.g. by using tagging. Under certain conditions, we
may then verify P1 with a fresh constant as a “black-box
payload message” instead of P ∗1 .

Theorem 3. Consider protocols P1, P ∗1 , and P2 as in
Definition 4 and let P1 and P2 be vertically and horizontally
composable. If there is no attack against P1, P ∗1 , and P2,
then there is no attack against P2[P1].

This theorem is a special case, and thus directly follows
from, the more general theorem for pseudonyms (Theo-
rem 6) that we prove in the appendix.

Example 1. Consider our example protocol of Figure 2 as
P2 and let us implement the first authentic channel by the
following protocol P1:

A′ → B ′ : {B ′,M ′}inv(pk(A′))

A′ •→ B ′ : M ′

The composition P2[P1] is then:

A → B : {B , exp(g ,X)}inv(pk(A))

B •→ A : exp(g ,Y)

A → B : {|Payload |}exp(exp(g,X),Y)

A •→• B : Payload

The set of values for the payload M = exp(g,X) from
A to B is MA,B = {gx | x ∈ XA,B} where XA,B is
a countable set of exponents used by A for B such that
Xa,b ∩Xa′,b′ = ∅ unless a = a′ and b = b′.

We sketch a proof that P ∗1 and P2 are horizontally
composable. Recall that this does not require that P ∗1 or P2

themselves are correct, but that their combination cannot
give an attack against either protocol that would not have
worked similarly on that protocol in isolation. First, observe
that the signed messages of P ∗1 are not helpful to attack P2

(because P2 does not deal with signatures and the intruder
may instead use any other message as well). Second, the
content of the signed messages in P ∗1 are the half-keys from
P2, i.e. the intruder can learn each such message in a
suitable run of P2. Vice-versa, P2 is not helpful to attack
P ∗1 , since P2 does not deal with signatures, so he can only
introduce message parts from P2 that he signed himself
(under any dishonest identity) and since he must know such
messages, this cannot give an attack against P ∗1 .

Now consider the following variant P ′2 of the Diffie
Hellman key-exchange P2 that we intentionally designed so

12

that it breaks when composing it with P1:

A → B : {B , g}inv(pk(A))

A •→ B : exp(g ,X)

B •→ A : exp(g ,Y)

A → B : {|Payload |}exp(exp(g,X),Y)

A •→• B : Payload

In the additional first message, A transmits (authentically)
the basis g for the key-exchange. While P ′2 is also correct in
isolation, running P ′2 and P ∗1 in parallel leads to an attack
since the first message of P ′2 has the same format as the
message of P ∗1 ; namely, when an agent a sends the first
message of P ′2

a → b : {b, g}inv(pk(a))

it may be falsely interpreted by b as P1, leading to the event
request(a, b, p1, g) for which no corresponding witness fact
exists (since a did not mean it as P1). Thus, there is a trivial
authentication attack.

7. Pseudonymous Channels

Pseudonymous channels are created by techniques like
purpose-built keys (PBK) or TLS without client authentica-
tion: we have something similar to a secure channel except
that one end is not identified by its real name but by some
pseudonym, which is usually related to an unauthenticated
public-key; see, e.g., [11], [18], [22], [25]. In the case of
authentic channels, this concept has often been referred to
as sender invariance: the receiver can be sure that several
messages come from the same source, whose real identity
is not known or not guaranteed.11 However, there is more
to it.

First, pseudonymous channels, both as assumptions and
as goals, should not be defined as entirely new concepts
unrelated to the previous channels. Rather, we define them
as variants of the standard channels discussed above where
one (or both) ends are identified by a pseudonym rather than
the real name.12

Second, the concept of pseudonymous secure channels is
useful to model a number of scenarios. The most common
one is probably the above mentioned TLS without client
authentication as it is common in the Internet: it is in a sense
weaker than a standard secure channel, but (assuming the
server’s public key is properly authenticated) it is sufficient

11. [22] first formalized the notion of sender invariance as a goal, which
is similar to our notion of a pseudonymous-authentic channel. However, in
[22], it is defined directly as messages coming from the same source, while
we see it here simply as a classical authentication goal with a pseudonymous
sender.

12. One may even argue that real names are also just a kind of
pseudonym, so there is no difference at all. In our model, the difference
between real names and pseudonyms is that we assume that real names
uniquely identify agents and do not change over time, while pseudonyms
may be arbitrarily created by any agent. As a consequence, every agent
(including the intruder) can act under several identities.

for submitting a client’s password over this channel to
achieve full authentication. We thus want to use such a
channel both as goal for protocols like TLS where only one
side is authenticated, and as an assumption in high-level
protocols that use such a channel for a login, for instance.

Another, quite different example is a smart card in a
card reader: here we have communication between two
entities that are not yet authenticated (and will engage in
a protocol to achieve authentication) but that have a secure
pseudonymous channel in the sense that an attacker cannot
interfere with their communication. In this case, the physical
environment gives us the secure pseudonymous channel that
authentication protocols may use as an assumption.

7.1. AnB• notation for pseudonymous channels

We extend the AnB• notation for standard channels and
write [A]ψ to denote the identity of an agent A that is not
identified by its real name A but by some pseudonym ψ,
e.g. we write [A]ψ •→B : M for an authentic channel. We
also allow that the specification of ψ is omitted, and write
only [A] •→B, when the role uses only one pseudonym in
the entire session (which is the case for most protocols).
The omitted variant is a short-cut for a pseudonym that A
freshly generates when it first uses a pseudonymous channel.
We extend AnB here with a new type symbol for the type
declarations, namely the type “pseudonym”, which may be
used in place of agent names.

We use a similar notation for the other kinds of pseudony-
mous channels.13 For a pseudonymous secure channel where
both ends can be pseudonymous, we generally exclude that
sender and receiver are identical pseudonyms (i.e. honest
agents check that they never send messages to themselves).

Example 2. Consider the following protocol that establishes
a secure channel between an unauthenticated A, which uses
its Diffie-Hellman half-key exp(g,X) as a pseudonym, and
an authenticated B (just as in the case of TLS).

A → B : exp(g ,X)

B •→ A : exp(g ,Y)

A → B : {|Payload |}exp(exp(g,X),Y)

[A] •→• B : Payload

Such a channel is good enough for a login protocol, e.g.

[A] •→• B : A, password(A)

[A] •→• B : Payload ′

A •→• B : Payload ′

where Payload′ is now on a standard secure channel
(assuming that the password of A is sufficient to authenticate
her to the server B).

13. Pseudonymization on insecure end-points such as A •→ [B] is not
useful and we thus allow the [·] only on the bulleted end-points of channels.

13

We assume, for executability of the specification, that as
soon as a new pseudonym is created, it is transmitted to the
other agents. Moreover, it is crucial that pseudonyms cannot
be “stolen”, i.e. they belong to the agent who created them.
We will see below how this is actually implemented when we
consider the cryptographic model of channels, but we first
give an ideal model that is based on defining pseudonymous
channels in analogy to standard ideal channels.

7.2. The ICM for pseudonymous channels

The transformation on the AnB• specifications are as
before, and we extend the ICM with pseudonymous channels
using IF facts as before. The difference is that we use
identifiers that may both be real names and pseudonyms.
For instance, receiving a message from an agent acting under
pseudonym ψ on an authentic channel looks as follows:

stateB(. . .).
athChψ,B(M)
=[V]⇒
. . .

We must distinguish two cases here. One is that B does
not know the pseudonym ψ in advance, i.e. it is not part
of his state fact. This holds for the first transmission from
ψ in the current run. The other case is given by the other
transitions where B already has the pseudonym in his state
fact and does not accept messages from a different sender
with a new pseudonym. This is exactly the notion of sender
invariance, of course.

The rules for the intruder remain the same except that
we must ensure that the intruder can generate himself new
pseudonyms at any time and can send and receive messages
with these new pseudonyms. To keep track of this, we use
again the predicate dishonest(·). Hence, the rule generating
a new pseudonym ψ in the ICM and the CCM now is:

=[ψ]⇒ iknows(ψ).iknows(inv(ψ)).dishonest(ψ) .

Here, the knowledge of inv(ψ) is only needed later for
the CCM model where the pseudonyms are all in fact
public keys — the intruder must know all the respective
private keys of dishonest pseudonyms. Using the predicate
dishonest(·) allows us to work with exactly the same channel
rules as before, only that instead of agent names, we may
now also use pseudonyms as sender or receiver names.14

7.3. The CCM for pseudonymous channels

A straightforward way to realize pseudonymous channels
is based on asymmetric key-pairs built for this purpose,

14. In a typed model, however, this gives a conflict because of the sender
or receiver types. We may either redefine these predicates to allow for
a larger set of identifiers (agent names and pseudonyms), or define new
predicates (or overload them) with respective different types and exactly
the same rules except for the types.

where the public key (or a hash value thereof) is used
as the pseudonym, e.g. [11]. We define the ownership of
such a pseudonym by the knowledge of the corresponding
private key. As usual, we assume that private keys of honest
agents are never leaked and the intruder cannot obtain any
private keys except those he created himself. Under these
reasonable assumptions, the intruder is not able to “steal” the
pseudonyms of honest agents. Rather, every agent remains
the single owner of all pseudonyms it created. Note that the
intruder can arbitrarily generate pseudonyms of his own.

To connect this notion of pseudonyms with channels, we
need to ensure that only the owner of a pseudonym can
access a secured pseudonymous endpoint of a channel with
that pseudonym. In fact, we can use the same encoding
as in the CCM before, with the only difference that when
the sender or receiver name is a pseudonym, then it is
directly the public key. That is, we do not use ak(A) or
ck(A) as before, but we directly use the pseudonym ψ
for encryption or the corresponding private key inv(ψ) for
signing. (Note that we have excluded the case that sender and
receiver are the identical pseudonym, before.) For instance,
an authentic channel from a sender with pseudonym ψ
to an agent B, where B is either an agent name or a
pseudonym, is then encoded by iknows({atag, B,M}inv(ψ)).
The transformations on the AnB• specification are as before,
only we need to keep track of whether we are dealing with
an agent name or a pseudonym, because the translation for
CCM depends on this.

7.4. Relating the two models

After generalization of the ICM and CCM models with
pseudonymous channels, we still have the property that every
attack against the ICM can be simulated in the CCM:

Theorem 4. Consider an ICM specification and the cor-
responding CCM specification, both employing real names
and/or pseudonyms. For a reachable state S1 of the ICM
specification, there is a reachable state S2 of the CCM
specification such that S1 ∼ S2.

Vice-versa, under the assumptions of typing and full
receiver decryption, all attacks in the CCM can be simulated
in the ICM:

Theorem 5. Consider an ICM specification and the cor-
responding CCM specification, both employing real names
and/or pseudonyms and both with full receiver decryption,
and consider a well-typed attack on the CCM specification
that leads to the attack state S2. Then there is a reachable
attack state S1 of the ICM specification such that S1 ∼ S2.

7.5. Pseudonymous channels as goals

We use again the idea that pseudonymous channels are
like standard channels with the only exception that the

14

secured endpoints are logically tied to pseudonyms instead
of real names. Therefore, we define these goals as vari-
ants of the standard secrecy and authentication goals with
pseudonyms instead of real names.

Recall that in the case of pseudonymous channels as
assumptions, when no pseudonym is specified, the respective
agent freshly creates one at the beginning of a session. This
is no longer possible when using pseudonymous channels
as goals, because the pseudonym would then be unrelated
to the protocol messages and thus the goal would trivially
be violated. In fact, whatever the pseudonym of an agent in
a pseudonymous channel goal is, it needs to be somehow
related to the protocol messages. We thus require that
for pseudonymous channels as goals, we always explicitly
annotate what the pseudonym is.

The most common example would be a protocol where A
has an unauthenticated public-key pk(A) and the protocol
ties transmissions to this public-key as in the CCM above.
Then, a goal declaration may be for example:

[A]pk(A) •→•B : M .

There is a requirement for what can be used as a
pseudonym: the owner of a pseudonym P is honest iff
honest(P) holds. In the above example, thus honest(pk(A))
must hold iff honest(A) holds. Besides that, our definition
does not impose any further requirements on the term that
can be used as a pseudonym—this is a simply matter of
specification: it counts as an attack if the protocol does
actually not ensure the transmission properties with respect
to the declared pseudonym. For instance, in the above
example, it would count as an attack if B receives a message
M that apparently comes from pk(A) for an honest A, but
A has never said M to B.

While it is straightforward that the public key of an
agent can be used as pseudonym when messages are indeed
secured by it, the cases where the pseudonymous agent uses
no public keys are not obvious. We discuss in the following
two such cases that often occur in practice.

7.5.1. Unauthenticated Diffie-Hellman Key-Exchange.
Common examples are protocols with a Diffie-Hellman key-
exchange where one side is not authenticated as in the
following example:

A→ B : exp(g,X)
B •→A : exp(g, Y)
A→ B : {|A,Payload|}exp(exp(g,X),Y)

[A]exp(g,X) •→•B : Payload

Here, we use the half-key exp(g,X) as a pseudonym for A:
in fact one may consider X as a private key and exp(g,X) as

the corresponding public-key.15 Intuitively, the reason why
this works is that, from the point of view of an honest
agent B, Payload can only originate from the owner of the
pseudonym exp(g,X), i.e. the one who created X . But, as
before, formally the point is merely that the protocol goal
holds with respect to this pseudonym.

7.5.2. TLS. Consider now the case of TLS without client
authentication. Indeed, one may simply deploy the proto-
col exactly as in the authenticated case, except that the
key-certificate for A is not signed by a trusted party but
by A itself. (Note that this public-key may even be cre-
ated freshly in each new session.) Then, we can use this
public-key conveniently as the pseudonym for the goal, i.e.
[A]pk(A) •→•B : M where M is a payload message from
A to B.

The actual deployment of TLS without client authentica-
tion however does not bother about public keys of clients
A; rather, the pre-master secret is simply encrypted for B
(who is authenticated by a public-key certificate), but not
signed by A. Let us illustrate this by the following, further
simplified, protocol:

A→•B : PMS
A→ B : {|Payload|}PMS

[A]PMS •→•B : Payload

Obviously, there is now a problem with using PMS as
a pseudonym. The reason is that the creator has no control
over the usage of the pseudonym in contrast to the case of
a public key with a corresponding private key that remains
secret. This is illustrated by the following “attack” where a
starts a session with the dishonest i:

a→• i : pmsa
a→ i : {|payload17|}pmsa

witness(pmsa, i, p, payload17)
i→ b : pmsa
i→ b : {|payload17|}pmsa

request(pmsa, b, p, payload17)

So we have a request event, created by b, referring to
the pseudonym pmsa of an honest agent. But actually,
intuitively, there is nothing wrong with this trace: we could
have a corresponding trace for a variant of the protocol
where pmsa is signed, together with the intended recipient,
by a private key corresponding to an unauthenticated public-
key of a which is then the pseudonym. The crucial difference
of this public-key variant is that the intruder cannot use the

15. One may wonder here whether this should indeed be called public-
key cryptography, since X and exp(g, X) cannot be directly used for the
encryption and decryption of messages, but are the bases for the derivation
of shared keys. However, when defining public-key cryptography in a
general sense as “a means to turn authentic into secure channels”, Diffie-
Hellman key-exchange is indeed a form of public-key cryptography (in the
spirit of what Diffie and Hellman themselves observe in [19]).

15

same pseudonym that a has used before, but has to use one
of his (dishonest) pseudonyms.16

So, in fact, we have the situation that the goal

[A] •→•B : Payload

seems to hold in some sense, even though we cannot identify
a pseudonym that the intruder could never steal. The idea is
now that an honest A freshly creates the pseudonym PMS
in each session; this creation is with respect to the agent B
to whom A wants to talk to—and the intruder can “steal” the
pseudonym only iff this B is dishonest, while pseudonyms
that an honest A creates for an honest B are all safe. Thus,
if we define for this protocol that honest(PMS) holds iff it
is created by an honest A for an honest B, then the intruder
cannot steal honest pseudonyms and the goal actually holds
with respect to this definition.

This construction must be reflected in the specification for
the goal, and we thus write such a goal as follows:

[A]PMSB •→•B : Payload

meaning that A acts under pseudonym PMS that is created
for the recipient B.

Note that this case (secure channels with respect to an
unauthenticated agent, identified by a shared key) appears
also in many other protocols that can be handled similarly,
e.g. Geopriv [32].

7.6. Compositional reasoning for pseudonymous
channels

The definition of secure pseudonymous channels as as-
sumptions and as goals differs from the real-name cases
only by the use of pseudonyms (and the attached notion
of honesty), but the rest of the construction is exactly as
before. This allows us also to extend our compositionality
result to pseudonymous channels:

Theorem 6. Consider protocols P1, P ∗1 , and P2 as in
Definition 4 where endpoints may be pseudonymous, and
let P1 and P2 be vertically and horizontally composable. If
there is no attack against P1, P ∗1 , and P2, then there is no
attack against P2[P1].

8. Towards Freshness

As a final contribution, we consider a further variant of
channels, namely ones that ensure freshness of messages,
i.e. suppress the replay of messages. It is obvious that the
CCM allows such a replay if the payload messages do not
contain a mechanism to prevent it, since the intruder can

16. One may still argue that the intruder is able to “steal” the pseudonym
pmsa created, and thus “owned”, by a and authenticate with respect to
that pseudonym. However, the protocol does not define PMS to be a
pseudonym—that is a view we have just introduced.

dishonest(A).iknows(B).iknows(M) =[N]⇒ fathChNA,B(M)

fathChNA,B(M) ⇒ iknows(M)

dishonest(A).iknows(B).iknows(M) =[N]⇒ fsecChNA,B(M)

fsecChNA,B(M).dishonest(B) ⇒ iknows(M)

Table 6. Additional intruder rules for fresh channels.

replay encrypted messages that he has seen any number of
times even if he cannot decypt them. The ICM models this
property, too.

We denote the variant of authentic and secure channels
that prevent replay as follows (for confidential channels, the
freshness is not an issue):
• Fresh-authentic channel: A •� B : M . This channel

is like an authentic channel with the restriction, intu-
itively, that M can only be received once.

• Fresh-secure channel: A •�•B : M . A channel that is
both fresh-authentic and confidential.

The formal definition of these variants in the ICM and the
CCM is similar to before, where we have to introduce new
annotation symbols for channels as assumptions and goals
and translation processes on AnB and IF.

8.1. Fresh channels as assumptions in the ICM

For the ICM, let fathChNA,B(M) and fsecChNA,B(M) be
the facts used for fresh-authentic and fresh-secure channels
as assumptions. In contrast to their non-fresh counter-parts
athChA,B(M) and secChA,B(M), these facts are not per-
sistent, because once the message is received by an honest
agent (i.e. matched in the left-hand side of a transition rule
of an honest agent) the fact is removed from the state and
the respective message cannot be received anymore. This
models exactly the replay protection. However, since a state
is a set of facts, this non-persistence introduces the problem
that an agent cannot send twice exactly the same message for
the same recipient before that recipient actually receives it
(as the state cannot contain multiple copies of the fact at the
same time, and the only copy is “consumed” with the first
receiving transition). To allow multiple sending of the same
message anyway, we have introduced a further parameter
N into these facts that contains simply a fresh number that
is irrelevant for the receiver but that distinguishes multiple
occurrences of otherwise identical facts.

For the intruder, we have now the rules for fresh-authentic
and fresh-confidential channels shown in Table 6. These
rules are similar to their non-fresh counter-parts with only
the difference that we have the fresh nonce that the intruder
has to also generate (so he can also send an arbitrary
number of identical messages on the fresh channels). These

16

definitions apply both for real names and for pseudonyms,
of course.

8.2. Fresh channels as assumptions in the CCM

In the CCM, we use a simple mechanism to ensure the
freshness of messages, namely a challenge-response mech-
anism. The idea can best be described as a reduction on the
AnB•/AnB level, namely regarding the channel A •� B : M
(when used as an assumption) as syntactic sugar for the
message exchange:

B → A : N
A •→B : N,M

where N is a new symbol representing a fresh challenge
created by B (note that this N is different from the identifier
N used in the ICM to disambiguate identical message
transmissions).

The idea is thus that the receiver B creates a fresh
(unpredictable) challenge N that must be contained in the
received message. Moreover, for each time an honest agent
A sends the message M , it can be received at most one time
by an honest agent B, because on multiple receipts different
challenges would have been created and thus included in the
transmission.

A similar transformation is applied for reducing fresh-
secure to secure channels. Observe that the intruder can read
the message M , but only use one challenge-response from
an arbitrary agent B. Again, we can extend this notation for
the use of pseudonyms as expected.

8.3. Fresh channels as goals

Recall that the (non-fresh) authentic channels, when used
as goals, are characterized by two properties (expressed
as attack rules), namely the property (10) that corresponds
to non-injective agreement [26] and the property (11) that
the intruder actually knows all messages that come from
any dishonest agent. For the fresh-authentic channels, we
introduce an additional attack rule, (14), that defines replay
of a message as an attack. (10) and (14) together correspond
to Lowe’s notion of injective agreement [26]:

frequest(A,B, P,M,N).frequest(A,B, P,M,N ′)
| not(dishonest(A)) ∧N 6= N ′ (14)

We have here introduced a variant of the request fact,
frequest(·), that contains a unique identifier N for each
occurrence (similar to the one of fathChNA,B(M) in the
ICM).

The assumption on which our construction is based is
that the payload message M contains something fresh like
a nonce (as we have also assumed in § 6). Under this
assumption, a replay attack occurs whenever a message that

supposedly originates from an honest agent A is successfully
received by B more than once. This simple trick allows us
to avoid counting witness(·) and request(·) events, which
would be necessary if exactly the same message could be
sent several times.

We are currently working at extending theorems 1–6 for
the fresh-authentic and fresh-secure channels.

9. Related Work and Conclusions

We have given formal definitions of secure pseudonymous
channels and proved the relationship between a model
representing the ideal functionality of a channel and a model
that employs concrete cryptographic messages on insecure
channels. We have also shown a compositionality result that
formalizes the replacement of an assumed channel with
an arbitrary protocol that provides such a channel. We
conclude by discussing relevant related works and pointing
to directions for future research, in addition to those that we
already mentioned above.

In [28], Maurer and Schmid introduce the • notation for
authentic, confidential, and secure channels. They do not
give formal definition of their channels and it is hard to tell
from the way they intuitively explain and use the notation
how their understanding of channels relates to ours, but it
seems to be closest to the fresh variants of the channels that
we have introduced in § 8. They use the notation to introduce
a calculus for reasoning about what new channels can be
built from given ones, but the notation is never directly used
for transmitting messages (although the informal arguments
consider concrete message transmissions).

Boyd [10] similarly reasons about what kind of relations
between participants can be constructed, and what not, given
a particular infrastructure of keys. His approach uses a
formal model in Z, but it does not explicitly deal with
protocols to achieve this.

Dilloway and Lowe [21] consider the specification of
secure channels, used as assumptions, in a formal/black-
box cryptographic model. They define several channel types,
some of which are very similar to our standard authen-
tic (namely their channel type NF ∧ NH), confidential
(C ∧ NR), and secure channels (C ∧ NF ∧ NR ∧ NH).
They do not have an equivalent for our strongest channels,
fresh-authentic and fresh-secure channels as they do not
consider the prevention of replay. They do, however, further
differentiate properties of our channels, namely with respect
to authentic channels they distinguish between hijacking
(i.e. changing the apparent sender of a message) and faking
(the intruder making up a message), and for confidential
channels between confidentiality (the intruder learning the
message) and redirecting (the intruder altering the destina-
tion of the message). Also, for redirecting and hijacking,
they have two variants each, namely one where the intruder
can perform changes with respect to either only honest

17

agent names or for all agent names. This differentiation
of channel properties can indeed make sense as they give
implementations with cryptography (like we do) that have
this property. However, we do consider less variants for the
following reason. If B knows the public key for signatures
of A, for instance, then B can verify signed messages from
A; if A additionally includes the name of B in the message,
the intruder cannot forward the signature to somebody else.
Including this name means only a little extra cost, but
improves the channel quality in the hierarchy of [21]. Thus,
from the keys that some channels require as a realization,
we can sometimes obtain a better channel at only little extra
cost. Therefore, we do not consider the weaker channel in
this case.

Like [21], Armando et al. in [4], [5] characterize channels
as assumptions by restricting the traces that are allowed for
the different channel types, in contrast to our “constructive”
approach of describing explicitly what agents can do. While
they do not consider all the channel types in their work, they
can model resilient channels by excluding traces where sent
messages are never received.

[22] first formalized the notion of sender invariance as
a goal, which is similar to our notion of a pseudonymous-
authentic channel. However, in [22], it is defined directly
as messages coming from the same source, while we see
it here simply as a classical authentication goal with a
pseudonymous sender. Other notions that may be called
receiver invariance, for instance, naturally result from the
generalization of other channel types to pseudonymous
agents. As we have discussed in § 7, these channel types
are practically relevant, for instance when using protocols
like TLS.

In [1], Abadi et al. give a general recipe for constructing
secure channels, albeit with a notion different from all the
above works: their goal is to construct a channel such that
a distributed system based on this channel should be indis-
tinguishable for an attacker from a system that uses internal
communication instead. This is a much stronger notion of
channels than ours, and one that is more closely related to
the system that uses them. It is, of course, more expensive to
achieve this notion. For instance, all messages are repeatedly
sent over the channel to avoid that an intruder blocking
some messages of the channel can detect a difference in the
behavior of the system. A similar approach is considered
in [12].

Much effort has been devoted to the composition of
protocols, e.g. [2], [15], [16] to name a few works. The
closest to our work is [15]. In a formal setting similar to
ours, they consider the sequential and parallel composition
of protocols. In Theorem 6, which proves that we can
replace an ideal channel with any protocol that implements
it, we assume that the protocols in question are securely
composable. We are currently investigating whether the
approach of [15] is sufficient to achieve this assumption;

a closer investigation is left for future work.
There are two frameworks for the secure composition of

cryptographic primitives and protocols, namely the Univer-
sal Composability [13] Framework and the Reactive Simu-
latability [8] Framework. Both stem from the cryptographic
world, and are based on the notion that the implementation
of an ideal system is secure if no computationally limited
attacker with appropriate interfaces to both the ideal system
and the implementation can distinguish them with a non-
negligible probability. The view of cryptography through
indistinguishability from an ideal system is not directly
feasible for the automated verification of security protocols.

We conclude with a final remark on the fact that all the
arguments in this paper are within a black-box cryptography
world and have not been related to cryptographic soundness.
The transition from a cryptographic model to a black-
box model in general implies the exclusion of (realistic)
attacks; although for many application such models can
be indeed shown to be cryptographically sound [33]. The
simulation proofs of our theorems now tell us that we do
not loose further attacks by going from the CCM to the
ICM or vice-versa, or by verifying channel protocols and
application protocols in isolation. We can thus can safely
make the automated verification task easier. Besides this,
the simulation also gives us insights in the properties of our
formal models (e.g. relating ICM and CCM) and we plan to
investigate the relation of such results in the formal world
with the cryptographic world as future work.

Acknowledgments

The work presented in this paper was partially supported
by the FP7-ICT-2007-1 Project no. 216471, “AVANTSSAR:
Automated Validation of Trust and Security of Service-
oriented Architectures” and the PRIN’07 project “SOFT”.
We thank Thomas Gross, Birgit Pfitzmann and Patrick
Schaller for valuable discussions and comments.

References

[1] M. Abadi, C. Fournet, and G. Gonthier. Secure Implementa-
tion of Channel Abstractions. Information and Computation,
174(1):37–83, 2002.

[2] S. Andova, C. Cremers, K. Gjøsteen, S. Mauw, S. Mjølsnes,
and S. Radomirović. A framework for compositional verifi-
cation of security protocols. Information and Computation,
206:425–459, 2008.

[3] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Com-
pagna, J. Cuellar, P. Hankes Drielsma, P.-C. Héam, J. Man-
tovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The
AVISPA Tool for the Automated Validation of Internet Secu-
rity Protocols and Applications. In Proceedings of CAV’05,
2005.

18

[4] A. Armando, R. Carbone, and L. Compagna. LTL Model
Checking for Security Protocols. In Proceedings of CSF20.
IEEE Computer Society Press, 2007.

[5] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and
L. Tobarra Abad. Formal Analysis of SAML 2.0 Web Browser
Single Sign-On: Breaking the SAML-based Single Sign-On
for Google Apps. In Proceedings of FMSE 2008. ACM Press,
2008.

[6] A. Armando and L. Compagna. SAT-based Model-Checking
for Security Protocols Analysis. International Journal of
Information Security, 6(1):3–32, 2007.

[7] AVISPA. Deliverable 2.3: The Intermediate Format. Available
at www.avispa-project.org, 2003.

[8] M. Backes, B. Pfitzmann, and M. Waidner. Secure asyn-
chronous reactive systems, 2004. Cryptology ePrint Archive,
Report 2004/082, http://eprint.iacr.org/.

[9] D. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic
model checker for security protocols. International Journal
of Information Security, 4(3):181–208, 2005.

[10] C. Boyd. Security architectures using formal methods. IEEE
Journal on Selected Areas in Communications, 11(5):694–
701, 1993.

[11] S. Bradner, A. Mankin, and J. Schiller. A framework for
purpose built keys (PBK), June 2003. Work in Progress
(Internet Draft: draft-bradner-pbk-frame-06.txt).

[12] M. Bugliesi and R. Focardi. Language based secure com-
munication. In Proceedings of CSF 21, pages 3–16. IEEE
Computer Society Press, 2008.

[13] R. Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In Proceedings of FOCS 2001,
pages 136–145. IEEE Computer Society, 2001.

[14] I. Cervesato, A. D. Jaggard, A. Scedrov, J.-K. Tsay, and
C. Walstad. Breaking and fixing public-key Kerberos. In-
formation and Computation, 206(2–4):402–424, 2008.

[15] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Secure
protocol composition. In Proceedings of the 2003 ACM
workshop on Formal methods in security engineering, pages
11 – 23. ACM, 2003.

[16] S. Delaune, S. Kremer, and M. D. Ryan. Composition of
password-based protocols. In Proceedings of CSF 21, pages
239–251. IEEE Computer Society Press, 2008.

[17] G. Denker, J. Millen, and H. Rueß. The CAPSL Integrated
Protocol Environment. Technical Report SRI-CSL-2000-02,
SRI International, Menlo Park, CA, 2000.

[18] T. Dierks and C. Allen. RFC2246 – The TLS Protocol Version
1, Jan. 1999.

[19] W. Diffie and M. Helmann. New directions in cryptography.
IEEE Transactions on Information Society, 22(6):644–654,
1976.

[20] C. Dilloway. Chaining secure channels. In Proceedings of
FCS-ARSPA-WITS’08, 2008.

[21] C. Dilloway and G. Lowe. On the specification of secure
channels. In Proceedings of WITS ’07, 2007.

[22] P. Hankes Drielsma, S. Mödersheim, L. Viganò, and D. Basin.
Formalizing and analyzing sender invariance. In Proceedings
of FAST’06, LNCS 4691. Springer-Verlag, 2007.

[23] J. Heather, G. Lowe, and S. Schneider. How to prevent
type flaw attacks on security protocols. In Proceedings of
CSFW’00. IEEE Computer Society Press, 2000.

[24] F. Jacquemard, M. Rusinowitch, and L. Vigneron. Compiling
and Verifying Security Protocols. In Proceedings of LPAR
2000, LNCS 1955, pages 131–160, 2000.

[25] D. Johnson, C. Perkins, and J. Arkko. RFC3775 – Mobility
Support in IPv6, June 2004.

[26] G. Lowe. A hierarchy of authentication specifications. In
Proceedings of CSFW 10, pages 31–43. IEEE Computer
Society Press, 1997.

[27] G. Lowe. Casper: a Compiler for the Analysis of Security
Protocols. J. Comp.Sec., 6(1):53–84, 1998.

[28] U. M. Maurer and P. E. Schmid. A calculus for security
bootstrapping in distributed systems. J. Comp.Sec., 4(1):55–
80, 1996.

[29] J. Millen and F. Muller. Cryptographic protocol generation
from CAPSL. Technical Report SRI-CSL-01-07, SRI Inter-
national, 2001.

[30] S. Mödersheim. Models and Methods for the Automated
Analysis of Security Protocols. PhD Thesis, ETH Zurich,
2007. ETH Dissertation No. 17013.

[31] S. Mödersheim. Algebraic Properties in Alice and Bob
Notation. In Proc. Ares’09, Full version: T. Rep. RZ3709,
IBM Zurich Research Lab, 2008, domino.research.ibm.com/
library/cyberdig.nsf.

[32] D. v. Oheimb and J. Cuellar. Designing and verifying core
protocols for location privacy. In Information Security, LNCS
4176. Springer-Verlag, 2006.

[33] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and
M. Waidner. Cryptographically Sound Theorem Proving. In
Proceedings of CSFW 19, pages 153–166. IEEE Computer
Society Press, 2006.

Appendix

Theorem 4. Consider an ICM specification and the cor-
responding CCM specification, both employing real names
and/or pseudonyms. For a reachable state S1 of the ICM
specification, there is a reachable state S2 of the CCM
specification such that S1 ∼ S2.

Theorem 4: We prove the statement by structural induc-
tion over transitions. The initial states of the two models are

19

www.avispa-project.org
draft-bradner-pbk-frame-06.txt
domino.research.ibm.com/library/cyberdig.nsf
domino.research.ibm.com/library/cyberdig.nsf

identical modulo ∼, since they contain no channel facts and
the initial knowledge of the CCM material does not matter.
Consider two states S1 and S2 of corresponding ICM and
CCM specifications, respectively, with S1 ∼ S2. Consider
an ICM rule r that is applicable to S1, producing S′1. We
show that from S2 a state S′2 is reachable in the CCM with
S′1 ∼ S′2.

The first case is that r is the rule of an honest agent.
By the induction hypothesis, the corresponding CCM rule
must be applicable to S′2 with respect to the corresponding
facts/intruder knowledge and under the same matching sub-
stitution. Thus, the successor states S′1 and S′2 are in the
same relation.

The second case is that r is a normal (not channel related)
rule of the intruder. Also in this case the rule can similarly
be applied in S2 so that we have again equivalent successor
states S1 ∼ S2.

In the remaining cases r is one of the channel intruder
rules, and we will use the assumption that the intruder knows
all agent names, public-keys/pseudonyms, and tags without
further mention:

Let r = iknows(B).iknows(M).dishonest(A) ⇒
athChA,B(M). Since S1 ∼ S2 and dishonest(A), the
intruder knows M also in S2. The encoding of the channel
fact is either {atag, B,M}inv(ak(A)) if A is an agent name,
or {atag, B,M}inv(A) if A is a pseudonym. In either case,
the intruder can generate this term, since A is dishonest and
the intruder thus knows inv(ak(A)) or inv(A), respectively.
Thus, an S′2 with S′2 ∼ S′1 is reachable.

Let r = athChA,B(M) ⇒ iknows(M). Since S1 ∼ S2,
S2 contains the encoding of the ideal channel fact, which
is either {atag, B,M}inv(ak(A)) if A is an agent name or
{atag, B,M}inv(A) if A is a pseudonym. In either case, the
intruder can obtain M by decryption (as he knows the agent
name or the pseudonym B already by assumption), therefore
an S′2 with S′2 ∼ S′1 is reachable.

Let r = iknows(B).iknows(M) ⇒ cnfChB(M). Since
S1 ∼ S2, the intruder knows M also in S2. Therefore, he
can generate the encoding of the ideal channel fact, which is
either {ctag,M}ck(B) if B is an agent name or {ctag,M}B
if B is pseudonym, so an S′2 with S′2 ∼ S′1 is reachable.

Let r = cnfChB(M).dishonest(B) ⇒ iknows(M). Since
S1 ∼ S2, S2 also contains the encoding of the ideal channel
fact which is either {ctag,M}ck(B) if B is an agent name, or
{ctag,M}B if B is a pseudonym. Since B is dishonest, the
intruder knows inv(ck(B)) or inv(B), respectively, and can
thus obtain M . Therefore, an S′2 with S′2 ∼ S′1 is reachable.

Let r = iknows(B).iknows(M).dishonest(A) ⇒
secChA,B(M). Since S1 ∼ S2, the intruder knows M also in
S2. The encoding of the channel fact is one of the following:
{{stag, B,M}inv(ak(A))}ck(B) if A and B are agent names,
{{stag, B,M}inv(A)}ck(B) if A is a pseudonym and B is
an agent name, {{stag, B,M}inv(ak(A))}B if A is an agent
name and B is a pseudonym, or {{stag, B,M}inv(A)}B if

A and B are pseudonyms. Since A is dishonest, the intruder
knows inv(ak(A)) or inv(A), respectively, and can thus
generate the corresponding encoding of the ideal channel
fact. Therefore, an S′2 with S′2 ∼ S′1 is reachable.

Let r = secChA,B(M).dishonest(B) ⇒ iknows(M).
Since S1 ∼ S2, S2 contains the encoding of the
ideal channel fact, which is one of the following:
{{stag, B,M}inv(ak(A))}ck(B) if A and B are agent names,
{{stag, B,M}inv(A)}ck(B) if A is a pseudonym and B is
an agent name, {{stag, B,M}inv(ak(A))}B if A is an agent
name and B is a pseudonym, or {{stag, B,M}inv(A)}B if
A and B are pseudonyms. Since B is dishonest, the intruder
knows inv(ck(B)) or inv(B), respectively, and can thus
decrypt the message to obtain M (recall that he knows all
public keys and can thus decrypt the signature of A, too).
Therefore, an S′2 with S′2 ∼ S′1 is reachable.

Theorem 5. Consider an ICM specification and the cor-
responding CCM specification, both employing real names
and/or pseudonyms and both with full receiver decryption,
and consider a well-typed attack on the CCM specification
that leads to the attack state S2. Then there is a reachable
attack state S1 of the ICM specification such that S1 ∼ S2.

Theorem 5: As explained in § 4.5, we assume a
well-typed attack in the CCM, and show that it can be
simulated in the ICM. Note that, in the CCM, the intruder
can arbitrarily compose messages using CCM material. Most
of these “abuses” are already prevented by the assumption
that the attack is typed and the use of tags in the encod-
ing of channels. For instance, the intruder cannot use an
encryption that results from a channel-encoding elsewhere
in the protocol because of the tags. We first show that we
can replace all abuses of CCM material with other keys and
tags that the intruder knows and that he has also in the ICM.
The second part of the proof is then to find a simulation for
the remaining attack where CCM material is only used in a
proper way for encoding channels.

Removing abuses. The rules of honest agents do not use
CCM material in any other position than for the channels
itself. Due to full decryption and typing, for a transition of an
honest agent, the match between rule and current state must
thus have the property that each key or tag matches directly
a rule variable of the appropriate type. It is thus possible to
uniformly replace the CCM material with different values
throughout the attack in those places they are not used for
the crypto-encoding of channels or as pseudonyms.

So for all messages that the intruder constructs using
CCM material, let the intruder additionally construct anal-
ogous messages with other fresh keys and tags that he can
generate, say a fresh pair (ckt , inv(ckt)) for each ck(t) etc.
Every agent will accept the changed incoming messages
as well, replacing a variable for a public key K with ckt
rather than ck(t) throughout its execution. Observe that the
trace may contain some transitions of the intruder or honest

20

agents that are unnecessary, i.e. the attack still works when
removing them, e.g. the intruder composes a term that he
never uses again and that is not relevant for a secrecy
goal. It is without loss of generality to assume the attack
does not contain any such unnecessary steps. We make
one exception, however, namely we allow the decryption of
encrypted messages and the projection of pair-components
even if they are not used any further.

Observe also that honest agents will never give out private
channel keys (due to the definition of the CCM), i.e. the
intruder never finds out inv(ak(A)) or inv(ck(A)) for any
honest agent A or inv(A) for any honest pseudonym A.

Translating the attack. So we have now an attack where
all messages that honest agents deal with have CCM material
only in those places that encode the channels in the CCM or
for pseudonyms. Together with the assumption that there are
no steps that are irrelevant to the attack, the intruder does
not compose any messages with CCM material unless they
are indeed sent to honest agents.

We now show that we can translate this attack transition
by transition. Consider a state S1 reached by a prefix of the
attack in the CCM and a state S2 reachable in the ICM with
S1 ∼ S2, and let S′1 be the state that is reached in the CCM
by the next transition. We show how to reach a state S′2 in
the ICM with S′1 ∼ S′2. We distinguish the following 12
transitions:

(i) The intruder composes a message where the result has
the form {atag, B,M}inv(ak(A)) where A is an agent name.
This requires that the intruder knows inv(ak(A)) and M in
S1. This can only work for dishonest(A), since, as noted be-
fore, the intruder cannot know inv(ak(A)) otherwise. Thus,
by the rule (3), the intruder can generate athChA,B(M) in
S2. Hence, we reach an S′2 with S′2 ∼ S′1.

(ii) The intruder composes a message where the result has
the form {atag, B,M}inv(A) where A is a pseudonym. This
requires that the intruder knows inv(A) and M in S1, which
in turn requires dishonest(A), because honest private keys
are never leaked by the construction. Thus, by the rule (3),
the intruder can generate athChA,B(M) in S2. Hence, we
reach an S′2 with S′2 ∼ S′1.

(iii) The intruder composes a message where the result
has the form {ctag,M}ck(B) for an agent name B or
{ctag,M}B for a pseudonym B. To that end, he must
know M also in S2. We can thus apply rule (5) to obtain
cnfChB(M) and thus reach an S′2 with S′2 ∼ S′1.

(iv) The intruder composes a message where the result
has the form {{stag, B,M}inv(ak(A))}ck(B) for agent names
A and B. To that end, he must know {stag, B,M}inv(ak(A))

first. We can exclude the case that this message was gener-
ated by an honest agent: if A is honest, then the message
was sent by A as {{stag, B,M}inv(ak(A))}ck(B) and the
intruder must have analyzed the outermost encryption with
ck(B) himself, i.e. B is dishonest, as an honest agent never
sends out {stag, B,M}inv(ak(A)). But that in turn means that

the intruder re-encrypts a message that he already has in
encrypted form and that can only be received by himself
anyway. So A is dishonest. Also, M is in S2, and thus we
obtain the fact secChA,B(M) by rule (7), and hence we
reach an S′2 with S′2 ∼ S′1.

(v) We proceed similarly for the cases of a
secure channel message where one or both of the
two ends are pseudonymous, i.e. for generating
{{stag, B,M}inv(A)}ck(B) where A is a pseudonym
and B is an agent name, {{stag, B,M}inv(ak(A))}B
where A is an agent name and B is a pseudonym,
and {{stag, B,M}inv(A)}B where both A and B are
pseudonyms, we can derive again that A is dishonest and
thus the intruder can generate secChA,B(M) by rule (7).

(vi) The intruder composes any message that is not
covered by the previous cases. If it does not contain any
CCM material, then this can similarly be done in the ICM.
Otherwise, the resulting message is irrelevant for ∼ anyway
and we can proceed with S′2 = S2.

(vii) The intruder analyzes a message of the form
{atag, B,M}inv(ak(A)) where A is an agent name or
{atag, B,M}inv(A) where A is a pseudonym, and by an-
alyzing the resulting pair obtains M . By the induction
hypothesis, S2 contains athChA,B(M) and by the rule (4)
and he can obtain M . Hence we reach an S′2 with S′2 ∼ S′1.

(viii) The intruder analyzes a message of the form
{ctag,M}ck(B) where B is an agent name or {ctag,M}B
where B is a pseudonym, obtaining M by further analysis
of the resulting pair. He can only do this analysis if B is
dishonest, i.e. he has inv(ck(B)) or inv(B), respectively. By
the induction hypothesis, S2 contains cnfChB(M), thus by
rule (6), the intruder can obtain M . Hence we reach an S′2
with S′2 ∼ S′1.

(ix) The intruder analyzes a message of the form
{{stag, B,M}inv(ak(A))}ck(B) or {{stag, B,M}inv(A)}ck(B)

where A is an agent name or pseudonym, respectively, and
B is an agent name. This is only possible if he knows
inv(ck(B)), thus B is dishonest, and he can proceed to
obtain M . By the induction hypothesis, secChA,B(M) is
contained in S2, and thus by (8), the intruder can obtain M
here as well. Hence we reach an S′2 with S′2 ∼ S′1.

(x) We proceed similarly for the two remaining cases, i.e.
for analyzing {{stag, B,M}inv(ak(A))}B where A is an agent
name and B is a pseudonym, and {{stag, B,M}inv(A)}B
where both A and B are pseudonyms. Again, B must
be dishonest, and thus the intruder can obtain M . By the
induction hypothesis, secChA,B(M) is contained in S2, and
thus by (8), the intruder can obtain M here as well. Hence
we reach an S′2 with S′2 ∼ S′1.

(xi) The intruder analyzes any message that is not covered
by the previous cases. If the analyzed message contains
CCM material, then either it is the superfluous analysis of a
message that the intruder composed himself or a subsequent
one of the previous cases, i.e. already covered. Otherwise,

21

the decomposition works identically in the ICM.
(xii) A transition of an honest agent. Here the incoming

message is either in the intruder knowledge in both S1 and
S2, if it is on an insecure channel, or it is a secure channel,
then the respective channel fact is contained in S2 by S1 ∼
S2. Similarly, the outgoing message is either in both models
directly in the intruder knowledge (for an insecure channel)
or the respective ideal channel fact is in S2.

Thus we have transformed the CCM attack trace to one
of the ICM.

Theorem 6. Consider protocols P1, P ∗1 , and P2 as in
Definition 4 where endpoints may be pseudonymous, and
let P1 and P2 be vertically and horizontally composable. If
there is no attack against P1, P ∗1 , and P2, then there is no
attack against P2[P1].

Theorem 6: We prove this for each kind of channel
separately, but the main idea is the same: we assume an
attack trace against Par(P2[P1]) and show that there is also
an attack against the vertical or the horizontal composition
of P1 and P2. Due to compositionality, there is thus an attack
against one of the protocols P1, P2, or P ∗1 individually,
contradicting the assumptions.

Authentic Channels. Consider an attack against
Par(P2[P1]). We consider transitions related to the channel
realized by P1, i.e. transitions of P2 where an agent sends or
receives on the channel. If there are no such steps at all, then
the attack works on P2 already, since no protocol execution
in the attack even got to the part that is implemented by P1.

For any transition that corresponds to sending on the chan-
nel realized by P1 by an honest agent or pseudonym a, we
have a corresponding witness event witness(a, b, P1,m) of
P1 for the concrete payload message m sent to b. Similarly,
whenever an honest agent or pseudonym b receives from the
channel, we have a request event request(a, b, P1,m) for
every b who thinks to have received m from a (independent
of whether a is honest or not).

We first consider what happens if there is a request event
for an honest receiver without a corresponding witness event
and show that in this case either P ∗1 or P2 breaks.

Consider the case that in the attack trace an event
request(a, b, P1,m) occurs where b is honest (since only
honest receivers generate this event) and either (i) a is honest
and there is no corresponding witness(a, b, P1,m), or (ii) a
is dishonest and the intruder does not know m. Thus, the
authentic transmission of m on the channel is violated. If
there are several such violations in the attack trace, let us
consider the first one, i.e. a request(·) event that breaks and
all other before are fine.

Up to this point, for every witness(a, b, P1,m) on the
attack trace, we also add the event athCha,b(m), which
would have been generated if we had considered the
“ideal” P2 instead of the more concrete P2[P1]. For every
request(a, b, P1,m) with a dishonest a where iknows(m)

holds (at that point), we similarly add athCha,b(m). This
can be constructed by the intruder since he knows m and
b using rule (3). Thus the receipt of messages in the ideal
P2 is possible for every request(a, b, P1,m) of the concrete
P2[P1] but the last one. Thus, inductively all steps of P2[P1]
in the trace also work for P2 using athCha,b(m) up to the
attack state. So we have an attack against the horizontal
composition of P ∗1 , and P2, which was to show.

This concludes the case that the attack trace has re-
quests without corresponding witness events or iknows(m)
problems. Now let us consider that every request has a
corresponding witness or both the sender is dishonest and
iknows(m). Then by the same construction as above, namely
adding athCha,b(m) in the respective places, we can con-
clude that the attack trace would work on the abstract P2

in parallel with P1, i.e. is an attack against the horizontal
composition of P ∗1 and P2.

Confidential Channels. This case is proven similarly.
When we have no whisper and hear events of P1 at all, then
we simply have not used the channel and thus there is an
attack against P2 already.

Otherwise, for every whisper(b, P1,m) event (which must
have been generated by an honest sender), we add also
cnfChb(m).

For every hear(b, P1,m) (where b must be honest) if
whisper(b, P1,m) did not occur before, m was supposedly
generated by a dishonest sender. Thus, if indeed iknows(m)
holds at that point, we add cnfChb(m) (which is possible
due to (5)). Otherwise, if iknows(m) does not hold there, we
already have an attack against P1. We can thus ensure that
all channel-related actions work on the ideal P2 as before,
so an ideal channel receive using cnfChb(m) is always
possible. So up to the attack, the trace similarly works for
the horizontal composition of P ∗1 and P2.

Secure Channels. Here we have again a similar con-
struction. When an honest agent sends a message on
the secure channel realized by P1, we have the events
witness(a, b, P1,m) and whisper(b, P1,m); we add for this
pair of events the event secCha,b(m). Moreover, when b
receives m from a dishonest sender, i.e. when we have
request(a, b, P1,m) and hear(b, P1,m) for a dishonest a,
then either iknows(m) at that point and we can add the event
secCha,b(m), or we have an attack already due to the request
requirements. So, as long as every request(a, b, P1,m) is
either preceded by a witness(a, b, P1,m) or a is dishonest
and iknows(m) (otherwise we have an attack), then the
receiving works in the ideal P2, as secCha,b(m) can be
added to the trace—so we have reached an attack trace for
the horizontal composition of P ∗1 and P2.

22

	channels-zkp_ubdated_Aug2009.pdf
	Introduction
	A Simple Notation
	Alice and Bob (AnB) notation
	AnB notation (for standard channels)
	From AnB to AnB

	The Intermediate Format IF
	Standard Channels as Assumptions
	The Ideal Channel Model ICM
	Translating AnB to ICM
	The Cryptographic Channel Model CCM
	Translating AnB to CCM
	Relating the two channel models

	Standard Channels as Goals
	Translating AnB goals to IF

	Compositional Reasoning for Standard Channels
	Pseudonymous Channels
	AnB notation for pseudonymous channels
	The ICM for pseudonymous channels
	The CCM for pseudonymous channels
	Relating the two models
	Pseudonymous channels as goals
	Unauthenticated Diffie-Hellman Key-Exchange
	TLS

	Compositional reasoning for pseudonymous channels

	Towards Freshness
	Fresh channels as assumptions in the ICM
	Fresh channels as assumptions in the CCM
	Fresh channels as goals

	Related Work and Conclusions
	References
	Appendix

