
CLACK: A Network Covert Channel Based on
Partial Acknowledgment Encoding

Xiapu Luo, Edmond W. W. Chan and Rocky K. C. Chang
Department of Computing

The Hong Kong Polytechnic University
Hung Hom, Hong Kong, SAR, China

{csxluo|cswwchan|csrchang}@comp.polyu.edu.hk

Abstract—The ability of setting up a covert channel, which
allows any two nodes with Internet connections to engage in
secretive communication, clearly causes a very serious security
concern. A number of recent studies have indeed shown that
setting up such covert channels is possible by exploiting the
protocol fields in the IP, TCP, or application layer. However, the
quality of these covert channels is susceptible to unpredictable
network condition and active wardens. In this paper, we propose
CLACK, a new covert channel which encodes covert messages into
the TCP acknowledgments (ACKs). Since the message encoding
is performed in a TCP data channel, CLACK is reliable and
resilience to adverse network conditions. Moreover, CLACKis
very difficult to detect in practice, because the TCK ACKs
encoded by CLACK cannot be easily distinguished from the
normal ACKs. We have implemented and tested CLACK in a
test-bed to validate its correctness.

I. I NTRODUCTION

Setting up and detecting network covert channels is an
important security problem to consider, because it allows
someone inside a fortified network to stealthily fetch informa-
tion to and from someone outside [2]. A covert channel can
also be used to deliver commands to launch a DoS attack [11].
There are two main approaches to sending covert information
using the protocols in the network layer and above:storage
andtiming channels. In a covert storage channel, the messages
are usually embedded into the protocol header fields—[5], [9],
[1], [12] for IP storage channels and [9], [10], [12], [6] for TCP
storage channels. These approaches, however, are vulnerable
to active defense systems [4], [7], [3]. A covert timing channel,
on the other hand, relays covert messages based on the timing
relationship of the packets. Since our focus is on storage
channels, we will not further discuss timing channels.

In this paper, we propose a new storage covert channel
calledCLACK which is designed to meet two main objectives.
The first is to provide a reliable covert channel, similar to the
reliable data service provided by TCP. That is, each covert
message is guaranteed to be decoded correctly, even in the
presence of packet losses, jitter, and packet reordering. The
second objective is to increase the cost of detecting the covert
channels, hopefully to the extent that it becomes practically
infeasible to detect them.

Our attack model consists of a covert channel between a
CLACK encoder and a CLACK decoder, an active warden,

and a server. The encoder behind the active warden attempts to
send secretive information to the decoder outside the encoder
and active warden’s network. To evade the warden’s detection,
the encoder may establish a normal application session witha
server in the decoder’s network and embeds covert messages
into the application session. By sniffing the application traffic,
the decoder can therefore decode the covert messages.

CLACK’s message encoding method is more crafty than
other storage channels. A CLACK encoder embeds covert
information in partial acknowledgments (ACKs) of a TCP
data channel and uses the TCP data sent from the server
as acknowledgments to the covert message transmissions.
Therefore, a CLACK encoder only needs to receive data and
send pure ACKs, for example, retrieving documents from
websites or FTP sites. In order to detect it, the active warden
has to keep states about the send and receive states. It is also
difficult for the warden to modify the ACKs without affecting
the connection.

We organize the rest of the paper as follows. SectionII first
presents CLACK and details the design issues involved and
practical considerations. SectionIII then presents the test-bed
results to verify CLACK’s correctness. SectionIV concludes
this paper with future direction.

II. CLACK: A NEW STORAGE COVERT CHANNEL

A. The basic approach

A CLACK encoder writes a covert message in the TCP ACK
field. Therefore, a CLACK encoder is a TCP receiver, and a
CLACK decoder is a TCP sender. However, unlike the ACK
bounce method [9], CLACK is based on a persistent flow of
TCP data. Therefore, a direct encoding method is not a viable
approach for CLACK, because the ACKs have to continue to
serve its acknowledging function. Instead, we have designed
CLACK based onpartial ACK encoding. To clearly explain
the basic approach, we assume for the time being that all
transmissions are perfect, i.e., lossless, packet order preserved,
and no duplicate packets. Furthermore, the server always has
data to send and its Nagle algorithm is turned off.

During the TCP handshaking, the TCP sender can deter-
mine its effective maximum segment size (MSS), denoted by
EFF.SND.MSS, from the exchange of the MSS values. The
CLACK encoder usually selects a smaller MSS to advertise



(e.g., 1460 bytes or even 536 bytes) in order to dictate the
value ofEFF.SND.MSS. Furthermore, the encoder advertises
a fixed receive window (RCV.WND) size ofEFF.SND.MSS
bytes to the sender to constrain the number of data segments
sent from the sender each time to one. A data segment of size
equal toEFF.SND.MSS bytes is referred to as a full-sized
segment.

As a result of the settings induced by the encoder, the data
segments and ACKs are sent in a stop-and-wait manner, as
depicted in Fig.1. Moreover, all the ACKs are partial. Let the
sequence number ofSi be si and the value ofAi be ai. Note
that the segment size ofSi is given bysi+1 − si. A partial
ACK Ai is one for whichai < si+1, whereas a full ACKAi

is one for whichai = si+1.
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Fig. 1. Data segments and ACKs are sent alternately during the transmission
of covert messages in CLACK.

The main novelty of CLACK’s design is a clever way
of crafting covert messages into the ACKs. Figs.2(b)-(c)
depict the sequence number (SN) space when covert messages
Mi, i ≥ 1, are sent out through the partial ACKs. Let the value
of Mi be mi which is a nonnegative integer. The numbers
inside() indicate the event sequence. In Fig.2(b), for exam-
ple, A0 fully acknowledgesS0. After that, the encoder starts
sending the covert messages. The first two covert messages,
for example, are embedded into the ACKs as

a1 = s2 − m1 and a2 = s3 − m2.

That is,mi is represented by the amount ofSi that is left
unacknowledged by Ai. Note that the covert message encoding
method in Fig.2(c) is exactly the same, althoughA2 is also
acknowledging the data inS1. It is also instructive to compare
the scenario of no covert messages in Fig.2(a) with the other
two.

B. The CLACK encoder

Now we turn to a more detail description of the CLACK en-
coder. As mentioned earlier, a CLACK encoder sets its receive
window size toRCV.WND = EFF.SND.MSS which limits the
number of data segments sent each time to one. However, our
measurement results show that some TCP senders (e.g., web
servers) would return more than one packet at the beginning of
the slow start which will disrupt the stop-and-wait transmission
pattern. Therefore, the encoder must first receive asingle
full-sized data segment before it can starting encoding covert
messages. For example,S1 in Figs. 2(b)-(c) is a full-sized
segment.

Let the first full-sized segment beS1, and the encoder starts
sending covert messagesMi, i ≥ 1. Therefore,Ai, i ≥ 1, are
all partial ACKs, i.e.,ai < si, i ≥ 1. From the examples in
the last section, it is clear that the partial ACKs are given
by ai = si+1 − mi. Thus, the encoder is able to craft a
partial ACK corresponding tomi after receivingSi. To use the
typical state variable for a TCP receiver, we letRCV.NXTi+1

be the expected SN to receive inSi+1 orRCV.NXTi+1 = si+1.
Therefore, the encoding rule forMi is given by

ai = RCV.NXTi+1 − mi. (1)

Whenever receiving a partial ACK, the sender will send
out a new data segment to fill up the send window again.
Therefore, the amount of outstanding data segments is always
equal to RCV.WND = EFF.SND.MSS before the encoder
crafts a new partial ACK. However, the encoder will not
use the two values—0 andRCV.WND. The use of 0 would
be confused with the case of no covert message for which
a full ACK is sent, i.e.,ai = RCV.NXTi+1. The use of
RCV.WND, on the other hand, would produce duplicate ACKs,
becauseai = RCV.NXTi+1 − RCV.WND = ai−1. Therefore,
the acceptable range formi is

0 < mi < EFF.SND.MSS. (2)

C. Achieving covert channel reliability

An important feature of CLACK is its provision of reliable
covert channel communication. The stop-and-wait commu-
nication pattern, first of all, reduces the reliability problem
complexity. For instance, packet reordering would not affect
the decoding correctness. Moreover, since the covert mes-
sages are encoded into the partial ACKs, CLACK uses the
data segment as an acknowledgment to the covert messages.
Therefore, the roles of the TCP ACKs and TCP data segments
are exactly reversed for the covert messages in CLACK.
Consider again the examples in Figs.2(b)-(c). The recipient
of nonretransmittedS2 ensures to the encoder thatA1 (and
thereforeM1) has been received correctly by the sender (and
therefore the decoder). In general, a nonretransmittedSi+1

serves as an “acknowledgment” forAi.
The encoder is able to distinguish nonretransmitted data

segment from a retransmitted one. Consider that the encoder
sends out a partial ACKAi. If the next data segment’s SN
is equal toRCV.NXTi+1 or ai, the encoder confirms thatMi

has been received correctly. In other words, the data segment
is new to the encoder. Otherwise, the encoder will retransmit
Mi. We use the two cases in Fig.3, which correspond to
the scenario in Fig.2(b), to illustrate CLACK’s reliability
mechanism. In Fig.3(a), the partial ACKA2 is lost. As a
result, the sender timeouts and retransmitsS2. However, due
to the partial ACKs, the retransmittedS2 is not identical
to the originally transmittedS2. The latter’s SN iss2, but
the former’s is a1 (recall that a1 < s2). Therefore, the
retransmittedS2’s SN is considered old, i.e., it is neither
RCV.NXT3 nor a2. As a result, the encoder is required to
retransmitM2.
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Fig. 2. Encoding of covert messagesM1 andM2 in CLACK.

On the other hand, data segmentS3 is lost in Fig.3(b). As a
result, the sender times out and retransmitsS3. Similar to the
first case, the originalS3 is different from the retransmitted
S3. However, unlike the first case, the retransmittedS3 is
considered new, because its SN is equal toa2. Therefore,
the encoder can continue to send the next covert message. In
other words, the data segment loss does not affect the covert
channel’s reliability.
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Fig. 3. Recovering covert messages in CLACK due to packet losses.

D. Extension to Nagle-enabled senders

So far we have considered Nagle-disabled sender who
is expected to send a new data segment immediately after
receiving a partial ACK. However, a Nagle-enabled sender
may be prevented from sending a nonfull-sized data segment
if there are still outstanding segments, thus disrupting the data-
ACK sequence in the CLACK channel. The solution to this
problem is, first of all, to double the value ofRCV.WND, i.e.,
RCV.WND = 2 × EFF.SND.MSS. Second, the encoder is
required to send a partial ACK that acknowledges at least
EFF.SND.MSS bytes of data. In this way, the sender could
always return a full-sized data segment. Moreover, the encoder
uses the ACK-every-other-segment strategy which sends one
ACK for every two full-sized segments.

Consider Fig.4 for an example. We again first assume
that the TCP transmissions are perfect. The sender first sends
two full-sized data segmentsS0 and S1, whose SNs ares0

and s1, respectively. Upon receiving them, the encoder sets
RCV.NXT2 = s0 + 2 × EFF.SND.MSS and sends the first
covert messageM1 in the partial ACKA1. Similar as before,
the ACK value is encoded asa1 = RCV.NXT2 − m1. For

m1 ≤ EFF.SND.MSS, a1 ≥ EFF.SND.MSS. Thus, this par-
tial ACK will clock a full-sized data segment from the sender,
which isS2. The encoder, upon receivingS2, sendsM2 in A2

which is again a partial ACK witha2 ≥ EFF.SND.MSS. As
a result, we again have the stop-and-wait transmission pattern
for the data segments and ACKs.
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Fig. 4. Data-ACK sequence in CLACK channel with a Nagle-enabled sender.

Similar to the case of Nagle-disabled senders, the encoder
here can start sending covert messages only after receivingtwo
consecutive full-sized data segments from the sender. Recall
that the receive window size is equal to2 × EFF.SND.MSS
and the partial ACK’s value has to be at least equal to
EFF.SND.MSS. As a result, we havemi ≤ EFF.SND.MSS.
We again do not usemi = 0 which would be confused with the
case of no covert messages. Therefore, the acceptable range
of mi for the case of Nagle-enabled senders is

0 < mi ≤ EFF.SND.MSS. (3)

Note that Eq. (3) and Eq. (2) are almost identical. Finally, the
encoder must apply the same mechanisms to handle packet
loss events as discussed in SectionII-C. After the encoder has
transmitted an ACK to fully acknowledge the retransmitted
data segment, the encoder has to wait for two consecutive,
full-sized data segments before it can continue encoding covert
messages. Once again this does not affect the covert message
encoding and decoding.

E. The CLACK decoder

A TCP sender keeps variablesSND.NXT and SND.UNA
for every connection.SND.NXT is the SN of the next data
segment to be sent, andSND.UNA is the oldest unacknowl-
edged SN. In order to validate the ACK sent by the encoder,
a CLACK decoder keeps track of the sender’sSND.NXT and
SND.UNA. We useSND.NXTD andSND.UNAD to denote the
two respective variables recorded by the decoder.



The decoder updatesSND.NXTD by examining the SN and
packet length in every data segment from the sender. In the
other direction, the decoder, upon receiving a copy of ACKAi

from the encoder, first validates the ACK by confirming that
SND.UNAD < ai ≤ SND.NXTD. After passing the test, the
decoder determines whetherAi is a partial ACK by comparing
ai with SND.NXTD. In the case of a partial ACK, the decoder
retrieves the covert message fromSND.NXTD − ai. Lastly, it
setsSND.UNAD = ai.

III. E XPERIMENTAL EVALUATION

In this section, we evaluate CLACK’s decoding accuracy
and performance by conducting extensive experiments on our
test-bed which hosts of an IP router. An encoder is connected
to the one side of the router; a web server and a decoder are
connected to the other side. Dummynet [8] is installed in the
router to generate various network conditions, including packet
loss, delay jitters, and packet reordering. The RTT between
the encoder and the server is 32 milliseconds. The bandwidth
between the router and the encoder is 100 Mbps, whereas that
between the router and the web server/decoder is 10 Mbps.
The web server has enabled the Nagle algorithm. The router
is configured with a droptail queue size of 30 packets.

We have implemented CLACK encoder as a web client
using raw sockets. A CLACK encoder starts the transmission
after sending an HTTPGET command to request a large HTTP
document from the server. The HTTP documents are large
enough for the encoders to complete the covert communication
with the decoders.

In evaluating CLACK, we have chosen a 256-value CLACK
channel to transmit a bitmap file of 70 bytes, and each covert
message is of at most 8 bits. Therefore, the CLACK encoder
only needs to successfully transmit 70 partial ACKs for the
bitmap file. Moreover, it sends a full ACK to acknowledge
all the outstanding data segments whenever it receives a
retransmitted segment.

Fig. 5(a) presents a data trace observed by the decoder at
each decoding instance (i.e., when an ACK arrives). There are
three types of data: the ACK value (♦), SND.NXTD ’s value
(▽), and the message decoded from the ACK (×). The first
two data values come from the TCP sender’s SN, and their
labels are given on the left y-axis, whereas the labels for the
message values are given on the right y-axis. Note that each
covert message is decoded by the difference between an ACK
value andSND.NXTD, as discussed in the last section.

Due to the scale of the figure, the ACK values and
SND.NXTD values are overlapped with each other Fig.5(a).
We have therefore plotted a small segment in Fig.5(b) to
observe the actual trends. As shown, both increase in steps,
because each ACK acknowledges consecutive SNs at the same
time. However, the two do not totally overlap, because their
differences are used to embed covert messages.

Fig. 6 presents a data trace for another set of experiments
with a packet loss ratio (PLR) of0.04. As expected, the
TCP connection suffers from severe packet losses and frequent

(a) TransmittingM1 to M70

(b) TransmittingM10 to M15

Fig. 5. Experiment results for a CLACK channel under lossless condition.

retransmission timeouts during the experiment period. There-
fore, the decoder records a number of null covert messages
which have the message value of 0. To delve into one such
case, Fig.6(b) shows that the decoder receives covert message
M23 at around 28.1 seconds. After that, the server timeouts
and retransmits the lost segment. Since the encoder crafts
a full ACK, instead of a partial ACK, in response to each
incoming retransmitted segment, the decoder receives a null
covert message at around 28.7 seconds. After that, the encoder
transmits the next covert message which is received by the
decoder at around 28.8 seconds.

Fig. 7 depicts the data rates of the CLACK chan-
nel for EFF.SND.MSS = {365, 730, 1460} and PLR =
{0, 0.02, 0.04, 0.06, 0.08}. The figure plots an average of the
results obtained from three independent experiments. The
results show that when the network is lossless, the maximum
data rate is about 229.3 bps. Note that the CLACK encoder
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Fig. 6. Experiment results for a CLACK channel under a PLR of 4%.

conveys an 8-bit covert message in each RTT during this ex-
periment. Thus, the theoretical data rate is8×(1/0.032) = 250
bps, which is quite close to the experiment result. Moreover,
the channel data rate can be further increased by embedding
a larger covert message in each partial ACK. For instance,
when the maximum value ofEFF.SND.MSS is 1460 under
the same network environment, the theoretical maximum data
rate can be increased to 44.6 Kbps.

Besides, CLACK provides lossless covert communication
at the expense of a lower data rate. Fig.7 shows that the
data rate drops with the PLR. With PLR= 0.08, for example,
the data rate drops to at most 29.3 bps. Moreover, using a
smallerEFF.SND.MSS generally yields a higher data rate,
except for the case ofEFF.SND.MSS = 0.08. A smaller
data segment requires a shorter time to transmit; therefore,
the next partial ACK can be clocked in a faster manner. The
exception is due to the adverse effects of the severe packet
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losses and retransmission timeouts which outweigh the benefit
gained from using a smallerEFF.SND.MSS.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed CLACK, a new covert
channel via TCP data channel. Previous approaches based on
direct encoding in IP and TCP header fields are susceptible to
various unpredictable network events. In contrast, CLACK’s
partial encoding method provides reliable covert channelsand
is resilient to packet reordering and variable network delay. We
have implemented and validated CLACK on a test bed. One of
the important benefits of basing covert channels on TCP is the
difficulty of detecting them without keeping states about the
connection. Therefore, an important future work is designing
algorithms to detect CLACK with minimal state information.
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