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Abstract

Onion Routing is today’s typical substrate for anonymous near-real-time communication. Via layered encryp-
tion, Onion Routers such as TOR [7] or Tarzan [8] build a static tunnel through a peer-to-peer relay network. All
traffic exchanged between two end points uses one and the same tunnel, making the design susceptible to attacks
based on pattern analysis. Recent publications [12] even extend this theoretical threat by showing the practical
feasibility of a pattern analysis attack on the deployed TOR system.

In contrast to today’s anonymous communication systems, Core routes each packet a different communication
path and so is not susceptible to this class of attacks. Furthermore, inspired by IP-routing the connectionless
approach reduces the complexity of the Onion Router.

In this paper, we describe the design of our Connectionless Onion Router, evaluate its performance, and address
the communication overhead. We present address virtualization to abstract from Internet addresses and to provide
transparent application support. Thus, no application-level gateways or proxies are required to sanitize protocols
from network level information. Acting as an IP-datagram service, our scheme provides a substrate for anonymous
communication to a wide range of applications using TCP and UDP.

1 Introduction

Increasing censorship and the erosion of privacy in digital communication and particularly the Internet chal-
lenges the freedom of speech. Individual communication and private information is becoming subject to moni-
toring and surveillance of government and corporate institutions. Around the world, governments have tried and
often succeeded in blocking access to web sites and information considered subversive and not suitable. Even the
actions of European and US governments raise questions about privacy and civil liberties; for example, the Federal
Bureau of Investigations surveillance system Carnivore, the Patriot Act, and the European Union’s “Convention
on Cybercrime”. These give the authorities in the US and the European Union a wide range of powers to intercept,
log, and record personal digital communications.

The research community proposed Onion Routing [17] as an answer to such challenges to everybody’s privacy.
Using Onion Routing, a host can connect to a server through a set of mix relays and thus hide its identity. Layered
encryption ensures that each hop in the relay network can only decrypt the address of its successor in the relay
chain.

When a node communicates to a server, it uses a static route through the mix network. As this route remains
the same until the communication between the server and the node has ended, the connection-based design of
today’s Onion Routers enables attacks against the user’s anonymity [12] or the recipient’s anonymity [13]. To



attack a connection, the adversary applies a traffic pattern to one of the relays of the connection. This pattern then
interferes with the communication between the server and the node and can thus be measured at both of them.

Instead of using a static route between two nodes, Core routes each packet along a different path to its destination
– making pattern attacks, as the one described above, useless. Furthermore, the connectionless design is inspired
by the IP-routing in the Internet. Thus, a relay does not maintain state and flow information for the connections as
in TOR. This reduces the complexity of the design and the architecture, allowing for small memory footprints and
the ease of implementation of Core nodes.

The remainder of this paper is structured as follows. First, section 2 addresses related work and discusses
the differences to our approach. Section 3 gives a deeper insight into TOR and the pattern-based attack. Next,
section 4 presents Connectionless Onion Routing as our solution to this class of attacks and discusses the design
challenges we faced. Section 5 discusses anonymous services and section 6 addresses threats to anonymity. Next,
section 7 evaluates the performance of the proposed approach. Section 8 discusses future work and concludes the
paper.

2 Related Work

In this section, we address the shortcomings of today’s near real-time anonymous communication schemes.
Their design principle is the Chaumian Mix [4], in which e-mail traffic is forwarded through a set of cascading
mixes to hide the sender’s identity. The traffic enters one of the mixes and leaves the mix network at some random
point. To reduce the impact of malicious mixes, the route through the mixes is set up via layered encryption. Thus,
each mix only can decrypt the information about its successor in the cascade. Based on this design, various systems
have been proposed enabling near real-time communication for services like web browsing: Onion Routing [17],
TOR [7], Freedom [3] and Web Mixes [2]. They use a static set of relays and therefore suffer from drawbacks
like limited scalability and fault tolerance. Furthermore, they are easy to attack via Denial of Service or legal
approaches, as the set of mixes is well known. Systems like MorphMix [14] and Tarzan [8] avoid this problem
since they are based on peer-to-peer networks. However, they suffer from the dynamics of an overlay network
and the limited bandwidth each node can provide. All the above mentioned systems rely on static routes and are
thereby susceptible to pattern-based attacks.

To our best knowledge, our work is the first to propose Connectionless Onion Routing, i.e. to route each packet
along a different path for low latency anonymous networks. The closest work to Core is a theoretical paper by
Serjantov and Murdoch [15] about splittinglarge messages in remailer systems [6, 11]. It analyzes the usage of
independent routes for each packet of a message to prevent an eavesdropper at the first mix from determining the
message size and therefore being able to correlate this with an eavesdropper located near other mix nodes. As
nodes are repeatedly used as first relay in a path, the packet flow is exponentially distributed to prevent the first
relay from estimating the message size. This theoretical analysis primarily refers to remailer systems. However,
in private communication, its authors confirmed that most arguments also apply to onion routing.

3 Background

In this section, we present a deeper insight into “The Onion Router” (TOR) and the pattern-based attack. It is
necessary to discuss both in more detail as the attack against anonymity is one of the motivations for our work.

3.1 Understanding TOR

The TOR network is designed to provide anonymous TCP connections to arbitrary Internet servers. The network
consists of hundreds of nodes that relay traffic and thereby hide the stream’s origin. Data flow in TOR is similar
to conventional circuit switched networks, as each TOR node represents a switch. The initiator of a TCP stream



creates a TOR circuit by connecting to a first randomly selected TOR node (relay). With a Diffie-Hellmann key
exchange, both negotiate a secret key and thereby establish a secure channel. Via the relay, the initiator can connect
to further TOR nodes and thus build a chain of relays. Commonly, TOR uses three relay nodes.

Messages are encrypted multiple times (layered encryption). Each relay removes one layer of encryption to
determine its successor and to change the cipher text. Thus, no correlation of incoming and outgoing streams is
possible. Furthermore,the layered encryption ensures that each node only knows its successor on the path.

The last TOR node in the chain is the exit point. Via this node, the initiator can connect to standard web servers
or set up ssh sessions to arbitrary nodes in the Internet.

3.2 Attacking TOR

After discussing TOR’s architecture, we introduce the pattern-based attack [12] in this section as an example
of an practical and feasible attack on this network. All connections relayed by a TOR node share its limited
bandwidth and processing power. For example, when one node relays traffic for two other nodes, they share the
available bandwidth equally. Thus, relayed connections interfere with each other. To attack the TOR network, the
adversary needs to control a TOR node (the threat model allows for malicious TOR nodes) and send a specific
traffic pattern to a selected TOR relay. As the bandwidth of the relay is shared, this traffic pattern will interfere
with the existing streams of the node. Therefore, the pattern can be retrieved with conventional traffic-analysis
techniques [5] from the nodes that relay the attacked streams. Furthermore, for the same reason it can be seen at
the source and destination of the stream. Thus, communication in TOR is not anonymous anymore.

The attack is based on the fact that TOR nodes have limited bandwidth which is shared between all relays.
Therefore, any participating node can perform this attack, making it possible even for adversaries with few re-
sources to threaten anonymous communication in the TOR network.

4 Introducing Core

This section introduces our solution to the attacks presented in the previous section. In particular, we discuss
the architecture of the Connectionless Onion Router.

Today’s Onion Routers operate connection oriented. Thus, when the tunnel is set up, each relay stores session
information, e.g. symmetric keys, state information, successor, and predecessor. As Core operates connectionless,
such a session setup cannot be done1 and is unnecessary2. Therefore, in Core, each packet needs to maintain the
information about all relays in path and the corresponding asymmetric keys.

Core uses elliptic curve cryptography based Diffie-Hellman key exchange to generate symmetric keys for de-
crypting the information about the successor on each relay. Assume that the sender has generated a public / private
key pair and that it knows the public key of the relay. From its own private key and the relay’s public key, it
can retrieve a shared secret, i.e. a symmetric key. With this key, it encrypts the information about the next hop(s)
and the destination. By adding its own public key to the header, it ensures that the relay itself can retrieve the
symmetric key and determine its successor on the path (see Fig. 1). By applying this scheme to each hop, Core
ensures that each relay knows only about its successor. Additionally, padding packets to constant length prevents
relays from identifying the length of the path and their position in it.

To reduce the computational and the bandwidth overhead we use elliptic curve cryptography (ECC). Compared
to RSA, ECC keys are much shorter. We use a key length of 192 bit, which has a security level similar to 2048
bit RSA keys. Additionally, encryption, decryption, key generation, and elliptic curve based Diffie-Hellmann key
exchange (ECDH) are significantly faster than in RSA-based schemes [10].

1This is good for security reasons.
2This is good to achieve a small memory footprint.
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Figure 1: Path information: similar to onion routing, the layered public key encryption ensures that each hop can only
determine its successor.

Additionally, the sender adds a return route – leading back to itself – to the packet. Using this return route, the
receiver can send an answer back to the sender. When forwarding a packet, a relay stores the previous and next
relays and the corresponding key for some minutes to prevent the reuse of routes. This is important as the repeated
use of a route would enable the pattern attack and so threaten the anonymity of the path destination.

4.1 Path Concatenation

So far, we discussed how a sender can communicate with a known receiver. However, we did not discuss how
the receiver itself can stay anonymous.

We propose a path concatenation scheme to enable receiver anonymity. An anonymous service (hidden service)
publishes a route to itself in some out-of-band media (see section 4.2). The sender retrieves this information and
adds its own hops to the route by adding more layers of encryption to the path section. For example, assume
that Bob offers an anonymous service, that Alice wants to communicate to this service, and that she retrieved a
route to the anonymous service. First, Alice selects a number of random nodes to relay her traffic in order to stay
anonymous herself (see Fig. 2). Next, Alice concatenates the nodes she selected and the communication path she
retrieved. Thus, she selected the head and Bob the tail of the path (see Fig. 1) and both stay anonymous.

Furthermore, the Core design has to ensure that nobody can impersonate an anonymous service and offer –
potentially malicious – own services instead. We use public / private key-based signatures to protect against
impersonation. Thus, Bob computes a key pair and the public key becomes his anonymous identity. When Bob
publishes a path section, he signs it with his private key. Knowing Bob’s anonymous identity, a Core node can
verify the issuer of the path sections.

4.2 Service Directory

As discussed in the previous section, Core needs a lookup service to provide paths to anonymous services. In
Core, the service directory provides this information. To hide its identity, a Core node communicates with the
service directory anonymously. In more detail, it provides the following services:

• Relay discovery: each Core node can retrieve other Core nodes from the directory and use these to relay
traffic. Furthermore, it registers itself as relay. Retrieving Core nodes can be done anonymously or directly
to enable bootstrapping.

• Virtual IP addresses: to address anonymous services, each Core node can retrieve a virtual IP address
(e.g. 10.2.3.79) from the service directory. This IP address is unique in the Core system and other nodes can
use it to address and to connect to a service.
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Figure 2: Sender and receiver independently select a number of hops on the anonymous communication path.

• Name Service: next to virtual IP-addresses, we allow Core nodes to register a domain name.

• Path sections: to connect to a service, the sender needs to retrieve a path section pointing to the desired
service. Thus, a service can store such path sections in the service directory.

The service directory can either be a highly scalable and redundant peer-to-peer network (e.g. a DHT) or a set
of dedicated machines. When communicating with the service directory, a Core node signs its messages to prove
its anonymous identity.

4.3 Key Caching

Core benefits from elliptic curve cryptography as its keys are shorter and cryptographic operations are signifi-
cantly faster than traditional RSA. These two factors make the design of a Connectionless Onion Router possible.
However, ECC is still slower by an order of magnitude than symmetric key operations [10]. Thus, Core caches
keys to reduce the number of ECC operations drastically.

Packet forwarding consists of two operations. First, a relay computes the symmetric key via Diffie-Hellmann
key exchange and then it decrypts the packet with this symmetric key. Of these two operations, the Diffie-Hellmann
key exchange is the more computationally expensive one, as it bases on asymmetric cryptography. Thus, Core tries
to reduce the overhead of this operation.

When a Core node uses a relay again, at any point in the relay path, it will reuse the same key set with a certain
probability. Thus, the sender and the relay cache the asymmetric and symmetric keys for a while. When the key is
reused, the sender and the relay do not need to recompute the symmetric key. Our evaluation (see section 7) shows
that key caching can drastically increase the throughput of the Core system. Note that this technique allows the
relays, sender and receiver each two distinctive choices: sender and receiver have the choice to decide themselves
between performance and confidentiality, while relays have the possibility to choose a tradeoff between processing
power or memory. While both choices are independent, we expect this feature to have a very positive impact on
the deployment.

4.4 Legacy Support

For a fast adoption of Core by a wide user range, it is necessary that the user can reuse his unmodified net-
working applications in the Core environment. Commonly, networking applications use TCP and UDP protocols,
which depend on the IP protocol. To provide support for such legacy applications Core resides on the network
level and is transparent to applications, i.e. Core provides an IP overlay to the application.

It is necessary that the outgoing packets of a Core node do not contain any information about its real identity,
e.g. its IP address. Other anonymous communication schemes use application-level gateways or proxies, but this
requires the gateway or proxy to know the protocol formats of all used applications. Due to the large number
of exiting application level protocols we do not consider this engineering effort reasonable. Furthermore, some
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protocols are proprietary and their formats are not published. We address this problem by using an “anonymous
communication stack” which is assigned an virtual IP address, e.g. 10.2.3.79 (see Fig. 3). The essence of this
address virtualization technique is to abstract away any information about the identity of a node while remaining
compatible with the IP addressing scheme and applications that depend on it.

We use the service directory (see section 4.2) to assign unique virtual IP addresses to each node. As an alterna-
tive, we discussed deriving the node’s IP addresses from its public key. However, the IP address space is too small
to avoid collisions which renders this approach infeasible.

4.5 Naming Service

For a seamless integration of existing applications, a name service is required. Users need a way to address
anonymous services and to distinguish them from Internet-based ones.

Thus, we provide a name service, which is transparent to the existing Domain Name Service (DNS), in order to
map between DNS requests and anonymous services. Thus, users can enter http://www.freespeech.anon
into their web-browsers and connect to an anonymous service. When a .anon domain is queried, the system sends
a DNS request in order to resolve this domain. Our scheme reroutes this request to the Core service directory
and determines the virtual IP address and corresponding communication paths from the service directory. To
distinguish between traditional domain names and the anonymous ones, we introduce new domain names, like
.anon, as used in the previous example.

5 Core and Internet Services

In this section, we discuss how services can be deployed in the Core network. We distinguish two classes of
services: (1) anonymous services and (2) exit points.

As Core is an IP overlay, a Core node can provide the same services as a server in the Internet. Thus, it can run
a web server, ftp server, ssh, content distribution, or streaming services. Introducing the virtual .anon domain
makes it very intuitive for the user to connect to an anonymous service.

Furthermore, a node can act as exit point. Exit points bridge between the Core network and the Internet itself.
Therefore, a Core node can communicate anonymously to any Internet based service, for example a web-site,
via an exit point. An exit point can provide access at two different protocol layers: (1) it can operate at the
network level and act as NAT device or (2) it can operate at application level, for example as an HTTP-proxy. As
Core operates is accessed from the applications via the virtual NIC, standard off-the-shelf http-proxies and NAT
software can be used. Additionally, we allow the operator of an exit point to introduce their own exit policies by
restricting protocol types, destinations, and consumed bandwidth.
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Figure 4: Seamless integration of existing applications into the anonymous communication scheme: in this example, Alice
uses a web browser to request the site http://www.freespeech.anon from an anonymous web server.

Compared to many other existing anonymous communication schemes [8, 14], Core provides a seamless inte-
gration of anonymous services and exit points with the overall architecture.

5.1 Communication Example

Connecting to a service in the Core architecture consists of two steps: (1) retrieving a path to the service and
(2) communicating to the service itself (see fig. 4). In this section, we discuss these two steps in more detail. Let
Alice connect to the service www.freespeech.anon and assume that Alice knows some Core nodes that can
relay traffic for her.

Alice enters www.freespeech.anon into her web browser. As a result, the web browser sends a DNS
query to resolve the domain name. In the network stack, the Core application intercepts all queries for the .anon
domain and thereby ensures that the query does not leave the host and leaks information about Alice’s intentions.
Instead of communicating to a standard DNS server, the Core application queries – via a number of relay hosts
– the service directory. From the directory, it retrieves the virtual IP address of www.freespeech.anon and
some paths to it. After retrieving this information, the Core application sends a fake DNS reply back to Alice’s
web-browser. Next, the web-browser initiates a number of TCP connections to the web-site. As the destination
address is a virtual IP address, packets are routed via the anonymous communication stack into the virtual NIC.
Thus, the Core application relays them anonymously into the CORE network.

6 Analyzing Core’s Security

In this section, we analyze the security of the proposed anonymous communication scheme. We present our
threat model and discuss threats to anonymity and privacy.



6.1 Threat Model

Commonly, a global passive adversary is the assumed threat when analyzing theoretical anonymity designs.
However, like all practical anonymous communication schemes that are scalable and enable low-latency commu-
nication, Core can not protect against such a strong adversary. Furthermore, similar to its predecessors, Core does
not prevent (usually long-term) intersection attacks by local adversaries.

We assume a practical adversary which can:

• observe a limited part of the network

• participate in the Core network with a limited number of relays.

• participate actively by offering a service, e.g. running a web server.

• influence communications by generating, delaying, dropping, and modifying traffic content and patterns.

6.2 Passive Attacks

In this class of attacks, the attacker does not actively participate in the Core network.
Content observation: as communication traffic is encrypted, its observation does not reveal content.
Packet size correlation: packet size correlation is not possible in Core, as all packets are padded to equal length.
Source / destination observation: as traffic is relayed and packets do not include any information about the

number of hops, the first hop can not decide solely from receiving a packet if its predecessor is the source or a
relay of the packet. Similarly, the last relay can not determine whether it is the last hop.

Packet counting: in our usage scenario data rates and the amount of data are individual for a particular com-
munication. Therefore, an observer could try to correlate this information to follow a flow through the network.
However, as Core does not build tunnels through the network but sends each packet on a different path, intermedi-
ate nodes do not recognize the packets of one flow as such and, thus, can not count the packets of one flow.

When compared to the security provided by Tor, we see that Tor fails to provide security, if the first and last relay
of a circuit work together to identify the originator of a data stream. This is not only true for accessing external
ressources through the network, like e.g. accessing the WWW, but also for access to hidden services [13]. None
of these attacks can be applied to Core, as the path is selected randomly for each packet, the attacker only sees a
fraction of the traffic. Furthermore, it is recommended that Core nodes do not uniformly select first or last relays,
but unevenly according to some statistical distribution. Serjantov and Murdoch propose to use an exponential
distribution [15] in their work on anonymous remailers. As a consequence, the relays can not estimate the real
amount of data that is sent or received. Such an approach is important when the amount relayed traffic is small,
e.g. new nodes are only known by few nodes.

Core is also not susceptible to classical predecessor attacks [18] due to its onion routing, which distinguishes
it from Crowds. Note that there are currently no research results on the impact of onion routing on this class of
attacks.

Pattern observation: although traffic observation does neither reveal content nor sender and receiver, it may
reveal patterns. The arguments here are similar to the arguments for the packet counting attack. First of all, we
can state that flows are not sent over a constant path because each packet follows an individual, randomly selected
path. Patterns are therefore heavily distorted by the different delays of the various paths. Compared to existing
solutions, Core drastically reduces the possibility of application and data-specific patterns being revealed.

6.3 Active attacks

In this class of attacks, the adversary participates actively in the Core network.



Controlling relays: controlling multiple relays is probably the most dangerous attack. The multi-hop routing
results in a high probability of a packet traversing at least one compromised hop. An attacker which owns all
relays for a packet knows sender and receiver. However, a relay does not have any knowledge about its position
in the relay path nor the path’s length. Thus, the attacker must use statistical methods to determine the sender-
receiver relationships. Such an attack is only possible with either many compromised relays or with long-term,
high-volume communication relationships. To further mitigate this attack, nodes can select hops with diverse IP
addresses for a path. The assumption is that it is difficult for an adversary to compromise nodes with addresses in
different IP ranges [8].

Furthermore, nodes should not use long-lived identities, which is unnecessary for regular users of the system,
who can easily use session-based identities. An exception are anonymous services, which have to be reached via
their anonymous ID. An attacker could use multiple relays and active communication with a service to attack it.
Methods a service could use to mitigate the attack are using location-diverse relays, having a set of (more) trusted
relays, and non-static IP addresses for the service.

Offer a service: an adversary may offer an anonymous service. The service itself can not directly determine the
user as she protects her identity with her own path. However, this attack could be used by an attacker to attract a
particular set of senders to itself and its paths. This does not directly threaten the anonymity of the users, but could
be used in combination with other attacks.

Pattern insertion: an attacker may insert a pattern into the network in order to find the pattern in other places of
the network. As stated in the section about the passive pattern observation, such an attack is difficult in practice
as flows are only visible at the true end points of a communication and thus patterns can only be flow specific if
added directly at the end points. Furthermore, sending each message on a completely different path and each node
relaying high amounts of traffic makes it harder to detect patterns than in other existing systems.

Marking, tagging and replacing: end-to-end encryption and integrity checks prevent attacks on marking, tag-
ging, and replacing messages.

Replay attacks: replay attacks are addressed by frequent key changes as well as short time message hashing.
Nodes store a hash of each relayed message over a certain amount of time. Incoming messages are hashed and
only relayed when the hash has not been seen before.

6.4 Attacks against the service directory

Most of the attacks against the service directory are denial of service attacks. An attacker could continuously
request paths to a service and therefore make it inaccessible as paths can only be used once.

Other attacks include the impersonation of an anonymous ID. However, Core mitigates this attack by signing
the communication with the service directory with an anonymous identity (see section 4.2).

6.5 Attacks by the service directory

When a nodes registers itself as relay at the service directory, it needs to reveal its IP-address – otherwise it
cannot be used as relay. However, all other communication – including the assignment of virtual IP-addresses
– with the service directory is done anonymously through the Core network (see section 4.2). Thus, the service
directory cannot map a virtual IP-address to the actual IP-address of the corresponding node.

6.6 Forward Secrecy

Core does not support forward secrecy. Forward secrecy means that breaking a long-term secret, e.g. a private
key, does not allow to decipher recorded messages as the derived shared keys cannot be computed. The Diffie-
Helmann key exchange is the basis for adding forward secrecy to asymmetric cryptography. In Core however,



the Diffie-Hellmann secrets are solely used as public / private key pairs. Thus, Core does not provide forward
secrecy. Nonetheless, frequent key changes mitigate the danger of compromised keys. Additionally, asymmetric
cryptography can be expected to be secure for several years.

6.7 Concluding the security analysis

Core is designed to prevent pattern analysis and packet counting attacks inside the network. It improves the
anonymity in comparison to other systems for interactive near-real-time traffic in these crucial points.

Important measures to achieve this anonymity in addition to the basic design idea are:

• path length unlimited and random

• uneven distribution of flows among first or last hop

• location/IP-diverse paths

• avoid long-lived identities

7 Evaluating the Core Architecture

In this section, we evaluate the proposed architecture. First, we introduce implementation details, and then
present throughput measurements. Finally we discuss our ongoing work of deploying Core in the “wild”.

Core, in contrast to existing anonymous near real-time communication schemes, relays each packet via a dif-
ferent path (Connectionless Onion Routing), which results in interesting implementation challenges:

• Bandwidth and performance overhead: when each packet is routed along a different path, no relay tunnel
can be set up and no connection establishment is done. Therefore, no shared secrets can be bound to a
tunnel. Instead, Core has to rely heavily on asymmetric cryptography, which is computationally expensive.
Furthermore, as each hop through the mix cascade requires a key to be embedded in a packet’s header, Core
needs to deal with additional bandwidth overhead.

• Round-trip time variance: routing each packet along a different path results in a highly dynamic commu-
nication scheme. Some packets will be on routes with low round trip times due to proximity or low load
while other packets will have high round trip times. This results in packets being delivered out of order at
the final receiver. Since TCP misinterprets this out-of-order delivery as packet loss, its fast retransmission
mechanism leads to additional packets and a decreased overall throughput.

7.1 Implementation

We implemented Core on Linux. A Core node consists of two parts: (1) the relay service and (2) the virtual
network interface. For elliptic curve cryptography, we use the Sizzle code [9] which recently became part of the
OpenSSL library.

To relay a packet in the Core network, it needs to contain information about the next relay on the path, e.g. its
IP address and the port number. Furthermore, the packet needs to contain the key the decrypt all this information,
i.e. to remove one layer of encryption.

IP address and port account for six bytes. With the 192 bit ECC key and one reserved byte, this information fits
into a 32 byte header. Thus, Core’s overhead is 32 bytes per relay, which we consider reasonable. Additionally,
Core uses a cell size of 1000 bytes to further reduce the header overhead.
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Figure 5: Key caching allows a throughput of up to 2.5 MBit/s.

7.2 Performance

We deployed Core on our test network which consists of eight Linux hosts (5x Pentium IV 2.2 GHz, 3x Xeon
2.8 GHz) running Fedora Core 4, interconnected by a 100 MBit/s network.

Each host acts as relay and one of the hosts offers an anonymous service. Another one communicates to this
service via TCP. For the evaluation, sender and receiver use three relays each, resulting in a total of eight hops.
The overlay throughput, i.e. the net throughput that an application running on top of the Core overlay can use, is
depicted in figure 5. The evaluation shows that key caching can drastically speed up the throughput of Core as
it reduces the need for asymmetric cryptography. When making full use of key caching, the throughput reaches
2.5 MBit/s. Furthermore, our measurements show, that the throughput is limited by the two factors: (1) a large
number of TCP retransmission which are caused by the high round trip time varience and (2) CPU processing
performance, where the cryptographic operations mainly cause the processing load.

7.3 Core in the Wild

Currently, we are deploying Core in the wild on PlanetLab [1] hosts all over the world. Running a TCP stream
over the Core overlay on PlanetLab is challenging. Due to the high CPU load and bandwidth utilization of the
PlanetLab nodes [16], many packets are dropped. The ones that successfully make their way through the overlay
have round trip times up to several seconds, while others are routed on a fast path and reach their destination in less
than a second. As a result, TCP interprets this out-of-order delivery as packet loss and causes fast retransmissions,
which further decrease the performance.

We evaluated that (1) packet play-out smoothing to limit out-of-order delivery and (2) per-hop acknowledge-
ments reduce packet loss and thereby increase TCP performance. Nonetheless, it can be said that TCP was not
designed to cope efficiently with such dynamic overlays and round trip times. Currently, we are focusing on
the design and implementation of a flow control algorithm that can cope with such highly dynamic systems and
provide high troughputs.

8 Future Work and Conclusion

In this paper, we present a novel approach to anonymous Internet communication: Connectionless Onion Rout-
ing. Core routes each packet along a different path in an IP overlay. Compared to existing Onion Routers, Core is
not susceptible to pattern-based attacks. Its transparent architecture and name service allows a seamless integra-
tion of existing applications without changes to the applications or communication protocols. Core is implemented



transparently in the network stack via virtual IP addresses.
Elliptic curve cryptography and key caching reduce the header and performance overhead drastically. Our

evaluation shows that Core can reach a throughput of up to 2.5 MBit/s. However, our PlanetLab experiments
have shown that routing TCP streams over the highly dynamic Core overlay is challenging and proposes some
open research questions on which our current work focuses.Future work includes amongst others support for some
forward secrecy by adding a second public / private key pair for encryption only.

References

[1] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak.
Operating System Support for Planetary-Scale Network Services. In Proc. of Symposium on Networked Systems Design
and Implementation (NSDI), March 2004.
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