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Abstract. The Minimal-Hitting-Set attack (HS-attack) [10] is a well-known pas-
sive intersection attack against Mix-based anonymity systems, applicable in cases
where communication behaviour is non-uniform and unknown. The attack allows
an observer to identify uniquely the fixed set of communication partners of a par-
ticular user by observing the messages of all senders and receivers using a Mix.
Whilst the attack makes use of a provably minimal number of observations, it also
requires solving an NP-complete problem. No prior research, to our knowledge,
analyses the average complexity of this attack as opposed to its worst case.

We choose to explore the HS-attack, as opposed to statistical attacks, to
provide a baseline metric and a practical attack for unambiguously identifying
anonymous users. We show that the average complexity of the HS-attack can
vary between a worst-case exponential complexity and a linear-time complexity
according to the Mix parameters. We provide a closed formula for this relation-
ship, giving a precise measure of the resistance of Mixes against the HS-attack in
practice, and allowing adjustment of their parameters to reach a desired level of
strength.

1 Introduction

Modern research into network-level anonymity is widely regarded to have begun in
1981 with the introduction of the Mix by Chaum [3]. The Mix hides the linkage between
senders and recipients of messages by ensuring that all senders and recipients are a
member of some anonymity set.

The concepts underlying the Mix remain the basis for a wide variety of practical and
theoretical anonymity systems. Chaum’s model of the Mix, in its pure theoretical form,
provides an upper limit to what is achievable by these approaches and thus remains an
important subject for analysis. The work presented here provides insight into the limits
of the Mix model in practical use, and thus aims to guide choices involved in building
real-world implementations of Mix variants.

Although a Mix provides unlinkability between input and output messages with re-
spect to a global passive attacker, it cannot protect the links between senders and recip-
ients against long term traffic analysis attacks when the sender group is open [2, 9].

The anonymity property can be modelled with standard security techniques: a global
passive attacker model, which provides a strong but realistic adversary, and with the
creation of anonymity sets as a basis for the anonymity property that we seek to enforce.
We consider in this paper an abstract model called the Pure Mix [9] that can be used
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to model more complex practical Mixes [14, 15]. Analysis of this model is believed to
be applicable to other Mix models, with appropriate modifications, but these are not
addressed here.

Berthold et al. [2] introduced a class of long term traffic analysis attacks on the Pure
Mix, called intersection attacks, proving that Mixes with open sender groups cannot
provide long term unlinkability if each sender repeatedly communicates with a fixed
recipient. In practical usage, however, a sender may have several communication part-
ners and a less restrictive model is therefore needed. Kesdogan et al. introduced the
Disclosure [1] and Minimal-Hitting-Set (HS-) attacks [9, 10] for repeated communica-
tion with an arbitrary fixed set of recipients.

These attacks exploit the fact that a global passive attacker can selectively observe
only recipient anonymity sets in which a particular sender, referred to as Alice, con-
tributes a message. Given sufficiently many observations, Alice’s recipient set is the
smallest unique set intersecting each of the observations: the unique minimal hitting set.
Unfortunately, computing this minimal set is known to be an NP-complete problem [8].
Many popular current attacks against Mixes analyse statistical properties [4, 5, 6, 11, 16]
to deduce the most likely senders of given messages. These attacks, whilst allowing a
level of innaccuracy in results, have the advantage of being much more efficiently com-
putable.

We choose to focus on the Minimal-Hitting-Set attack for a number of reasons:
firstly, as the HS-attack uses a provably minimal number of observations [9], it pro-
vides an important theoretical baseline for exact identification of a sender’s recipients,
resulting a metric for Mix anonymisation. Secondly, as we show, it remains a genuinely
practical attack in many cases. As the attack is applicable to any distribution of user
communications, even when this distribution is unknown to the attacker [10], it applies
in many situations with unknown communication behaviour.

Finally, the underlying algorithmic structures related to the HS-attack, based on an
NP-complete problem, are themselves an important topic. The research presented here
sheds light on analysing the average case complexity of NP-complete problems, and
thus those cases in which such problems are computationally tractable.

Contribution. This paper contributes, to our knowledge, the first robust and detailed
security analysis of the Mix system based on the average computation required to unam-
biguously identify users with a provably minimal number of observations. It derives, for
a given set of Mix parameters, a direct relationship between the number of observations
required for identification and the average-case runtime complexity of the attack.

Our analysis is applicable to non-uniform user communication, and allows us to
identify Mix parameters for which unambiguous identification of recipients is intract-
able in the average case. We also identify instances in which recipients of a sender can
be efficiently identified by the HS-attack, providing a provably correct alternative to the
more popular statistical approaches.

We show that the NP-completeness of the algorithm deployed by the HS-attack rep-
resents only a worst-case attack complexity, which provides a poor characterisation
when considering systems where the average time to failure is of greater relevance.
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In this work, therefore, we explore the complexity structure of an exact attack in
order to determine the average-case complexity, and provide closed formulas that show
the relation between the parameters of the Mix and the average-case complexity re-
quired to compromise its anonymity.

The Mix model we employ has been used to model practical Mix implementations
such as Mixminion and Mixmaster [7, 15], as well as in other analyses [2, 1, 4, 9, 5,
16, 13].

Related Work. A security metric makes a quantitative statement concerning the re-
sistance of a system to an attacker. Our attack model consists of a passively observing
attacker against a given anonymity system. The attack that we consider relies solely on
observations of this anonymity system. The success of the attack is therefore dependent
on the attacker’s knowledge, and knowledge gain, and on its computational capabili-
ties. This form of attack is well known as passive traffic analysis attack in the literature.
These attacks are hard to thwart, as they exploit the information leakage inherent in all
anonymity systems.

Statistical long-term traffic analysis attacks are closest to our approach. These ad-
dress cases in which Alice’s communication behaviour reveals statistical patterns that
allow identification of her likely recipients. By relaxing the requirement for absolute
correctness, these attacks gain significant computational efficiency.

Greedy variants of the HS-attack, the SHS- and HS*-attacks, were suggested in [10].
These compute hitting sets guided by the frequency with which a peer was contacted
while under observation. The result of the SHS-attack is a hitting set that is consistent
with the observations made by the attacker, but which can miss Alice’s real recipients
(exclusion-error) or contain recipients not contacted by Alice (inclusion-error). In con-
trast to the SHS-attack, the HS*-attack accepts the greedily computed hitting set only if
it is a unique smallest minimal hitting set. This attack can identify Alice’s recipient set,
but risks producing no result.

The Statistical-Disclosure attack (SDA) [4, 11, 6, 5] introduces the class of statistical
attacks that focus on the likelihood that a single recipient is in Alice’s recipient set.
These attacks typically assume some knowledge of the distribution of communications
amongst untargeted users, which must remain static during the attack. This approach
introduces the possibility of both inclusion and exclusion errors, but results in much
more efficient attacks. While both approaches provide advantages, a comparison of their
relative effectiveness is beyond the scope of this work, and we will not discuss these
attacks further.

One attack of note is the Perfect-Matching-Disclosure-attack (PMDA) [16], which
applies statistical attacks to successively weight links between all senders and receivers
in a Mix network. This more sophisticated statistical attack builds user communication-
pattern profiles to inform its inferences, and allows for tradeoffs between accuracy and
speed in disclosing communication links. Again, however, the nature and effectiveness
of this attack is largely out of the scope of the current work, which focuses exclusively
on provably correct attacks in order to provide a baseline metric for anonymity in Mixes.
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Structure. Section 2 presents the Mix and attacker model used in this paper. The attack
that we present is based on the ExactHS algorithm [12, 13] that computes all minimal
hitting sets, in this case for sets of a user’s possible communication partners. The results
in this paper enable us to determine the average-case complexity of this algorithm, and
thus the average complexity of unambiguously identifying a user’s set of communica-
tion partners.

Proving the identity of a user’s communication partner set is equivalent to proving
that all other possible sets of recipients cannot be the user’s partner set: a disproof of
these sets. Section 3 presents our theoretical model that describes the number of peers in
a possible set of recipients that must be considered in order to disprove it. The average
worst case of this number of peers is derived in Sect. 4.

Section 5 applies our analyses to the ExactHS algorithm in order to obtain formulas
for the average worst case complexity of identifying peers, and shows how this relates
to the required number of observations. To support our theoretical results, we compare
our analysis to simulations in Sect. 6. We provide conclusions and ideas for future work
in Sect. 7.

2 Mix and Attacker Model

2.1 The Pure Mix Model

We consider the Pure Mix technique, as justified in [9], as a generalised and simplified
model of practical real-world Mixes.
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Fig. 1. Mix model

Our attacker model is that of a global
passive attacker that observes all commu-
nication, but cannot inject, delay or alter
messages. From this basis, we will use the
following formal model of a pure Mix and
information leakage for our analysis.

Formal Model of the Pure Mix Technique.

– A communication system consists of a set of senders, S, a set of recipients, R, and
a Mix node1 as shown in Fig. 1. If a sender s ∈ S communicates with a recipient
r ∈ R, then we say that r is a peer partner of s, or simply r is a peer of s.

– In each communication round2 a subset S′ ⊆ S of all senders each send precisely
one message to their peer partners. Let R′ ⊆ R be the set of intended recipients.
The act of sending or receiving a message is not hidden to the attacker, therefore
(S′, R′) represents the information leakage available to an attacker in each round.3

1 S and R represent all users with the ability to send or receive messages in the system.
2 A communication round consists of the Mix node collecting messages from a fixed number of

distinct senders and, after applying the “Mix” protocol, forwarding the collected messages in
random order to their intended recipients.

3 Note that a sender can send to multiple recipients in distinct rounds, but cannot send multiple
messages in a single round.
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– We call S′ the sender anonymity set, which is the set of all senders that may have
sent a given message. The recipient anonymity set R′ is the set of all recipients that
may have received a message.

– We label the size of the sender anonymity set, |S′|, as b.
– The size of the recipient anonymity set, |R′|, is less than or equal to b, as each

sender sends exactly one message per round but several senders may communicate
with the same recipient. The size of the set of all recipients is |R| = N .

Attacker Model. The goal of the attacker is to compute, from a set of observations of
traffic, all possible sets of peer partners of a target sender Alice ∈ S. These possibilities
form hypotheses for the true set of Alice’s peer partners, HA, which is assumed to be a
fixed set of size m = |HA|. We call a peer r ∈ HA an Alice’s peer; a peer that does not
communicate with Alice, r ∈ R \ HA, is called a non-peer and r is simply called peer
if no distinction is required.

The attacker focuses on revealing Alice’s peers by observing only those pairs
(S′, R′), where Alice participates as a sender. Under this condition we refer to the corre-
sponding recipient set R′ as an observation,O. The set of all observations collected dur-
ing t communication rounds is referred to as the observation set OS = {O1, . . . ,Ot}.

Alice’s peer set can be revealed by the Minimal-Hitting-Set attack (HS-attack) [10],
which computes all hypotheses from the set of observations. These hypotheses corre-
spond to all sets of size m that are hitting sets in OS . A hitting set is a set that intersects
with all observations in OS . A hitting set is minimal if no proper subset of it is a hitting
set. The HS-attack succeeds if OS is consistent with only a single hypothesis. In this
case Alice’s peer set is unambiguously identified, and is thus the smallest unique mini-
mal hitting set of size m. This attack has been proven to require a minimal number of
observations to identify HA[9].

In applying the HS-attack, we assume that the size of Alice’s peer set, m, is known,
since learning m does not change the complexity class of the attack.

Learning m. The intuition behind our attack is that at least one of Alice’s peers must
appear in each observation4, while this does not hold for any other set H, where HA �⊆
H. Therefore, after a large number of observations, t, Alice’s peer set HA remains the
unique smallest minimal hitting set.

Assume the existence of a set in which H �= HA, where |H| < m happens to be a
unique minimal hitting set. If p is the probability that any peer in H appears in a random
observation, the probability that H remains a hitting set after t observations decreases
according to an exponential function pt. The probability of learning the wrong set of
Alice’s peers and the wrong value of m by the HS-attack is therefore negligible even
for moderate t.

We can learn m in time
∑m

m′=1 O(bm′
m′tb) = O(bmmtb) by running the HS-attack

for m′ = 1, . . . , m with respect to the same t observations according to equation (2).
If m′ < m, then there will be no hitting sets of size m′ and HS-attack thus detects
incorrect m′.

Multiple Sending per Round. We assume that each sender sends only one message
in each round to simplify the Mix model and our analysis. The HS-attack remains

4 Recall that an “observation” refers to a round in which Alice participates.
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applicable, however, if a sender can send multiple messages per round. This altered
model does require slight modifications to the algorithm deployed by HS-attack, and
thus a minor modification to the analysis. Due to space limitations, we omit this ex-
tended model here. Therefore, investigating the relation between the results from the
simple model and from the extended model will be left for future work.

2.2 ExactHS Algorithm

ExactHS [12, 13], described in Alg. 1 determines the hypotheses in the Minimal-
Hitting-Set attack. Unlike the original HS algorithm proposed in [10], which analyses
all

(
N
m

)
hitting sets, ExactHS considers only minimal hitting sets and thus drastically

reduces computation [12, 13].
The method used by ExactHS to determine hitting sets corresponds to the theoretical

model in Sect. 3, allowing us to apply the analyses of Sect. 4 to determine the average
case complexity for unambiguously identifying Alice’s peer set.

ExactHS recursively computes all minimal hitting sets with respect to the attacker’s
observation set OS . We use the following notation:

C: Set of at most m suspected5 peers representing a subset of a possible hitting set. It
is initially empty.

OS[r]: Set of observations containing peer r, that is {O ∈ OS | r ∈ O}. |OS[r]| is
called the frequency of r. |OS[r]| is 0, if r is not in any observations of OS .

OS[{r1, . . . , rk}]: Set of observations containing any r1, . . . , rk, that is
⋃k

i=1 OS[ri].

We now describe in detail the steps taken by ExactHS on a line-by-line basis, as shown
in Alg. 1.

Algorithm 1 ExactHS
1: procedure EXACTHS(OS ′ , m′, C)
2: ifOS′ = {} then
3: return C � C is a hitting set
4: else if m′ ≥ 1 then � add a peer to C, if C contains less than m peers
5: chooseO ∈ OS′

6: while ({} �∈ OS′) ∧ ( max
r1,...,r

m′
{∑ m′

l=1 |OS′[rl]|} ≥ |OS′|) do

7: choose r ∈ O � r will become element of C
8: EXACTHS(OS′ \ OS′[r], m′ − 1, C ∪ {r}) � select remaining (m′ − 1) peers of C
9: OS′ ← ⋃

Ol∈OS′{Ol \ {r}} � remove r in all observ. ofOS′

10: O ← O \ {r} � do not choose r in this recursion level again

The computation of the minimal hitting sets is initially invoked by calling the algo-
rithm ExactHS (OS, m, C). For ease of reference we denote sets computed in the i-th
level of recursion with the subscript i. Thus Ci,OS ′i represents the sets calculated by
ExactHS at the i-th recursive call of the algorithm. At each level of recursion in the
algorithm, recursing to the next level extends the current set of peers Ci by exactly one
peer, r, at Line 7 of Alg. 1. This peer is chosen from a designated observation O ∈ OS′i
determined by the algorithm in Line 5. Thus: Ci+1 = Ci ∪ {r}.

5 During execution, C either becomes a minimal hitting set, or it will be proved not to be a subset
of any minimal hitting sets.
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OS ′i+1, defined at Line 8, results from removing all observations intersecting with r
in OS ′i; we need only focus on those observations that have not already been evaluated
by Ci ∪ {r} in earlier recursive calls.

If, at Line 2, the algorithm detects that all remaining observations in OS′i+1 intersect
with Ci+1, Ci+1 is proven to be a hitting set, and ExactHS will not compute any set
containing this Ci+1 in the future. Line 6 will also detect if Ci+1 is not a subset of
any hitting set; this also causes any set containing it to be ignored in future levels of
recursion. We refer to sets excluded by the algorithm as finalised sets.

After a selection of r in recursion level i, ExactHS removes, at Line 9, r from all
observations of OS ′i and, at Line 10, from the designated observationO. The algorithm
thus extends Ci with a new peer r′.

ExactHS stops choosing new peers if it detects, at Line 6, that the cumulative fre-
quency of all remaining m′ peers is lower than the number of remaining observations;

that is, if maxr1,...,rm′{
∑m′

l=1 |OS ′[rl]|} �≥ |OS′|. Further explanations are in Sect. 5.

Complexity. ExactHS creates a finalised set C by starting with an empty set C = {}
and adding the i-th peer to C in the choice phase of the i-th level of recursion, starting
at line 6 of the algorithm. The number of recursive invocations of the choice phase is
bounded from above by m.

In each choice phase there are at most b possible choices of a peer ri, as only peers
r1, . . . , rb of a fixed observation O can be selected. Due to the bound m for the number
of recursive invocations of the choice phase, and the bound b for the number of choices
in each phase, the algorithm computes at most bm minimal hitting sets. This bound
is tight, and determines the worst case runtime complexity O(bmmtb) of ExactHS, as
proved in [12, 13]. t = |OS| is the number of observations collected by the attacker
and mtb is the effort required to construct one finalised set.

Let us consider a concrete example with the parameters m = 2, b = 2, the Alice’s
peer set HA = {1, 2} and the observations {1, 3}, {2, 4}. Here, ExactHS would com-
pute bm = 4 minimal hitting sets, namely: {1, 2}, {1, 4}, {3, 2}, {3, 4} .

In general, however, if ExactHS were to prove at level x ≤ m that a set is, or is not,
a hitting set, then the number of finalised sets computed by ExactHS is bounded from
above by (1) and the runtime is bounded by (2). The space complexity of ExactHS, as
proved in [12], is O((x + 1)tb), which is linear.

Maximal number of sets: bx (1) Runtime: O(bxmtb) (2)

Hitting Set Structure. In order to make a more detailed analysis of the ExactHS al-
gorithm, we partition the set of minimal hitting sets of size m. Let H be a minimal
hitting set where |H| = m. We therefore assign it to one of the m + 1 disjoint classes
H0, . . . Hm with the following structure:

H0 = {HA} and Hj ⊆ (R \ HA)j ×Hm−j
A , for j ≤ m . (3)

A minimal hitting set H belongs to the class Hj (H ∈ Hj), if and only if it contains
exactly (m − j) distinct Alice’s peers and j distinct non-peers. The class H0 contains
exactly one set, Alice’s peer set HA, and Hm represents minimal hitting sets consisting
of only non-peers of Alice.
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3 Estimation of the Number of Covered Observations

This section focuses on the complexity theoretic security of the Mix. We therefore as-
sume that the observations in OS collected by the attacker provide sufficient informa-
tion for the unambiguous identification of Alice’s peer set HA. The main question we
wish to answer is:

1. What is the average time complexity required to prove that HA is a unique minimal
hitting set?

Proving uniqueness of HA in OS is hard as there are exponentially many possible
hitting sets H = {r1, . . . , rm} �= HA that need to be disproved with respect to OS. To
mitigate this problem we avoid disproving all individual sets H answering the following
question:

2. How many peers in H must be chosen to prove that H is not a hitting set?

We choose peers r1, . . . , rx ∈ H by determining all observations including C
= {r1, . . . , rx}, which we denote OS[C]. Given these chosen peers we know the obser-
vations OS \OS[C] that have not yet been considered. We refer to the remaining peers
in H as non-chosen. Whilst a peer is non-chosen, we do not known which observations
contain that peer.

Assume, without loss of generality, that after choosing these x peers in C ⊆ H we
know that H cannot be a hitting set, because the cumulative frequency of the (m − x)
most frequent peers in OS \OS[C] is less than |OS \OS[C]|. In this case we prove not
only that H is not a hitting set, but also that any superset H′ of C cannot be a hitting set,
where |H′| = m.

In general, if we know that every set can be disproved after choosing on average x
peers, then using (2) the average runtime complexity of ExactHS is approximated by
O(bxmtb), which answers our first question. A more detailed justification and discus-
sion of this complexity is provided in Sect. 5.

The rest of this section provides the theoretical model for answering the question of
how many peers in H must be chosen to prove that H is not a hitting set. The answer
will be derived in Sect. 4.

3.1 Potential

In this section we introduce the definition of the potential: our estimation of the number
of distinct observations covered by a set H in a given observation set OS. This value
allows us to estimate the number of peer choices required to disprove a set, and thus
to understand the complexity of ExactHS. Note that this ”estimation” is part of our
analysis of the complexity, and does not affect the exactness of the attack itself.

We assume without loss of generality that all considered sets are of the structure
H = {r1, . . . , rx, rx+1, . . . , rm}. Each ri represents a distinct peer, and the number of
peers is |H| = m. The first 0 ≤ x ≤ m peers r1, . . . , rx are always chosen, while the
remaining (m − x) peers are non-chosen. The potential of H is denoted by Po(H).

Po(H) = |OS[{r1, . . . , rx}]| + |OS[rx+1] \ OS[{r1, . . . , rx}]| + . . .

+ |OS[rm] \ OS[{r1, . . . , rx}]| (4)
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Fig. 2. Left: Overestimation by Po({r1, r2, r3}), where
all peers r1, r2, r3 are non-chosen. Right: Overestima-
tion by Po({r1, r2, r3}), where r1 is chosen.

There are two extreme cases. If
all peers are chosen, then the po-
tential is the number of observa-
tions covered by H. If all peers
are non-chosen, then the potential
is the cumulative frequency of the
peers of H in OS . The more peers
chosen in H, the more accurately
the potential represents the num-
ber of distinct observations inter-
secting with H. Po(H) thus never
underestimates the number of ob-
servations intersecting with H.

Overestimations are observations that are covered by more than one non-chosen peers
in H as illustrated by the leftmost diagram in Fig. 2. We will analyse the overestimation
of the potential, since it enables us to conclude how many peers in H �= HA need to be
chosen to disprove it.

Potential: All Peers Non-Chosen. The set of observations covered by ri is represented
by a circle around OS[ri] for i = 1, 2, 3 in the left-hand picture in Fig. 2. The grey area
represents those observations that are covered by at least two peers ri, rj for i �= j. The
number in the area shows the number of times observations in that area are counted in
the potential. In this example H = {r1, r2, r3} and we can see on the left picture how
Po(H) overestimates |OS[H]|, which is the number of observations covered by H. The
overestimation is caused by those observations that are covered by more than one of the
peers r1, r2, r3. The exact number of observations covered by H in the left picture in
Fig. 2 can be computed by the inclusion exclusion formula.

|OS[H]| = |OS[r1]| + |OS[r2]| + |OS[r3]| − |OS[r1] ∩OS[r2]|−
|OS[r1] ∩ OS[r3]| − |OS[r2] ∩ OS[r3]| + |OS[r1] ∩OS[r2] ∩ OS[r3]|

As all peers in H are non-chosen, Po(H) = |OS[r1]| + |OS[r2]| + |OS[r3]|. For the
sake of simplicity we derive the following estimation from the equation above.

Po(H) ≤ |OS[H]| + |OS[r1] ∩OS[r2]| + |OS[r1] ∩ OS[r3]| + |OS[r2] ∩ OS[r3]|

Potential: General Case. The case when one peer r1 is chosen while the other peers in
H are non-chosen is illustrated by the right-hand picture of Fig. 2. By the definition of
Po({r1, r2, r3}) in (4), choosing r1 causes all observations containing it, represented
by the dark circle, to be removed in the frequency consideration of the non-chosen
peers. In this case Po(H) overestimates |OS[H]| by double-counting the grey area that
represents observations that are covered by r2 and r3 but not by r1. For simplicity we
use the following estimation of Po(H):

Po(H) ≤ |OS[H]| + |OS[r2] ∩ OS[r3]| .
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In general, if 0 ≤ x ≤ m peers {r1, . . . , rx} of H = {r1, . . . , rm} are chosen, then the
overestimation of the number of covered observations result from the non-chosen peers
rk, rl for x < k, l ≤ m. The overestimation is bounded by the size of the

(
m−x

2

)
pair-

wise intersections OS[rk] ∩OS[rl]. This results in the following simplified estimation
of the potential for the general case:

Po(H) ≤ |OS[H]| +
∑

x<k,l≤m; k �=l

|OS[rk] ∩ OS[rl]| . (5)

Overestimation by Potential. In order to distinguish the effect of Alice’s peers and
non-peers to Po(H), each peer r ∈ H is relabelled n for non-peers, and a for Alice’s
peer. Without loss of generality, every H ∈ Hj , where |H| = m from now on has the
following structure:

H = {n1, . . . , nx1 , a1, . . . , ax2︸ ︷︷ ︸
x chosen peers

, nx1+1, . . . , nj , ax2+1, . . . , am−j
︸ ︷︷ ︸

(m−x) non-chosen peers

} .

The number of chosen peers is x = x1 + x2, where x1 ≤ j and x2 ≤ m − j. The
variable j denotes the number of non-peers in hitting sets of the structure Hj . We still
use the notation ri to address the i-th peer in H if distinction is not important. As before,
the first x peers r1, . . . , rx ∈ H are chosen, while the remaining (m−x) peers are non-
chosen. We define H+A = H ∩ HA as the subset containing only Alice’s peers and
H−A = H \HA as the subset consisting of only non-peers.

The following estimations for |OS[H]| and |OS| will be used next in inequality (9):

|OS[H]| ≤ |OS[H+A]| +
∑

n∈H−A

|OS[n] \ OS[H+A]| (6)

|OS| ≥ |OS[H+A]| +
∑

a∈(HA\H+A)

| OS[a] \ OS[HA \ {a}]
︸ ︷︷ ︸
observ. containing a exclusively

| . (7)

An observation contains Alice’s peer a ∈ HA exclusively [9], if it does not contain any
other peers of Alice.

We now mathematically formulate our earlier question; that is: how many peers must
be chosen in order to prove that H �= HA is not a hitting set in OS? This is simple
using the potential, as it estimates the number of observations covered by H in OS . If
Po(H) < |OS| then H is clearly not a hitting set. On the other hand, if Po(H) ≥ |OS|
then we must choose more peers in H for the disproof. The latter is formulated below.
Inequality (9) then results from applying (5) and (6) on Po(H) and (7) on |OS|.

0 ≤ Po(H) − |OS| (8)

≤
∑

x2<k,l≤m−j; k �=l

|OS[ak] ∩ OS[al]| +
∑

x2<k≤m−j; x1<l≤j

|OS[ak] ∩ OS[nl]|

+
∑

x1<k,l≤j; k �=l

|OS[nk] ∩ OS[nl]| +
∑

n∈H−A

|OS[n] \ OS[H+A]|

−
∑

a∈(HA\H+A)

|OS[a] \ OS[HA \ {a}]| (9)
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For simplicity we restrict our analysis to those cases where the probability that a partic-
ular peer r ∈ H is contacted by a sender other than Alice, within a given observation O,
is significantly lower than the probability that Alice’s peer is contacted by Alice. This
allows us to ignore the possibility that some pair of peers rk, rl ∈ H is contacted by
senders other than Alice in the same O. This allows us to ignore counting the observa-
tions described below in (9):

{O ∈ OS[rk] ∩ OS[rl] | rk, rl ∈ H chosen by non-Alice senders in O} . (10)

We call the resulting simplified estimation of (9) the difference function D(x, x1, x2, j):
∑

x2<k,l≤m−j; k �=l

|OS[ak] ∩ OS[al]| +
∑

x2<k≤m−j; x1<l≤j

|OS[ak] ∩ OS[nl]| +

∑

n∈H−A

|OS[n] \ OS[H+A]| −
∑

a∈(HA\H+A)

|OS[a] \ OS[HA \ {a}]| . (11)

4 Number of Peer Choices for a Disproof

4.1 Expectation of the Difference

In this section we compute the expectation of the difference function for a simplified
communication model of Alice and the other senders, which we call uniform communi-
cation.

In this model the cumulative communication of all other senders leads to a uniform
background distribution of communication with the peers such that, without Alice’s
communication, each peer r ∈ R appears with the same cumulative probability of PnA

in an observation. Therefore each sender can select its peer according to an arbitrary
distribution provided that ∀r ∈ R : P (r ∈ OS) = PnA, where P (r ∈ OS) denotes the
probability that r appears in the observations OS of the attacker without considering
Alice’s communication.

To simplify our analysis we assume that, in every round, each of the (b − 1) non-
Alice senders choose their peers uniformly from the set R of N recipients with prob-
ability 1

N . Thus, for every peer r ∈ R its cumulative probability of appearing in an
observation is PnA = 1 − (N−1

N )b−1. We further assume that Alice contacts one

E1(x, x1, x2, j) = t

(
m − j − x2

2

)
2
m

PnA

E2(x, x1, x2, j) = t(j − x1)(m − j − x2)
1
m

PnA

E3(x, x1, x2, j) = tj
j

m
PnA

E4(x, x1, x2, j) = tjm−1
(
1 − (m − 1)N−1

)b−1

of her m peers a ∈ HA in
each round, chosen according
to the uniform distribution with
the probability of PA = 1

m .
The difference described by

equation (11) is generic and can
be analysed with respect to ar-
bitrary communication models.
It is sufficient, however, to con-
sider uniform communications, and Sect. 5.1 will show a mapping from non-uniform
to uniform communications that provide analytical bounds valid for both instances. For
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the sake of simplicity, all remaining analysis in this paper will refer to uniform commu-
nication unless otherwise stated.

The equations above represent the expectation of the four terms of equation (11),
where the number of observations collected by the attacker is t = |OS|.

The terms following t in E1, E2, E3, E4 are significant, and we discuss these here.

E1: For Alice’s peers ak, al ∈ H+A, where ak �= al, the probability that Alice contacts
ak and one of the other (b−1) senders contact al in an observation is 1

mPnA. Due to
symmetry, the probability that ak and al appear in an observation is 2

mPnA. This is
multiplied by the number of possible pairs of non-chosen Alice’s peers

(
m−j−x2

2

)
.

E2: For peers ak ∈ H+A and nl ∈ H−A, the probability that Alice contacts ak and one
of the other (b − 1) senders contacts nl is 1

mPnA. The factor (m − j − x2) shows
the number of non-chosen Alice’s peers ak while the factor (j − x1) represents the
number of non-chosen non-peers nl.

E3: Let a1, . . . , aj ∈ (HA \H) be the j Alice’s peers that are not in H. The probability
that a given non-peer nk ∈ H−A appears in an observation where Alice contacts
one of a1, . . . , aj is j

mPnA. The final factor j accounts for the fact that there are j
non-peer nk in H−A.

E4: Alice’s peer a ∈ (HA \ H) is exclusive in an observation if Alice contacts a and
none of the other (b − 1) senders contact any of the peers a′ ∈ (HA \ {a}). The

probability that a is exclusive is therefore 1
m

(
1 − m−1

N

)b−1
. The factor j accounts

for this exclusivity probability for the j Alice’s peers a1, . . . , aj ∈ (HA \ H) not
appearing in H.

Combining these expectations results in an expectation, ED(x, x1, x2, j), for the differ-
ence function D(x, x1, x2, j) of:

t

m

[
((m − x − 1)(m − j − x2) + j2)PnA − j

(

1 − m − 1
N

)b−1 ]
. (12)

4.2 Average Number of Peer Choices

We obtain the average number of peer choices to disprove a set H by determining the
value of x such that the expectation of the difference is 0. By detailed analysis of the
property of ED (in Appendix A) , we gain simple descriptions of assertions about the
limits of the number of peer choices. These limits are summarised here.

Upper Bound of Average Worst Case Number of Peer Choices. If N
b−1 ≥ 3m − 1

and N, b, m is fixed, then the upper bound of the average worst case number of peer
choices is xuw . This value provides an estimate of the average maximal number of peer
choices for a disproof, approaching the bound from above. This can be reformulated to
determine the parameters N, b, m, such that a particular bound xuw is obtained by (14).

xuw = m − 1
2
−

√
N

b − 1
− m +

1
4

, where xuw ≤ m (13)

b =
N

m2 − 2mxuw + x2
uw + xuw

+ 1 (14)

For full proofs of these results, see Appendix A.1.
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5 Runtime Complexity

We have now determined how many peers must be chosen in order to disprove a hy-
pothesis set, and so can answer our original question: what is the average complexity to
identify unambiguously Alice’s peer set HA?

The ExactHS algorithm reduces the space of sets that must be disproved to identify
HA by two strategies. Firstly, ExactHS reduces the search space to consider only min-
imal hitting sets, which is sufficient to identify HA in [12, 13]. Secondly, it deploys
the estimation of the number of covered observations based on the potential and imple-
ments the difference function (Alg. 1 Lines 6, 8). In Alg. 1 the set C represents (m−m′)
chosen peers and {r1, . . . , rm′} represents hypothetical non-chosen peers. The algo-

rithm constructs |OS ′| = |OS \ OS[C]| = |OS| − |OS[C]| and
∑m′

l=1 |OS ′[rl]| =
Po(C ∪ {r1, . . . , rm′})− |OS[C]|, where OS is the initial set of observations of the at-
tacker, which is equivalent to Equation (8). This allows direct application of the bounds
derived in the last section to ExactHS.

The worst case number of peer choices, x, to disprove a set in the last section there-
fore corresponds to the worst case number of recursion levels x invoked in ExactHS.

To avoid significantly overestimating the strength of the system, we assume that the
variance of the average number of peer choices x is negligible. (1) therefore results in
an average number of finalised sets computed by ExactHS to identify HA of: bx .

To obtain the corresponding runtime complexity, the last term must be multiplied by
tbm, resulting in O(bxtbm), and reaches a worst case complexity of O(bmtbm) when
x = m. The following analysis consequently refers only to the number of finalised sets
computed by ExactHS.

5.1 Upper Bound of Average Worst Case

The upper bound of the average worst-case complexity results from the upper bound
of the average worst-case number of peer choices xuw determined by (13). Applying
that to bx we derive the upper bound for the average maximal number of finalised sets
computed by ExactHS for the unambiguous identification of HA:

b
m− 1

2−
√

N
b−1−m+ 1

4 ≈ b
m− 1

2−
√

1
PnA
−m+ 1

4 . (15)

From the relations PnA = 1 − (1 − 1
N )b−1 ≈ b−1

N and PA = 1
m we conclude that:

– If every peer not contacted by Alice is at least as likely to appear in an observation
as peers contacted by Alice, the average worst case complexity roughly equals the
worst case complexity O(bmtbm). That is if PnA = 1

m− 1
4

.

– The average worst case complexity becomes linear O(tbm) if every peer not con-
tacted by Alice appears in observations with a probability close to 1

m2 .

Non-uniform Communication. The analyses above apply to non-uniform background
distribution by setting PnA = maxr∈R′{P (r ∈ OS)} in (15). This maps an instance
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with non-uniform background communication and parameters N ′ = |R′|, b, m to an
instance of uniform communication with parameters N = |R| = b−1

PnA
, b, m, where R′

and R is the recipient set of the first and second instances respectively. The average case
complexity of the latter is at least as high as the former, as in uniform communication
each of the N = |R| peers appears with a probability of PnA in an observation, while a
smaller number of most likely peers of R′ appears with that probability in non uniform
communication.

Note that the cumulative background probability of the peers can be estimated in the
global passive attacker model by considering observations in which Alice does not par-
ticipate, enabling attackers, Mix providers and users to determine a priori the average
worst case complexity of ExactHS for a distinct number of Alice’s peer partners m.

We assume Alice’s communication to be uniform when deriving the average case
complexity not only for simplicity, but also because simulation reveals that it is the
worst case for the average run time complexity. Informally, in a non-uniform communi-
cation some Alice’s peers are even more statistic signification than the non-peers. Thus,
making ExactHS focus on the most frequent peers reduces the hypothesis space and
average time complexity. A formal proof of this is forthcoming.

Relation to Least Number of Observations by ExactHS. To determine efficiently the
number of observations required by the ExactHS-attack, we can apply the algorithm to
compute the lower bound of the HS-attack based on the 2x-exclusivity criteria [9, 12]
or use the mathematical analysis provided by [13].

We use here the formula for the least number of observations t to identify HA by
the minimal hitting set attack [13]. It provides, in contrast to the 2x-exclusivity formula
in [9], a closed formula that directly represents the effect of Mix parameters.

t ≈ m
(
ln (b − 1) − ln (21/m − 1)

)(
1 − mN−1

)1−b
(16)

This formula shows that ExactHS can reveal Alice’s peer set after a number of obser-
vations t that is sub-exponential with respect to N, b, m. The number of observations
for the identification of Alice’s peers is thus an insufficient metric for the strength of
the Mix, and we need to consider the average case complexity of ExactHS. Section 6
compares the theoretical results of this paper with attacks on simulated data.

Countermeasure against Attack. To prevent the ExactHS attack in practice, Mix
providers can adjust the average case complexity O(bxtbm) to be close to the worst case
complexity, such that x = m − ε for fixed security parameters m and ε chosen by the
provider. To obtain this, the batch size b can be determined with respect to N, m, x ac-
cording to equation (14). By doing so, applying our attack against users who uniformly
contact m′ ≥ m peer partners requires a time complexity bounded by O(bm′−εtbm′).
Users with m′ < m peer partners, however, or non-uniform communication should be
aware that revealing their peer partners will be faster than O(bm′−εtbm′).

We have derived a formula for the lower bound of the average case complexity of
ExactHS, which could be used to adjust the least average time required for an attack on
a Mix, however we omit this due to space limitations.
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Note that ExactHS and statistical attacks are based on very different principles.
Therefore, Mix configurations that are susceptible to ExactHS are not necessarily sus-
ceptible to the statistical attacks and vice versa. While it is outside of the scope of this
paper, a comparison of the effectiveness of both classes of attacks with respect to dif-
ferent Mix configurations and countermeasures would be an interesting topic for future
research.

6 Simulation

To support our mathematical analysis, we now show the ExactHS algorithm applied to
randomly generated observations. These observations are generated under the uniform
communication model of Sect. 4.1, which is chosen to allow direct comparison between
the simulation and our theoretical results.

An attack is successful if ExactHS can unambiguously identify Alice’s peer set HA;
the simulation generates new observations until this occurs. The average number of ob-
servations required by an attack is therefore the mean of the number of observations of
all successful attacks. To ensure that our results are statistically significant, experiments
were repeated until 95% of the results fall within 5% of the empirically observed mean.
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Fig. 3. Parameters N, b, m, where xuw = 2. Left: Number of observations when ExactHS suc-
ceeds. Right: Empirical recursion level for disproof by ExactHS.

Average Worst Case. To demonstrate that our analysis closely predicts the empirical
average worst case complexity of ExactHS, we apply attacks on observations of a Mix
with parameters N, b, m that are chosen according to (14), where xuw = 2. It is there-
fore expected that ExactHS succeeds on those configurations within a polynomial run
time of O(b2tbm), while its average worst case recursion level is bounded by 2.

Figure 3 shows the result of our simulation for fixed b = 50. The value of N is
determined by (14) given fixed xuw = 2; m values are shown on the x-axis. The value
of N ranges from 3200 for m = 10 to 70000 for m = 40.

As the attack requires very few observations to succeed, the empirical probability dis-
tribution of the peers of the non-Alice senders at the termination of the attack strongly
diverge from the function PnA ≈ b−1

N from which they are drawn6.

6 Assume for example that PnA = 1/400, but the attack succeeds after |OS| = 100 observa-
tions, then the probability of each peer included by an observation in OS exceeds PnA by at
least a factor of four.
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Due to the law of large numbers, this side effect diminishes for large number of
observations. We therefore consider the application of ExactHS where the number of
observations is twice that required by (16). This is shown in the graphs by the line
labelled (HS2). This doubling is simply to aid demonstration of our results by reducing
the side effects due to the small number of observations.

The left plot shows on the y-axis the average number of observations to identify
Alice’s peer set unambiguously. The line (HS) represents the mean of the least possible
number of observations required by ExactHS in an information theoretic sense. The line
(HS2) shows the number of observations which corresponds to twice the value of (16).

The right plot shows on the y-axis the average worst case level required to disprove a
set by ExactHS under the conditions represented by the lines (HS) and (HS2). The line
(HS) shows that the level is significantly higher than xuw if ExactHS identifies HA with
the information theoretic minimal number of observations. This is due to the probabili-
ties of many non-peers exceeding PnA due to a low number of observations. With more
observations, as in (HS2), we can see that the average worst case number of required
peer choices is about xuw for all selected N, b, m as predicted by (14). Collecting even
more additional observations when applying ExactHS does not noticeably change the
worst case number of peer choices.

7 Conclusion

Previous non-statistical analyses of Mixes have been based almost exclusively on the
least number of observations for an attack, and on the fact that the unambiguous identi-
fication of Alice’s peer set requires the solution of an NP-complete problem.

This paper is the first presentation, to our knowledge, of a detailed complexity-
theoretic analysis of the problem of identifying a user’s peer set beyond the worst case
complexity determined by the NP-completeness of the underlying problem. We achieve
this by contributing closed formulas that determine the average case complexity with
respect to the Mix parameters. These theoretical results are further supported by simu-
lations.

It is clear from our results that the identification of Alice’s peers in a Mix network,
whilst being intractable in the worst case, contains a broad range of realistic Mix con-
figurations that are polynomially solvable. These configurations are serious threats for
anonymity that can now be identified by our results (13), (15). Our analyses enable
further to identify those configurations that are solvable only in exponential time by
ExactHS, allowing for an increase in the anonymity of these systems.

In order to gain the average case complexity of the system, we employ the most
efficient known algorithm that provides an exact result. Whilst the possibility exists
that a more efficient algorithm could be discovered7, our results are the first to provide
an analysis of this form.

In the future, we intend to extend the analysis in this work to more complex and
real-world Mix models. It is hoped that this will allow us to understand the effect that
different mixing strategies have on anonymity. In a wider context, our analyses are
concerned with the identification of average polynomial-time-solvable instances of an

7 As is possible with, for example, the prime factorisation algorithms employed in cryptanalysis.



524 D.V. Pham, J. Wright, and D. Kesdogan

NP-complete problem. The results presented here may therefore be of use in identifying
average polynomial-time instances of other interesting NP-complete problems, which
would have wider applications beyond the restricted scope of security and privacy.

References

[1] Agrawal, D., Kesdogan, D., Penz, S.: Probabilistic Treatment of MIXes to Hamper Traffic
Analysis. In: IEEE Symposium on Security and Privacy, pp. 16–27 (2003)

[2] Berthold, O., Langos, H.: Dummy traffic against long term intersection attacks. In:
Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 110–128. Springer,
Heidelberg (2003)

[3] Chaum, D.L.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.
Communications of the ACM 24(2), 84–88 (1981)

[4] Danezis, G.: Statistical Disclosure Attacks: Traffic Confirmation in Open Environments.
In: Proceedings of Security and Privacy in the Age of Uncertainty, pp. 421–426 (2003)

[5] Danezis, G., Diaz, C., Troncoso, C.: Two-sided statistical disclosure attack. In: Borisov, N.,
Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 30–44. Springer, Heidelberg (2007)

[6] Danezis, G., Serjantov, A.: Statistical Disclosure or Intersection Attacks on Anonymity
Systems. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 293–308. Springer, Heidelberg
(2004)

[7] Danezis, G., Troncoso, C.: Vida: How to use bayesian inference to de-anonymize persistent
communications. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp.
56–72. Springer, Heidelberg (2009)

[8] Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York (1990)

[9] Kesdogan, D., Agrawal, D., Pham, V., Rauterbach, D.: Fundamental Limits on the
Anonymity Provided by the Mix Technique. In: IEEE Symposium on Security and Privacy
(2006)

[10] Kesdogan, D., Pimenidis, L.: The Hitting Set Attack on Anonymity Protocols. In: Fridrich,
J. (ed.) IH 2004. LNCS, vol. 3200, pp. 326–339. Springer, Heidelberg (2004)

[11] Mathewson, N., Dingledine, R.: Practical Traffic Analysis: Extending and Resisting Sta-
tistical Disclosure. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp.
17–34. Springer, Heidelberg (2005)

[12] Pham, V.: Analysis of the Anonymity Set of Chaumian Mixes. In: 13th Nordic Workshop
on Secure IT-Systems (2008)

[13] Pham, D.V., Kesdogan, D.: A Combinatorial Approach for an Anonymity Metric. In: Boyd,
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A Analysis of Expectation Function for Number of Peer Choices

Relation to Number of Chosen Peers

Claim 1. The expectation ED(x, x1, x2, j) is a monotonically decreasing function with
respect to the number of chosen peers x, where 1 ≤ x ≤ m − 1

2 .

The proof consists of two parts. We will show that ED(x, x1, x2, j) is monotonically
decreasing given that x1 is fixed and then for the case that x2 is fixed.

Proof (Monotonicity of ED(x, x1, x2, j) given fixed x1). This analysis refers to the case
that the number of chosen non-peers x1 is fixed in the chosen peers x. By definition
x2 = (x− x1), therefore we replace all x2 in (12) by (x− x1). The following function
determines the gradient of the resulting function by computing its partial derivative with
respect to x: ∂ED(x,x1,x−x1,j)

∂x = tPnA

m (2x − 2m − x1 + j + 1) .
This equation is less-than or equal 0, if:

x ≤ m + 0.5(x1 − j) − 0.5 . (17)

We consider the inequality (17) for different cases of (x1 − j). By definition x1 ≤ j,
therefore only the following cases exist:

x1 = j: In this case ED is a decreasing function if x ≤ m − 1
2 .

x1 < j: In this case ED is always a decreasing function. The proof derives from the
definition x = (x1 + x2), where x2 ≤ (m − j). Replacing x2 in the first equation
by the latter inequality, we obtain:

x ≤ m + (x1 − j) ⇒ x ≤ m + 0.5(x1 − j) − 0.5, since x1 − j ≤ −1 .

Therefore (17) is always fulfilled in this case.

This proves that ED(x, x1, x2, j) is a monotonically decreasing function with respect
to the number of chosen peers x, where 1 ≤ x ≤ m − 1

2 , given that x1 is fixed. �
Proof (Monotonicity of ED(x, x1, x2, j) given fixed x2). We now consider the case that
the number of Alice’s peers is fixed in the number of chosen peers x. The gradient of
ED(x, x1, x2, j) with respect to x is now: ∂ED(x,x−x2,x2,j)

∂x = tPnA

m (−m + x2 + j) .
The relation (x2 + j) ≤ m is given by definition, therefore the gradient is always

less-than or equal to 0. This proves that ED(x, x1, x2, j) is a monotonically decreasing
function, given that x2 is fixed. �
We conclude from these two proofs that ED(x, x1, x2, j) is a monotonically decreasing
function with respect to the number of chosen peers x, where 1 ≤ x ≤ m − 1

2 . This
completes the proof of Claim 1. All analyses in the rest of the paper implicitly assume
x ∈ [1, . . . , m − 1].

Relation to Order of Peer Choice. This section will show that, in general, if one
prefers to chose non-peers in H ∈ Hj first and then the remaining peers of Alice, then
the number of choices required to disprove H is maximised.
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Claim 2. Let x be a fixed number of chosen peers and x1 be the number of chosen
non-peers, where x1 ≤ j ≤ x. The expectation ED(x, x1, x2, j) with respect to x1 is a
monotonically increasing function.

Proof. To analyse how ED is related to the number of non-peer choices x1, we compute
the partial derivative of ED(x, x1, x − x1, j) with respect to x1 ≤ j ≤ x, where x is
fixed. This is: ∂ED(x,x1,x−x1,j)

∂x1
= tPnA

m (m − x − 1) .
This equation is clearly greater than 0 (since x ≤ m − 1 is assumed), therefore

ED(x, x1, x − x1, j) is a monotonically increasing function for x1 in the complete
interval [0, . . . , j]. �
Note that ED(x, x1, x − x1, j) for x1 > j is, by definition of x1, not defined. Given
that H has x ≥ j chosen peers, Po(H) is maximal if x1 = j of the chosen peers
are non-peers. Disproving H therefore requires the maximal number of chosen peers if
the non-peers are chosen first. To simplify the notation, and because of the importance
of the number of non-peers, we will replace the notation ED(x, x1, x − x1, j) by the
shorter notation ED(x, x1, j) in the sequel.

A.1 Average Worst Case Number of Peer Choices

In this section we assume a worst case algorithm that chooses the peers of a set H ∈ Hj

such that the number of peer choices x to disprove H �= HA is maximal. According to
the previous section this is the case if the non-peers are always chosen first in H.

Claim 3. Let N
b−1 ≥ 2(m − 1). The maximal number of peer choices x, such that

ED(x, x1, j) = 0 with respect to N, b, m, j, is:

xw = m − 0.5 −
√

jN(b − 1)−1 − j2 + j − mj + 0.25 . (18)

We call xw the average worst case number of peer choices.

Proof. In order to ensure that all non-peers are chosen first, we set x1 = j. Given this,
the maximal number of peer choices is the value x, such that ED(x, x1, j) in (12) is 0.

0 = ED(x, j, j)

≤ t

m

[
((m − x − 1)(m − x) + j2)(1 − (1 − b − 1

N
)) − j(1 − (b − 1)

m − 1
N

)
]

.

We obtain (18) by computing the positive root of the last right hand side function for
the variable x. Equation (18) is valid if the term within the square root is at least 0. That
is, if:

0 ≤ jN(b − 1)−1 − j2 + j − mj + 0.25 .

Since j ≤ m the above equation holds if: N(b − 1)−1 ≥ 2(m − 1) .
Note that it is sufficient to assume x1 = j and x ≥ j for the proof. There is no need

to consider the case x < j for the average worst case number of peer choices, where
x1 < j separately.
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For an intuitive explanation, we assume a set H ∈ Hj for a maximal value j, such that
x1 = j = x is the maximal number of non-peer choices to disproveH. Let H′ ∈ Hj′ be
another set, where j′ > j. Since we assume that each Alice’s peer are more frequently
observed by the attacker than any non-peer, the relation Po(H′) < Po(H) holds in
most of the cases. We can particularly follow that ED(x, x1, j

′) < ED(x, x1, j) im-
plying that the maximal number of peer choices to disprove H, as well as H′ is x.
Analysing the case x1 = j and x ≥ j is thus sufficient. A formal proof of this follows
from a generalised form of (19), but is omitted here for brevity. �

Gradient of Worst Case Function xw. We now analyse the case where (18) is a
monotonically decreasing function with respect to Hj to simplify succeeding analyses.
The next equation is the partial derivative of (18) with respect to j.

∂xw

∂j
= −1

2

(
N(b − 1)−1 − 2j + 1 − m

)

(jN(b − 1)−1 − j2 + j − mj + 0.25)
1
2

(19)

xw is thus monotonically decreasing if the numerator in the above is at least 0.

0 ≤ N(b − 1)−1 − 2j + 1 − m ⇒ j ≤ 0.5
(
N(b − 1)−1 − m + 1

)

Thus, if the maximal number of non-peer choices in a disproof is not larger than
1
2 ( N

b−1 − m + 1), (18) is a monotonically decreasing function. If N
b−1 ≥ 3m − 1,

then this case is necessarily fulfilled and we assume this condition for the remaining
analyses.

Upper Bound of Average Number of Peer Choices. This section determines the up-
per bound of the average worst case number of peer choices xw.

Claim 4. Let N
b−1 ≥ 3m−1 and xw be the average worst case number of peer choices.

The maximal value of xw for fixed N, b, m is:

xuw = m − 1
2
−

√
N

b − 1
− m +

1
4

, where 0 ≤ xuw ≤ m . (13)

We call xuw the upper bound of the average worst case number of peer choices.

Proof. Let N
b−1 ≥ 3m − 1, then xw is monotonic decreasing with respect to j. It is

therefore maximal if we set j = 1 in (18) and thus obtain (13). �
In case of N

b−1 < 3m − 1, the right hand side of equation (13) might not provide a

maximal value for xuw . Therefore we can conclude in this case that if N
b−1 = m − 1

4 ,

then xuw ≥ m − 1
2 and that xuw increases if the value of N

b−1 decreases. This justifies
the conclusions of Sect. 5.1.

From this analysis we can obtain an approximation of the ”lower bound of the av-
erage case complexity” of ExactHS. The derivation of these are omitted due to space
limitation.


	A Practical Complexity-Theoretic Analysis of Mix Systems
	Introduction
	Mix and Attacker Model
	The Pure Mix Model
	ExactHS Algorithm

	Estimation of the Number of Covered Observations
	Potential

	Number of Peer Choices for a Disproof
	Expectation of the Difference
	Average Number of Peer Choices

	Runtime Complexity
	Upper Bound of Average Worst Case

	Simulation
	Conclusion
	References
	Analysis of Expectation Function for Number of Peer Choices
	Average Worst Case Number of Peer Choices




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




