
A Round-based Cover Traffic Algorithm for
Anonymity Systems

Marta Rybczyńska
Institute of Telecommunications

Warsaw University of Technology
Warsaw, Poland

Email: marta@rybczynska.net

Abstract—In this paper we propose a new cover traffic genera-
tion algorithm for flow-based anonymity systems and compare it
with other algorithms from the literature. Our algorithm is based
on four ideas: fixed time rounds, flow classification with different
protection methods for different classes, protection depending
on the potential cost and finally, use of history. Simulation
results show that our solution provides sufficient protection while
reducing overhead traffic.

Index Terms—Cover traffic, dummy messages, low-delay
anonymity, privacy

I. INTRODUCTION

Anonymity systems use various techniques to protect users’
privacy, such as cryptographic transformation, introducing
artificial delays, and reordering or adding additional (or cover)
messages. Impressive effort has been put into improving the
designs, but deployed systems are still vulnerable to certain
attacks: protective mechanisms are either incomplete or require
too many resources to be practical.

So called ’timing attacks’ (or ’timing analysis’) are probably
the most important class of such attacks. The attacker observes
messages in the network and searches for timing correlations
to determine communication paths. Such attacks can be either
active or passive.

In this paper, we propose a new algorithm for cover traffic
generation that provides decent protection against timing anal-
ysis while limiting the protection cost compared to existing
solutions. Our algorithm also offers possibilities of even better
protection. We compare our proposal with other algorithms
from the literature. Our results are based on simulations of a
set of nodes with different traffic distributions, including a set
of effective attacks proposed by other authors.

We begin by providing background on cover traffic algo-
rithms in anonymity systems, known protections and attacks
in Section II. We model our anonymity system and attackers
in Section III. Section IV presents our algorithm. We start
from basic concepts, then move to the core algorithm and
possible extensions. In Section V, we present and discuss
simulation results in terms of protection and cost. We conclude
in Section VI.

This work was partially supported by Euro-NF.

II. PREVIOUS WORK

Anonymity systems have used cover traffic (also called
’dummy messages’) as a protection method almost from the
beginning. Notable examples include ISDN-Mixes [1], which
use ISDN channels.

Cover traffic also appears in the earliest Internet-based
designs, like PipeNet, where all clients transmit at the same
rate [2]. The details were not specified, however. In the
Web MIXes, each client always sends the same number of
messages per time slice, inserting dummies if it has no data
to send [3]. Tarzan uses a different approach, where cover
traffic is generated in small sets of nodes [4].

Fu, Graham, Bettati and Zhao [5] and Levine, Reiter, Wang
and Wright [6] show that even constant-rate cover traffic is
vulnerable to traffic analysis under certain assumptions. Fu et
al. perform experiments and find such vulnerability in practice.
They explain it at the low level by subtle timer interrupt delays
caused by packets with user data. They do not perform further
experiments to check if other operating systems are vulnerable
and how (and if) this problem appears on a system with high
network load.

Levine et al. [6] assume that cover messages are added
only by end nodes. Network losses or the attacker may then
introduce holes in the traffic and the holes may then be used
to correlate flows. Levine et al. introduce an algorithm called
’defensive dropping’. Intermediate nodes are instructed to drop
certain messages and this changes the flow characteristic. They
also propose a method to cross-correlate between output flows
and input flows. The sequences to be compared are calculated
by counting the number of received messages during fixed
time intervals. We use the same method in this paper.

In a Freedom system security analysis, Back, Goldberg and
Shostack [7] state that cover traffic was not included because
of unresolved issues. Dingledine, Mathewson and Syverson
express a similar opinion in the paper on Tor design, stating
that the benefits are unclear while the costs are high, and await
a design that will defend against a realistic adversary [8].

Zhu, Fu, Graham, Bettati and Zhao [9] study flow correla-
tion attacks in traditional mix systems. They analyse different
mix types using mutual information and frequency analysis to
correlate flows, and show that existing designs are vulnerable.
They propose an algorithm that inserts cover messages into

2009 International Conference on Intelligent Networking and Collaborative Systems

978-0-7695-3858-7/09 $26.00 © 2009 IEEE

DOI 10.1109/INCOS.2009.48

93

all output flows of a node with exactly the same timing, but
buffers received messages for a short time to limit the number
of additional messages slightly.

Shmatikov and Wang [10] present an adaptive padding
algorithm, where additional messages are inserted into statis-
tically unlikely gaps in the flow. They use a traffic distribution
from real-world traffic. As the authors note, the algorithm
may provide less protection if the distribution is different
from the assumed one. The authors mention the possibility
of dynamically modifying the distribution, but they do not
discuss this further.

Some studies have examined the methods the adversary may
use. An interesting example is the work of Yu, Fu, Graham,
Xuan and Zhao [11], who propose a signal watermarking
technique based on Direct Sequence Spread Spectrum (DSSS)
that uses a Pseudo-Noise (PN) code. The attacker adds a secret
spread spectrum signal by slightly changing the sender’s traffic
rate and recovers the signal after the flow is transmitted to the
receiver.

III. ASSUMPTIONS AND MODELS

We assume that the anonymity system consists of a number
of nodes that exchange fixed-length encrypted messages. As
each node re-encrypts (and possibly modifies) the messages,
an attacker cannot distinguish between messages based on the
content. That leaves the inter-arrival times of the messages as
a source of attacks.

The anonymity system transmits data in organised flows.
Intermediate nodes can distinguish the flows in order to route
them correctly. We do not cover the algorithm for route
selection and establishment in this paper: we assume that this
phase has already been completed, and all flows have been
successfully established. All messages have the same size.

Our attacker is very powerful. Not only can it monitor all the
links between the nodes, but it also has the power to modify
traffic by adding artificial delays to chosen messages. In our
analysis, the adversary tries to match source and destination
nodes by correlating the number of sent and received messages
on selected links. All the algorithms used in the system and
the structure of the network are known to the attacker, who
can also distinguish between flows, even if they use the same
link.

IV. A CLASS-BASED COVER TRAFFIC ALGORITHM

A. Core ideas

We design our algorithm to be used in an anonymity
system where available bandwidth is limited and is a valuable
resource. It also means that it may not be possible to fully
protect every transmission in that anonymity system. There
should be, however, a method to notify users of the current
estimated protection level.

The algorithm presented in this paper is based on four ideas:
fixed time rounds for calculating the amount of cover traffic,
different flow classification and protection methods for differ-
ent classes, history information, and finally, the observation
that certain flows are harder to protect than others.

1) Rounds: The basic unit of time is one round. During a
round, a node receives and buffers messages, while sending
messages from the previous round. At the end of each round,
nodes add cover traffic messages to each flow. Then, schedul-
ing takes place and a new round begins. The length of a round
is a system-wide constant.

The existence of rounds introduces delays. The delay, if
used with an admission control algorithm, is constant and may
be changed at network configuration time.

The main reason for introducing rounds is the possibility of
calculating the required amount of cover traffic from the real
traffic statistics, and scheduling all messages equally during
the next round. There are other reasons as well: for example,
a slight change in inter-packet times during a round.

2) Flow classification and class-based protection: Flows
are classified by their bandwidth and changes in bandwidth
usage during subsequent rounds. When there are different
traffic classes, each class may be protected in a different way.
For instance, low-bandwidth classes may be protected more
than high-bandwidth ones. The rationale for such behaviour
is simple: less cover traffic is required to change all flows in
a low-bandwidth class to fit the same (also low-bandwidth)
pattern.

With more than one traffic result pattern, as in the traditional
solutions, changing the flow to fit the closest pattern from a
set of available ones should require fewer resources.

Introducing flow classification and class-based protection
parameters has one drawback, however. Each class should
contain roughly the same number of flows. Otherwise, the
attacker may use the fact that the flow is one of only a few in
its class.

3) Use of history: Our algorithm uses flow history rather
than only using the flow class from the current round. This
helps smooth rapid changes (like holes in the traffic) caused by,
for instance, congestion. It also limits space for the attacker,
as changes in flow parameters will be smoothed within the
history length.

4) Different levels of protection for different flows: If there
are major differences between the flows (for example, in the
amount of bandwidth used), it may be more expensive to
protect some flows than others.

Thus, we choose to differentiate protection. We offer better
protection to lower-bandwidth flows, as this requires fewer
additional messages. Such behaviour requires notifying users
of the situation and, for instance, negotiating lower bandwidth
if they require higher-grade anonymity.

B. The basic algorithm

Nodes process received messages during so-called rounds.
Packets received during a round are buffered. When the round
ends, for each flow we calculate the maximum number of
packets received during a fixed number of previous rounds (the
history is taken into account here), including the current round.
If there are buffered messages from the previous rounds, we
add their number to the maximum. Then we compare the value
with the maximum bandwidth of the flow. If the maximum

94

bandwidth is greater than or equal to the number of messages,
then we classify the flow using the second value. On the other
hand, if the number of messages received is greater than the
maximum bandwidth, we classify the flow as its maximum
bandwidth and put the last messages above the maximum
threshold into the buffer. If the buffer fills up during that
process, then we drop the remaining messages.

Let i be the current round and j be the current flow. in[j][i]
denotes the number of input messages for flow j during round
i and out[j][i] denotes the number of output messages for flow
j during the round i. Bmax[j] is the maximum bandwidth for
the flow j, and Hlen is the history length. M [j] is a temporary
variable that stores the maximum number of messages for
flow j received during the last Hlen rounds. class(N, j) is
an algorithm that finds the class of the flow from the number
of messages N for the flow j, and returns the total number of
messages that should be sent during the next round.

The table in[j][−Hlen]..in[j][0] is initialised with Bmax[j]
to hide the characteristics at the beginning of the flow and to
protect very short flows.

We can then decide how many cover messages to insert
with the following pseudo-code (with the details of handling
messages above the limit omitted for clarity’s sake):
ONROUNDEND(i, j)
1 M [j] ← max(in[j][i−Hlen]..in[j][i− 1])
2 if M [j] <= Bmax[j]
3 then out[j][i] ← class(M [j], j)
4 else out[j][i] ← class(Bmax[j], j)

An example of the class() function is presented later in
Section V.

C. Extensions

Numerous extensions to the basic algorithm are possible.
For instance, we may want to increase the length of the flow
of more than Hlen rounds beyond what the basic algorithm
does. Such an extension would let us hide the flow’s end and
possible short-term gaps. Additionally, the increase of length
should not be easily predictable. For such cases, we propose
an extension that alters the flow based on the rate at which
the flow uses allowed and allocated bandwidth. Flows using
less bandwidth have their flow length increased more.

In addition to the variables used in the basic version of
the algorithm, fill class(f, j) is a function that uses the
flow parameters and the ratio of used bandwidth f for the
flow j to return the base of the increase in flow length.
The table fw[j] stores the base increase for the flow j and
flow wait[j] stores the number of rounds that remain for
the flow j. The calculation of the increase additionally uses
the default increase D, which is a system constant. rand(X)
returns a random integer value in the range of [0, X).

The following pseudo-code describes our algorithm (with
the details of handling messages above the limit omitted for
clarity’s sake, as in the previous version):
ONROUNDEND(i, j)
1 M [j] ← max(in[j][i−Hlen]..in[j][i− 1])
2 S ← 0

3 for k ← (i−Hlen) to (i− 1)
4 do S ← S + in[j][k]
5 f ← (S ∗ 100)/(Hlen ∗M [j])
6 if M [j] <= Bmax[j]
7 then out[j][i] ← class(M [j])
8 else out[j][i] ← class(Bmax[j])
9 fw[j] ← fill class(f, j)

ONCOVERGENERATION(i, j)
1 c← fw[j]− out[j][i]
2 if c <= 0
3 then return
4 if out[j][i] == 0
5 then if flow wait[j] > 0
6 then flow wait[j] ← flow wait[j]− 1
7 else flow wait[j] = 0
8 else flow wait[j] ← rand(fw[j]) + D/2 + 1
9 out[j][i] ← out[j][i] + c

An example of the fill class() function is presented later
in Section V.

D. Discussion

The idea of rounds is similar to the mix time-out from timed
mixes [12], but the details and purpose are different. During
a round, messages between two nodes are transmitted in the
same order in which they were received, while mixes may
change that order. The purpose of introducing rounds is to add
the option of adding cover traffic messages at equal intervals
between the data messages. This would not be possible without
knowing the number of messages received during the round.
We introduce rounds as a feature that enables protection, not
as a protection mechanism itself.

Uniform distribution of packets during rounds and schedul-
ing is an essential part of the proposed solution. It destroys
the low-level packet inter-arrival time distribution, but should
not introduce additional artifacts. It is also important to take
into account that observers will not be synchronised with the
round clock, so they may get different counts of packets during
rounds. When doing tests, we had an implementation that did
not use the uniform distribution and simply scheduled cover
messages at the beginning of the round. Especially for longer
flows, it generated artefacts that were sufficient for the attacker
to find a good correlation.

The mechanism of history and flow classification based on
the maximum value in the history window limits the number
of events of bandwidth change, as the attacker may use such
events to correlate flows. The same mechanism allows fast
recovery of high use of bandwidth.

It should be noted that the algorithm is designed to limit
the number of cover traffic messages in common situations.
In the worst case, if the attacker sends Bmax during one round
every Hlen messages, the algorithm will work just as the full
cover traffic. This situation may be detected however, using
only limited additional resources, as the history is available
for each node.

95

The algorithm does not hide the connection start. The cover
traffic mechanism does not seem to be the right place for that
protection as one of our requirements is low delay. Another
mechanism should be used to prevent the attacker from using
the timings of flow starts. It may be performed for instance by
predicting user activity and starting a new connection earlier.

In the above pseudo-code, we assume that the number of
messages received during a round does not exceed the maxi-
mum bandwidth. We made this simplification in order to keep
the description and pseudo-code clear. In real implementation,
it would be easy to add buffering of additional messages.
However, the implementation details will depend on the trans-
port protocol used, as it determines whether messages may
(or should be) dropped and whether flow control algorithms
should be used (and if so, which ones).

V. EVALUATION

We implemented the proposed algorithm and compared it
with other algorithms from the literature in terms of increased
protection and cost (the amount of additional traffic).

A. Implementation and test configuration

For evaluation, we have implemented and tested our cover
traffic algorithms using the ns-2 simulator [13]. We have
compared our algorithm with a situation without any cover
traffic, with the algorithm of Zhu et al. and with the algorithm
of Shmatikov and Wang. It should be noted that we had
to modify the two last algorithms to work properly in our
test configuration. We present the modifications later in this
section.

1) Simulated network configuration: The network config-
uration consisted of 320 source nodes, 320 destination nodes
and a single intermediate node. Each of the source nodes
transmitted a single flow to one of the destination nodes. There
were the following types of traffic:

• 64 constant rate flows at rates from 32 to 256 kbit/sec
(class 1)

• 64 constant rate flows with random intervals between the
packets, at rates from 32 to 256 kbit/sec (class 2)

• 64 flows using a Pareto distribution of delay between the
packets, at rates from 32 to 256 kbit/sec (class 3)

• 64 flows using exponential distribution of delay between
the packets, at rates from 32 to 256 kbit/sec (class 4)

• 16 flows with bursts, burst length and interval of 0.1, 0.2,
0.5 or 1.0 second at 256 kbit/sec (class 5)

• 16 flows with single burst of length of 10, 20, 30 or 40
per cent of the simulation time at 256 kbit/sec(class 6)

• 32 PN (pseudo-noise) sequences with bit length of 0.2,
0.5, 1.0 and 2.0 seconds like proposed in [11] at 256
kbit/sec (class 7)

For each of the five algorithms, the simulation times ranged
from 5 to 300 seconds (5, 10, 20, 30, 40, 50, 75, 100, 150,
200, 250 and 300 seconds) and each simulation was repeated
11 times. All packets had data fields of 512 bytes.

Each flow was bi-directional. One of the directions trans-
mitted data, while the other remained silent. If the cover traffic

algorithm transmits data on all open flows (which is true for
our algorithm and for the algorithm of Zhu et al.), cover traffic
was also generated on the silent ones and included in the
further cost calculations. The silent flows were not, however,
directly taken into account when calculating protection ratio.

Classes 1 to 4 represent different distributions of traffic,
while classes 5 to 7 show different methods of possible attacks,
where the attacker modifies the traffic to form a known pattern.
We use different distributions of traffic, because there is not
enough data on the flow characteristic of deployed anonymity
systems. Additionally, we assume that different protection of
different traffic classes and possible traffic shaping (which we
suggest) may change user behaviour patterns, so also the traffic
distribution. Flows that differ from the others may be also
introduced by the attacker.

2) Our algorithm: While testing our algorithm, we used
two sets of parameters, each with a round time equal to 0.1 sec.

The first one, ’Classes, D = 5’ used used four classes for
the class() function with Hlen = 16 (in rounds, that equals
1.6 seconds), Bmax[i] = 7 for each i (7 packets/sec, approx
280 kbit/sec) and four classes for the fill class() function
with D = 5 rounds (equalling 0.5 seconds).

The class() and fill class() functions used in the simula-
tions may be presented with the following pseudo-code:
CLASS(N, j)
1 if N/Bmax[j] > 0.75
2 then return Bmax[j]
3 if N/Bmax[j] > 0.5
4 then return 3 ∗Bmax[j]/4
5 if N/Bmax[j] > 0.25
6 then return Bmax[j]/2
7 return Bmax[j]/4

FILL CLASS(f, j)
1 if f > 0.75
2 then return D ∗ 2 + 1
3 if f > 0.5
4 then return D + 1
5 if f > 0.25
6 then return D/2 + 1
7 return D/4 + 1

Finally, the second variant, ’Classes, always cover’ used
the same four classes and parameters for the class() and
fill class() functions as the previous one. However, the
onCoverGeneration() function is changed. If the number
of received messages is lower than the current increase base
fw[j] for the flow j, it sends cover messages up to fw[j].
This can be presented with the following pseudo-code:
ONCOVERGENERATION(i, j)
1 c← fw[j]− out[j][i]
2 if c <= 0
3 then return
4 out[j][i] = fw[j]

96

3) The algorithm of Zhu et al.: Zhu et al. [9] define the
algorithm only for two sources and two destinations. We have
extended it for more nodes so as to generate cover messages
for all connections at the same time if they do not have any
messages in the queue. If there is a message, it is sent. The
authors suggested an extension by sending only on a limited
number of connections, but did not provide an algorithm. We
consider the choice a complicated problem, so we leave the
algorithm in its base form.

4) The algorithm of Shmatikov and Wang: The algorithm
of Shmatikov and Wang [10] uses a traffic distribution with an
average rate much higher than that in our simulation. Because
of that, we have scaled the distribution so as to multiply each
delay by ten. That yields an acceptable average inter-packet
delay.

5) Result processing: During the result analysis phase, we
tried to correlate input and output flows. We calculated cross-
correlations between the number of packets in each 0.1-second
interval between the input and output links from each single
simulation. We used the following equation:

r(d) =

∑
i

[(xi −mx) ∗ (yi−d −my)]
√∑

i

(xi −mx)2
√∑

i

(yi−d −my)2
, (1)

where d is delay, r is cross–correlation, xi and yi are the
signals, i = 0, 1, ..N − 1. mx and my are the mean values of
the x and y signals, respectively.

Using the maximum r(d) from each input-output pair, we
calculated the best match for each input. Then we checked
whether the best match was correct. We later refer to the ratio
of correct matches as the detection rate.

B. Results

Figure 1(a) shows the rate of incorrect matches (source and
destination not matched) for different algorithms as a function
of flow length. The curve has a very similar shape for most
of the algorithms: the detection rate is low for the shortest
flow, then increases rapidly until the flow length reaches
approximately 40 seconds. Then the rate still increases, but
at a slower pace.

Unsurprisingly, the algorithm of Zhu et al. [9] gives the
best protection, as it transforms each of the input flows into
the same output. Full cover traffic with rounds yields similar
results.

Of the other algorithms, the ones proposed in this paper
provide decent protection, above 70 per cent or above 40 per
cent depending on the parameters, for the longest flows. It
should be noted, however, that there is a strong dependency
on the simulation time. The shorter the simulation, the better
protection is gained.

Surprisingly, the algorithm of Shmatikov and Wang did
only a little better than the case with no protection at all.
On investigation, we found out that it inherits too many of
the original characteristics if the traffic distribution is not very
similar to the assumed one.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100

P
ro

te
ct

io
n

le
ve

l

Simulation length [s]

Zhu et al.
Classes, always cover

Classes, D=5
Shmatikov and Wang

No cover traffic

(a) All flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100

P
ro

te
ct

io
n

le
ve

l

Simulation length [s]

Zhu et al.
Classes, always cover

Classes, D=5
Shmatikov and Wang

No cover traffic

(b) Flows under passive attacks (flow types 1–4)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100
P

ro
te

ct
io

n
le

ve
l

Simulation length [s]

Zhu et al.
Classes, always cover

Classes, D=5
Shmatikov and Wang

No cover traffic

(c) Single burst (flow type 6)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100

P
ro

te
ct

io
n

le
ve

l

Simulation length [s]

Zhu et al.
Classes, always cover

Classes, D=5
Shmatikov and Wang

No cover traffic

(d) PN sequences (flow type 7)

Fig. 1. Protection given by each of the simulated algorithms depending on
the flow type.

1) Passive and active attacks: Figures 1(b), 1(c), 1(d) show
the average protection rates for different traffic classes. The
algorithm that transforms all flows to the same form shows
similar results independently of the flow type.

The other algorithms clearly work better against passive
attackers as shown in Fig. 1(b). The protection against active
attackers is lower as shown in Fig. 1(c) and 1(d). It should be
noted that the protection given by the algorithm of Shmatikov
and Wang is very low under active attacks. Our algorithm
provides significant protection for short observation lengths,
up to approximately 50 sec (500 rounds).

2) Protection cost: Detection ratio is an important factor
when evaluating cover traffic algorithms, but it does not
include all of the important aspects. The most important of
the remaining ones is probably the cost of the algorithm,
defined as the number of cover messages it must send.

97

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 100

C
os

t p
er

 n
ot

 m
at

ch
ed

 fl
ow

 [p
ac

ke
ts

/s
ec

on
d]

Simulation length [s]

Zhu et al.
Classes, always cover

Classes, D=5 rounds
Shmatikov and Wang

Fig. 2. Cost per each undetected flow for each of the simulated algorithms.

TABLE I
COVER TRAFFIC RATIO FOR DIFFERENT SIMULATION LENGTHS.

Algorithm Cover traffic ratio
T=5 T=20 T=100 T=300

Classes, D = 5 rounds 0.42 0.37 0.37 0.36
Classes, always cover 0.49 0.45 0.44 0.44
Shmatikov and Wang 0.45 0.45 0.45 0.45
Zhu et al. 0.60 0.60 0.60 0.60

Table I shows the cover traffic ratio for different simulation
lengths. The higher cover ratio of our algorithm on short
flows is caused by the initialisation of in[j][i] to Bmax[j]
(see IV-B). Other than that, values do not change significantly
with simulation time. We can see that our algorithms provide
significant reduction compared with Zhu and small reduction
compared with Shmatikov and Wang.

An ideal algorithm would have few cover messages and
a low detection ratio (high protection). We have not found
a comparison metric that incorporates both these aspects.
Because of this, we propose a new metric, which we present
below.

Using the same input traffic, we may compare different
algorithms using the number of cover messages generated dur-
ing a fixed interval T , divided by the number of successfully
protected flows Nprotected, where we define Nprotected as the
number of flows not correlated by the attacker under certain
attack scenerio. This can be presented as:

cost =
∑Ttotal−T

t=0 cover between(t, t + T)
Nprotected ∗ T

. (2)

Figure 2 shows the cost, as defined in (2), costT=1sec. It is
worth noting that there are algorithms that scale well and those
where the cost increases significantly when the simulation
becomes longer.

Our algorithm has the lowest cost, but the set of parameters
changes. For short flows, a small D is enough, but the cost
of the algorithm with D = 5 increases, and even becomes
higher than the cost of the algorithm of Zhu et al., for flows
slightly longer than 100 seconds. For flows longer than 20
seconds, the second version of our algorithm has the lowest

cost per undetected flow and has significantly lower cost than
the algorithm of Zhu et al.

Shmatikov and Wang’s algorithm in our simulations has a
cost even higher than the algorithm of Zhu et al., and this cost
increases quickly.

C. Discussion

We have shown that our algorithm protects well against
passive attacks, but less well against active attacks, especially
long-lasting ones. However, our method leaves room for active
attack detection. This can be done if the nodes transmit flow
statistics to the initiator. These statistics would include the
number of data and cover messages in each round. Based on
those data, it should be possible to detect suspicious traffic
patterns. That would include a situation when attackers have
control over the first link and introduce delays.

The algorithm should be used by all intermediate nodes in
the anonymity system. Then the traffic will be at least partially
protected if the attackers introduce delay on certain links or
have control over one of the intermediate nodes and those
nodes fail to follow the prescribed cover traffic scheme.

We do not assume a specific transport protocol used in
the anonymity system, and we do not address behaviour
on losses. However, the protocol is optimised for datagram-
based transport, with retransmissions handled (if necessary) at
the higher (application) level. This is because we introduce
strict restrictions on the flow. If used with a connection-based
protocol (like TCP), the algorithm requires an implementation
of flow control on the whole path.

Another parameter worth mentioning is the number of traffic
classes. The number and behaviour of classes should be set
based on the traffic in the specific anonymity system. Different
extensions are possible here, keeping in mind that the more
classes there are, the fewer flows there are in a single class, and
the anonymity set becomes smaller. This requires planning,
which may be done at the negotiation phase. Some balancing
between classes may be desirable.

Our algorithm introduces latency. However, the latency is
predictable. Additionally, we suggest the round time of 100
ms, what gives the total latency of 200 ms per hop. If that
is too high, the round time may be shortened to 50 ms (100
ms per hop), or even further. We believe that such delay is
acceptable, especially when the existing anonymity systems
are reported to introduce latency measured in seconds [14].
Additional optimisations are possible, like processing the
messages (especially encrypting/decrypting) during the latency
period.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that good protection against passive and
short active attacks is possible with lower cost than in pre-
vious algorithms. Our class of algorithms addresses the basic
conflict between protection and performance in the design of
anonymity systems.

We are currently implementing an anonymity system that
uses our algorithm and uses information from the cover traffic

98

algorithm to protect against not only passive attacks, but active
attacks as well.

REFERENCES

[1] A. Pfitzmann, B. Pfitzmann, and M. Waidner, “ISDN-mixes: Untraceable
communication with very small bandwidth overhead,” in Proceedings
of the GI/ITG Conference on Communication in Distributed Systems,
February 1991, pp. 451–463.

[2] W. Dai, “PipeNet 1.1,” Post to Cypherpunks mailing list, November
1998.

[3] O. Berthold, H. Federrath, and S. Köpsell, “Web MIXes: A system
for anonymous and unobservable Internet access,” in Proceedings of
Designing Privacy Enhancing Technologies: Workshop on Design Issues
in Anonymity and Unobservability, H. Federrath, Ed. Springer-Verlag,
LNCS 2009, July 2000, pp. 115–129.

[4] M. J. Freedman and R. Morris, “Tarzan: A Peer-to-Peer Anonymiz-
ing Network Layer,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security (CCS 2002), Washington, DC,
November 2002, pp. 193–206.

[5] X. Fu, B. Graham, R. Bettati, and W. Zhao, “On Effectiveness of Link
Padding for Statistical Traffic Analysis Attacks,” in ICDCS ’03: Pro-
ceedings of the 23rd International Conference on Distributed Computing
Systems. Washington, DC, USA: IEEE Computer Society, 2003, p. 340.

[6] B. N. Levine, M. K. Reiter, C. Wang, and M. K. Wright, “Timing Attacks
in Low-Latency Mix-Based Systems,” in Proceedings of Financial
Cryptography (FC ’04), A. Juels, Ed. Springer-Verlag, LNCS 3110,
February 2004, pp. 251–265.

[7] A. Back, I. Goldberg, and A. Shostack, “Freedom Systems 2.1 Security
Issues and Analysis,” Zero Knowledge Systems, Inc., White Paper, May
2001.

[8] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
Generation Onion Router,” in Proceedings of the 13th USENIX Security
Symposium, August 2004, pp. 303–320.

[9] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “On Flow Corre-
lation Attacks and Countermeasures in Mix Networks,” in Proceedings
of Privacy Enhancing Technologies workshop (PET 2004), ser. LNCS,
vol. 3424, May 2004, pp. 207–225.

[10] V. Shmatikov and M.-H. Wang, “Timing Analysis in Low-Latency Mix
Networks: Attacks and Defenses,” in Proceedings of ESORICS 2006,
ser. Lecture Notes in Computer Science, vol. 4189, September 2006,
pp. 18–33.

[11] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao, “DSSS-Based Flow
Marking Technique for Invisible Traceback,” in SP’07: Proceedings of
the 2007 IEEE Symposium on Security and Privacy. IEEE Computer
Society, 2007, pp. 18–32.

[12] C. Diaz and B. Preneel, “Taxonomy of Mixes and Dummy Traffic,” in
Proceedings of I-NetSec04: 3rd Working Conference on Privacy and
Anonymity in Networked and Distributed Systems, Toulouse, France,
August 2004, pp. 215–230.

[13] “ns-2 webpage,” [Online], Accessed: January 2009, Available:
http://nsnam.isi.edu/nsnam/index.php/User Information.

[14] R. Wendolsky, D. Herrmann, and H. Federrath, “Performance Compari-
sion of the low-latency Anonymisation Services from User Perspective,”
in Proceedings of the Seventh Workshop on Privacy Enhancing Tech-
nologies (PET 2007), ser. Lecture Notes in Computer Science, vol. 4776.
Springer, June 2007, pp. 233–253.

99

