
Anonymizing Censorship Resistant Systems

Andrei Serjantov
Andrei.Serjantov@cl.cam.ac.uk

University of Cambridge Computer Laboratory,
William Gates Building,

JJ Thomson Avenue,
Cambridge CB3 0FD, UK

March 1, 2002

Abstract

In this paper we propose a new Peer-to-Peer archi-
tecture for a censorship resistant system with user,
server and active-server document anonymity as well
as efficient document retrieval. The retrieval service
is layered on top of an existing Peer-to-Peer infras-
tructure, which should facilitate its implementation.
The key idea is to separate the role of document stor-
ers from the machines visible by the users, which
makes each individual part of the system less prone
to censorship.

1 Introduction

Many censorship resistant systems have been pro-
posed recently, yet most still lack one crucial feature
– protection of the servers hosting the content.

In the past this was not considered an issue. For
instance, in Anderson’s eternity service [And96], it
was deemed sufficient to guarantee that a document
was always available through the system. However,
many examples indicate that servers hosting content
are vulnerable to censorship, due to “Rubber Hose
Cryptanalysis” – various kinds of pressure applied
by attackers to shut down servers or remove files.
Examples of documents subjected to censorship in-
clude DeCSS [DeC], the paper detailing the attack
on SDMI [CMW+01], and documents (or quotes

from documents) which the Church of Scientology
described as their secrets. In cases like this, the
server administrators receive “cease and desist” let-
ters when the censor finds the offending document
on their server.

Most modern censorship resistant systems, for ex-
ample Publius [WRC00] and Freenet [CSWH01],
have not addressed this problem in a satisfactory
way. It is possible for a malicious reader to find out
which servers content is stored on, and subsequently
try to pressure the server administrators to remove
it. With Publius in particular, the situation is slightly
more complicated as each document is encrypted and
the key is split into n shares, any k of which are re-
combinable to form the document back. In this case,
the attacker needs to remove content from n− k + 1
servers, all of which he can easily locate.1 With the
number of servers reasonably small and static, the
job of censoring documents becomes easier than one
might expect.

An alternative approach to dealing with censorship
resistance is taken by systems like Dagster [SW01]
and Tangler [WM01] which prevent removal of any
single document from the system by entangling doc-
uments together. However, in our view, these are
not effective enough at dealing with the problem ei-
ther: if the offending document was entangled with

1Indeed, if one server has been pressured into removal, the
other server administrators may simply follow the precedent and
remove the offending content themselves.

1



the Declaration of Independence, Das Capital and the
Little Red Book, censoring it (thereby removing all
of the above from the system) would not be a ma-
jor problem as all the other documents are readily
available from other sources. Given the other doc-
uments are not available, the censor is unlikely to
be discerning enough to want to keep some of them.
Furthermore, if the system is run on a single server
(eg. Dagster), then the censor may simply try to shut
down the entire server.

In our system, we consider the storers of the files
valuable entities, and protect them against “Rub-
ber Hose Cryptanalysis”. Furthermore, we protect
the documents they are storing by providing active-
server document anonymity (as first introduced in
[DFM01]). This is a property which states that the
storer should not be able to determine (parts of)
which document it is storing, not even by retrieving
the document from the system. We now proceed with
a description of the system and then give an analysis
and critique of it.

2 System Description

Our system consists of many identical peers, each of
which can fulfil four different roles:

• Publisher P . The node which has a document
and wishes to make it available and censorship
resistant.

• Forwarder a. A node which has an anonymous
pointer to a node storing part of a document.

• Storer s. A node which stores part of a docu-
ment.

• Client c. A node which retrieves a document.

The system is built on top of an existing Peer-to-
Peer file sharing service like PAST [DR01]. PAST
can be viewed as a network of machines (peers),
each with a unique identifier. Neighbouring ma-
chines (machines within a certain distance of each
other within a logical name space) share state. The
only thing required to send a message to a machine
is its id, furthermore, PAST guarantees that the mes-
sage takes no more than log N hops, where N is the
number of nodes in the system. We also assume a

PSfrag replacements

P

a0 a1 a2 a3

s0 s1 s2 s3

h0 h1 h2 h3

Figure 1: Publishing

public key infrastructure, so any peer is able to learn
any other peer’s public key. This is further discussed
in the next section. Using an existing Peer-to-Peer ar-
chitecture allows us to abstract from routing, clients
leaving and joining the network, and other low level
issues. An architecture like PAST also provides ro-
bustness, which is further discussed in the next sec-
tion. We also make use of an anonymous connection
system such as Onion Routing [GRS99] which is ca-
pable of handling reply blocks.

As usual in censorship resistant systems, the op-
erations available to a node are publishing and re-
trieval. There is no search facility, therefore we rely
on a broadcast mechanism like an anonymous news-
group to transmit retrieval information to potential
readers. We do not support content deletion or mod-
ification.

The overall publishing process is illustrated in Fig-
ure 1. To publish a document (see Figure 2), the pub-
lisher P splits it into n + 1 shares hi, any k + 1 of
which can be combined to form the whole document
again. This can be done using one of the standard
algorithms like Shamir’s secret sharing [Sha79]. He
then generates n+1 keys ki and encrypts each share
with the corresponding key. He now picks n+1 peers
a0 . . . an at random to act as forwarders and con-
structs onions2 to send (via the anonymous connec-
tions layer) each of them the encrypted share {h}ki

,

2This is a technique first described in [Cha81]. A (stan-
dard) onion for destination d with message M and peer sequence
a0 . . . an is {a1 . . . {d, {M}kd

}kan
. . .}ka0

which is sent to a0.
ai is the address of the server and kai

is its public key.

2



PSfrag replacements

s0

(v′

0, {h0}k0
, ra0

)

ra0

~rs0

a0

(v′

0, {h0}k0
)

P

(v0, v
′

0, k0, ~rs0
)

′′ok′′

Figure 2: Inserting share a0. All communication
is done via the anonymous connection system using
randomly constructed onions. If the message is sent
using a return address, it is displayed at the base of
the arrow. Anonymous return addresses are denoted
by r, eg. ra0

PSfrag replacements

s0

(v′0, {h0}k0 , ra0)

a0

(v′0, {h0}k0)

(v0, v
′

0, k0, ~rs0)

rl

({h0}k0 , v
′

0)
(v′0, rl)

rs0
(k0, ra0

, c, v′

0
)

l
rl ra0

(v0, c)

c

rs0

h0

h0

Figure 3: Retrieval

the corresponding key ki and a random integer vi to-
gether with a return address (reply onion)3 The pub-
lisher can now wait for a confirmation to come back
from each of the ais (via the reply onion) saying
whether the publishing has been successful or not.
If the operation failed, the publisher should try dif-
ferent ais.

Each of the forwarders (take a0 as an example)
receives the message, finding an encrypted share
{h0}k0 , a key k0 and a random number v0. He then
picks a storer s0 to store the share and a small num-
ber v′0 which the storer would associate the share
with. He constructs an onion for delivering these to
the storer. Thus, he puts the encrypted share, v′

0, as
well as its own anonymous return address ra0 into the
onion as the message and sends it off. If the onion is
received by s0, it stores the share and issues a num-
ber of different return addresses ~rs0 (to be used for
retrieval), sending them back to a0 via the return ad-
dress ra0 . Now a0 associates v0, v′0 and k0 with the
return addresses ~rs0 , forgets s0, and replies “ok” to
the publisher. Once all the shares have been stored,
the publisher destroys them and announces the name
of the file, together with the n + 1 pairs (ai, vi) to
potential users.

To retrieve a document (see Figure 3b), the client c

asks the forwarder a0 (and each ai in the same way)
to retrieve the share h0 by sending them an anony-
mous message with v0 and their address c. The for-
warder a0 then picks a random server l to act as a
decrypter and sends it k0, the key it is storing which
decrypts the stored share, v′0, c, and a return address
ra0 , getting back a return address for l. Now a0 for-
wards rl and v′0, which identifies the share, to s0

via one of the ~rs0 (rs0). Now s0 looks up the en-
crypted share corresponding to v′0 and forwards it
and v′0 to l, which decrypts the share and sends it
to the client. The process continues until c has accu-
mulated enough shares to reconstruct the document.

3A return address is a kind of onion which, if included in
an anonymous message, can be used to reply to that message
without revealing the original sender (see [Cha81] for details).

3



3 Discussion

In this section we discuss the limitations of our sys-
tem. First, one should question the validity of assum-
ing a public key infrastructure on a P2P network. We
need each peer to be able to retrieve the public key of
any other peer and verify that the key belongs to that
particular peer. The simple solution is to use a global
repository. However, such a scheme would limit the
scalability of the system. We believe that better solu-
tions exist, and are actively working on this problem.

Secondly, we should consider the forwarders –
they are certainly visible to the attacker. However,
we argue that they are much less likely to be sub-
jected to “Rubber Hose Cryptanalysis” than, for ex-
ample, Publius servers for the following reasons:

• They are not storing the offending document,
not even in an encrypted form, so their connec-
tion with it is somewhat indirect.

• They do not store the identities of the sis, so
an attack to try to get it out of them will not
succeed.

• The share does not actually go through the peers
ai after publication is completed.

• The forwarders can deny that the request they
received from c had anything to do with a share
arriving at c some time later.

A slight modification to the protocol (which is be-
yond the scope of this paper) can be introduced to
further reduce the role the ai play in the protocol,
and therefore reduce the potential for them to be at-
tacked.

Thirdly, we must consider the number of compro-
mised peers it takes to remove a document from the
system. A possible attack is as follows: each peer ai

remembers (rather than forgetting) the correspond-
ing si at the time of publication in the hope of expos-
ing si later, if the content turns out to be offending.
Once the document has been successfully published,
ai notes the correspondence between the random in-
teger (vi) published with the document and one in its
lookup table, and works out the fact that si is storing
a share of a particular document. It can now pressure
si into removing the share. However, the chances of

the n− k + 1 peers picked as ai being compromised
are small and the peers have to be compromised at
the time of publication, otherwise the attack fails.

Furthermore, we need to consider what happens
when a particular node goes down. Indeed, this
may cause problems as a forwarder failing makes
the share behind not accessible. This is handled by
the fact that PAST shares state among neighbour-
ing nodes. Therefore, requests will automatically be
routed to nearby nodes which store the same infor-
mation. In particular, the forwarders share the data
they have (v0, v

′

0, k0, ~rs0) with neighbouring nodes
which can therefore also answer requests. Similarly,
the storer shares (v′0, {h0}k0). The decrypter does
not need to share anything as he will only get one re-
quest to decrypt the share and will then give up this
role. It is worth noting that, we are relying on PAST
to replicate state on a relatively short time scale to
survive denial of service attacks.

Having stated that we provide active server
anonymity, we must pay attention to the amount
of information the storer can gain by repeatedly
requesting the document and noticing the requests
coming in for the share it is storing. However, a
suitable number of random requests generated by the
forwarders should weaken this attack. Again, the
precise details are beyond the scope of this paper.

We also note that we are presenting just one part of
a design of a system. Many questions are left unan-
swered and a few attacks are not addressed. For ex-
ample, we do not deal with accountability in any sys-
tematic way. Consider a scenario where the attacker
is powerful enough to insert many nodes into the sys-
tem. Each of these, when asked to act as a forwarder,
replies “ok”, but drops the share and fails to answer
subsequent requests. In this design, we are relying
on the inability of the attacker to insert enough mali-
cious nodes to censor documents in this way.

Another attack is simply trying to flood the censor-
ship resistant system with random data so that “real”
documents cannot be inserted. Again, this design
does not include protection against this. We felt that
although standard methods which are summarised in
[DFM00] can be used in this system, they will be
inappropriate in this context or will not provide ade-

4



quate protection. Therefore, we leave this for future
work.

4 Related Work

A variety of censorship resistant systems have been
designed, some of which have also been imple-
mented. We have already discussed Publius, Dagster
and Tangler but, perhaps the system closest to ours
in terms of the aims it tries to achieve is Free Haven
[DFM01].

It is built on top of an underlying network
of anonymous remailers and deals with reader
anonymity, server anonymity and censorship resis-
tance. However, it uses a Gnutella-like search for re-
trieval of shares of the document. More specifically,
a user request to retrieve a particular document gets
broadcast from the user node to all the neighbouring
nodes, and so on. When a request arrives at a peer
which has a matching share, it gets sent off to the
requester via a chain of remailers. This scheme for
locating files is rather inefficient, and, as the Gnutella
experience has shown, does not scale for large num-
bers of peers. Furthermore, we note that peers fre-
quently exchange shares with each other. This is
costly in terms of network bandwidth and makes it
hard to provide guarantees that a document will be
located. Our system aims to be more efficient both
in terms of bandwidth and share retrieval. Finally,
Free Haven has not been implemented, perhaps be-
cause it contains complex notions of share trading,
reputation, etc. We note, however, that moving the
individual shares around in the system is an inter-
esting technique for increasing censorship resistance
which may be incorporated into our system. For ex-
ample, the shares may be moved periodically, and the
state in the forwarders updated.

5 Conclusion

We have presented a design of a system which
deals with censorship resistance and satisfies strong
anonymity requirements. Although (like many other
similar systems) it has not yet been implemented, we

hope that the fact that it is based on top of an existing
infrastructure will make the job easier.

We have argued for building an anonymous cen-
sorship resistant system on top of a peer to peer ar-
chitecture and demonstrated the feasibility of doing
so to provide strong anonymity and robustness guar-
antees.

Having described an anonymity system and
claimed that it satisfies some properties, we consider
it worthwhile to formalise those and prove them rig-
orously in the future.

6 Acknowledgements
I acknowledge support from EPSRC grant
GRN24872 Wide-area Programming and EU
grant PEPITO. A variety of ideas have resulted
from conversations with Richard Clayton, George
Danezis, Peter Pietzuch and Peter Sewell and from
comments by various members of the Cambridge
Security group.

References
[And96] R. J. Anderson. The eternity ser-

vice. In Pragocrypt. 1996. http:
//www.cl.cam.ac.uk/users/
rja14/eternity/eternity.html.

[Cha81] D. Chaum. Untraceable electronic mail,
return addresses and digital pseudonyms.
Communications of the A.C.M., 24(2):84–
88, 1981.

[CMW+01] S. A. Craver, J. P. McGregor, M. Wu, B. Liu,
A. Stubblefield, B. Swartzlander, D. S. Wal-
lach, D. Dean, , and E. W. Felten. Reading
between the lines: lessons from the SDMI
challenge. In Information Hiding Workshop.
2001.

[CSWH01] I. Clarke, O. Sandberg, B. Wiley, and T. W.
Hong. Freenet: A distributed anonymous in-
formation storage and retrieval system. In
Federrath [Fed01], pages 46–66. http:
//freenet.sourceforge.net.

[DeC] Gallery of CSS descramblers.
http://www-2.cs.cmu.edu/˜dst/
DeCSS/Gallery/.

[DFM00] R. Dingledine, M. J. Freedman, and D. Mol-
nar. Peer-to-Peer: Harnessing the Power

5



of Disruptive Technologies, chapter 16.
O’Reilly, 2000.

[DFM01] R. Dingledine, M. J. Freedman, and D. Mol-
nar. The Free Haven Project: Distributed
anonymous storage service. In Feder-
rath [Fed01], pages 67–95. http://
freehaven.net.

[DR01] P. Druschel and A. Rowstron. Past: A large-
scale, persistent peer-to-peer storage utility.
In The 8th Workshop on Hot Topics in Oper-
ating Systems. 2001.

[Fed01] H. Federrath, editor. Designing Privacy En-
hancing Technologies: International Work-
shop on Design Issues in Anonymity and
Unobservability, volume 2009 of Lec-
ture Notes in Computer Science. Springer-
Verlag, 2001. ISBN 3-540-41724-9.

[GRS99] D. Goldschlag, M. Reed, and P. Syverson.
Onion routing for anonymous and private in-
ternet connections. Communications of the
ACM (USA), 42(2):39–41, 1999.

[Sha79] A. Shamir. How to share a secret. Commu-
nications of the ACM, 22:612–613, 1979.

[SW01] A. Stubblefield and D. Wallach. Dag-
ster: Censorship-resistant publishing with-
out replication. Technical report, Rice Uni-
versity, 2001.

[WM01] M. Waldman and D. Mazieres. Tangler:
A censorship resistant publishing system
based on document entanglements. In 8th
ACM Conference on Computer and Com-
muncation Security (CCS-8). 2001.

[WRC00] M. Waldman, A. D. Rubin, and L. F. Cra-
nor. Publius: A robust, tamper-evident,
censorship-resistant, web publishing sys-
tem. In Proc. 9th USENIX Security Sympo-
sium. 2000.

6


