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Abstract. Mix networks are a popular mechanism for anonymous In-
ternet communications. By routing IP traffic through an overlay chain of
mixes, they aim to hide the relationship between its origin and destina-
tion. Using a realistic model of interactive Internet traffic, we study the
problem of defending low-latency mix networks against attacks based on
correlating inter-packet intervals on two or more links of the mix chain.
We investigate several attack models, including an active attack which
involves adversarial modification of packet flows in order to “fingerprint”
them, and analyze the tradeoffs between the amount of cover traffic, extra
latency, and anonymity properties of the mix network. We demonstrate
that previously proposed defenses are either ineffective, or impose a pro-
hibitively large latency and/or bandwidth overhead on communicating
applications. We propose a new defense based on adaptive padding.

1 Introduction

Mix networks are a practical way to enable anonymous communications on public
networks. The goal is to hide the relationship between the origin of the traffic
(e.g., a Web browser) and the destination (e.g., a website). A mix, first proposed
by Chaum [6], can be thought of as a server that accepts incoming connections
and forwards them in such a way that an eavesdropper cannot easily determine
which outgoing connection corresponds to which incoming connection.

Because any given mix may be compromised, traffic is usually routed through
a chain of mixes. Intuitively, even if some mixes in the chain are malicious, the
other ones provide some anonymity for connections routed through them. Many
different architectures for mix networks have been proposed in literature [3, 13, 9,
18, 11]. We focus on low-latency mix networks, whose main purpose is to protect
privacy of interactive Internet communications, including popular applications
such as Web browsing. Empirical evidence indicates that low-latency anonymity
systems attract many more users than high-latency ones [12].

Like any anonymity system, a mix network can be attacked in a variety of
ways. Some of the mix routers may be compromised by the attacker; endpoints
of a repeatedly used chain may be linked by statistical analysis of message distri-
bution within the network [7, 10]; statistical properties of randomly constructed
routes may be exploited to determine the likely route origin [32, 26], and so on.
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In this paper, we assume that the attacker has direct access to packet streams
on some of the network links. Many mix networks are specifically intended to
provide anonymity against attackers who control the communication medium.
Traffic analysis is an especially serious threat for low-latency mix networks be-
cause it is very difficult to hide statistical characteristics of the packet stream and

satisfy the stringent latency requirements imposed by interactive applications.

Details of the route establishment protocol are not important for our analysis.
Once a route through the mix network has been constructed, all packets are usu-
ally encrypted and padded to hide payload size. Inter-packet time intervals are
usually not hidden because low latency requires that each packet be dispatched
as soon as it has been generated by the application. This can be exploited by
the attacker. By correlating inter-packet intervals on two links, he may be able
to determine with high probability that the links belong to the same route.

We will refer to this as the timing analysis attack. This attack is probabilistic,
and may suffer from false positives and false negatives. The standard measure
of success is the crossover error rate, at which the attacker’s false positive rate
is equal to his false negative rate. The lower the crossover error rate, the more
successful the attack. The conventional defense is to send cover traffic on each
link in order to hide actual packets in the stream of padding (dummy) packets.

Our contributions. We analyze resilience of low-latency mix networks to inter-
packet interval correlation attacks using a realistic traffic model based on HTTP
traces from National Laboratory for Applied Network Research (NLANR) [21].

We propose adaptive padding, a new defense against timing analysis. In our
scheme, intermediate mixes inject dummy packets into statistically unlikely gaps
in the packet flow, destroying timing “fingerprints” without adding any latency
to application traffic. We also present a version of our scheme which defends
against active attackers at the cost of relatively small extra latency.

The purpose of adaptive padding is to prevent the attacker from determining
which of the multiple simultaneous connections is being carried on a given net-
work link, not to hide whether a certain user or connection is currently active.
Constant-rate padding may provide better protection for the latter, although
variants such as defensive dropping [17] are trivially defeated by measuring
packet density because real and dummy packets are dropped at different rates.

We focus on short-lived connections, and do not aim to provide a compre-
hensive defense against long-term statistical disclosure attacks. It is not clear
whether this is at all achievable — in any real-world network, there will in-
evitably exist small statistical differences between packet flows which cannot be
completely hidden unless dummy traffic generators are perfectly synchronized.

Using simulated traffic, we quantify the basic tradeoff between the padding
ratio (average number of dummy packets per real packet) and protection against
timing analysis. We show that adaptive padding can defeat timing analysis with
relatively low padding ratios, e.g., 0.4 attacker’s crossover error rate can be
achieved with the 2 : 3 average ratio between dummy and real packets. (Max-
imum crossover error rate is 0.5, which corresponds to random guessing.) We
also investigate active attacks, in which artificial gaps and bursts are introduced



into packet flows in order to “fingerprint” them. Adaptive padding provides sig-
nificant protection against active attacks at a relatively low extra latency cost.

We compare adaptive padding with defenses based on sender-originated,
constant-rate cover traffic and variants such as defensive dropping, showing that
they are not feasible for traffic exhibiting realistic statistical characteristics. To
defeat passive timing analysis with reasonable padding ratios, they require pro-
hibitively high extra latency. They also fail completely against an active attack.

Organization of the paper. We survey related work in section 2. Our model
and metrics are described in section 3, the adaptive padding scheme in section 4.
Simulation methodology and results are presented in section 5. In section 6, we
discuss active attacks; in section 7, we argue that constant-rate defenses are not
feasible. Deployment issues are in section 8, future directions in section 9.

2 Related work

Traffic analysis attacks based on packet flow correlation [28, 2, 1, 25] and statisti-
cal characteristics of individual mixes [8] have been recognized as a serious threat
to low-latency mix networks, but few defenses have been proposed to date.

Venkatraman and Newman-Wolfe [22, 31] presented a mathematical model
for passive traffic analysis attacks and proposed a defense that requires complete
knowledge of traffic on all links by a trustworthy entity.

Timmerman [29, 30] proposed an adaptive “traffic masking” technique for
latency-insensitive applications such as email. Her S-DATM algorithm uses cover
traffic and artificial delays to ensure that traffic emerging from each user con-
forms to a certain profile. By contrast, we move the responsibility for traffic
shaping inside the mix network, and do not aim to precisely reproduce a partic-
ular traffic shape (as discussed below, this requires prohibitive latencies).

Berthold and Langos [4] also focus on high-latency networks, proposing that
intermediate mixes inject dummy traffic to hide whether a connection is active
or not. By contrast, our goal is to prevent the attacker from using fine-grained
timing characteristics of the packet stream to determine which of several simul-
taneous connections is carried by a given network link.

Rennhard et al. [24] present an adaptive technique for artificially delaying
packets from multiple connections at intermediate mixes in order to reduce the
amount of cover traffic. A similar technique without any cover traffic was pro-
posed by Zhu et al. [33]. With a realistic model of actual traffic, however, the
timing “fingerprints” of two flows are likely to be sufficiently different so that
the only effective defense is to actively reshape the flows at intermediate routers.
Unfortunately, the cost of this defense is prohibitive latency.

Fu et al. [14, 15], followed by Levine et al. [17], demonstrated that even packet
flows protected by constant-rate cover traffic are vulnerable to statistical analysis
of inter-packet intervals. Fu et al. propose to generate cover traffic with variable
inter-packet intervals, which is achieved by our adaptive padding scheme.

In the “defensive dropping” scheme [17], route initiators generate dummy
packets, marking each one so that it is dropped by one of the intermediate



mixes. The initiator must send all traffic at the same constant rate, delaying
real packets so as not to exceed the chosen rate. Bursty traffic generated by
interactive applications suffers vast extra latency in this case (see section 7).
The possibility of an active attack is mentioned in [17], but it is not included in
the simulations, and no defenses are proposed.

Devastating timing attacks have been successfully demonstrated in real-world
mix networks [19, 23]. To prevent a particular type of timing analysis performed
by a malicious client, Øverlier and Syverson recommend using a trusted entry
node [23], which is complementary to the defenses proposed in this paper.

3 Model and metrics

Network. We use a simplified model of a mix network. A single connection con-
sists of an initiator (or sender), a sequence (path) of N mixes, and a destination
server. In a “short-path” network, N is set randomly to 2 or 3; in a “long-path”
one, N is selected randomly from between 5 and 8. We ignore the system-specific
details of the path establishment protocol, and assume that all packets from the
initiator to the server follow the same path through the (overlay) mix network.

We make the standard assumption that, following the path establishment
protocol, all intermediate mixes share pairwise symmetric keys with the initiator,
and that each consecutive pair of mixes on a path shares a pairwise symmetric
key. We assume an end-to-end TCP connection between the initiator and the
server, i.e., there is no separate TCP connection between each consecutive pair
of intermediate mixes. An example of such a system is Tarzan [13]. We further
discuss feasibility of our techniques in various types of mix networks in section 8.

Timing analysis. We consider an attacker who measures inter-packet intervals,
i.e., time differences between observations of consecutive packets, on two network
links in order to infer whether these links carry the same connection. Even
when packets are padded and encrypted, inter-packet intervals tend to remain
correlated within the same IP flow. Moreover, traffic associated with interactive
applications such as Web browsing tends to occur in bursts. Sequences of inter-
packet intervals vary widely between different packet flows, and can thus be
used to “fingerprint” a connection. Following Levine et al. [17], we assume that
the attacker divides time into fixed-size windows, counts the number of packets
observed during each window, and correlates the sequences of packet counts.

An active attacker can also impose his own unique timing signature (by
dropping packets or introducing artificial bursts) onto the flow he is interested
in, and then attempt to identify this signature on other network links.

Our attack model is deliberately simple. We ignore the effects of packet drops
and bursts on higher-level TCP behavior. In a real attack, the attacker may also
look at timing characteristics other than inter-packet intervals, actively modify
packet streams in order to cause observable changes in network behavior, corrupt
packets to cause TCP retransmission, and so on. Our model is sufficient for
demonstrating serious problems with previously proposed solutions, and enables
us to directly compare adaptive padding with defensive dropping [17].



Defense metric. Our attacker correlates packet counts on two network links
within a certain time window. If the correlation coefficient exceeds some thresh-
old, the attacker decides that the links carry the same flow. This analysis can
suffer from false positives (the attacker erroneously determines that unrelated
links carry the same flow) and false negatives (the attacker erroneously deter-
mines that the links are unrelated even though they do carry the same flow).

High correlation thresholds increase the false negative rate and decrease the
false positive rate, while low thresholds do the opposite. The standard metric
in this situation is the crossover error rate (called equal error rate in [17]), at
which the false positive rate is equal to the false negative rate. A low crossover
error rate means that the attacker achieves both a low false positive rate and a
low false negative rate, i.e., the defense is ineffective. On the other hand, high

crossover rates mean that the defense is good. The highest crossover rate is 0.5.
If the error rate is greater than 0.5, the attacker can simply flip all the answers.

Negative impact on network performance. Defenses against timing anal-
ysis use dummy traffic to hide gaps between real packets and/or alter timing
patterns of flows by delaying packets or dropping them completely. Both tech-
niques have negative consequences for network performance as observed by the
end users. Adding dummy traffic consumes bandwidth, while delaying or drop-
ping packets increases latency. The ideal defense should minimize both effects.

Our metrics are the average padding ratio of dummy packets to real packets
across all links of a single connection, and the maximum and average extra delay

per real packet in the defended viz. undefended network.

4 Adaptive padding

After a mix receives a packet, our adaptive padding algorithm samples from the
statistical distribution of inter-packet intervals. If the next packet arrives before
the chosen interval expires, it is forwarded and a new value is sampled. To avoid
skewing resulting intervals towards short values, the distribution is modified
slightly to increase the probability of drawing a longer interval next time. If the
chosen interval expires before a packet arrives, the gap is “repaired” by sending
a dummy packet. Each mix is assumed to have a store of properly encrypted
dummy packets, ready for injection into the packet stream (see section 8).

We assume that each mix knows a rough statistical distribution of inter-
packet intervals for a “normal” flow. This distribution can be pre-computed from
traffic repositories such as NLANR [21], or from the mix’s own observations. Our
defense is fundamentally probabilistic, and may provide relatively poor protec-
tion for flows whose distribution of inter-packet intervals is very different from
the assumed distribution. Nevertheless, our method is a significant improvement
over alternatives that simply ignore statistical characteristics of the protected
flows by assuming that all senders emit traffic at the same constant rate.

Data structures. For each connection that passes through it, a mix maintains
a data structure consisting of several bins. The bins are mutually exclusive and
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Fig. 1. Data structure representing distribution of inter-packet intervals at each mix.

jointly cover all interval values from 0 to infinity. Each bin except the last cor-
responds to a finite range of inter-packet intervals; the last bin represents all
intervals longer than a certain value. We will numbers bins as b0 (corresponding
to the shortest inter-packet intervals), b1, and so on. For interactive Internet
traffic, the distribution of inter-packet intervals tends to be wide but heavily bi-
ased to short values. Therefore, we found that increasing the range represented
by each bin exponentially with the bin index works well. Intuitively, short inter-
packet intervals, which occur frequently, are split into several bins, while long
intervals, which are rare, are allocated to a single bin (see example in fig. 1).

Adaptive padding algorithm. We assume that a route through the network
has been established prior to actual communication. Upon receiving the first
packet of a connection, the mix forwards it and initializes the bins by drawing
a sample of N values from the statistical distribution of inter-packet intervals,
where N is a parameter of the system. Each sampled value falls into some range
represented by exactly one bin, and a token is placed into that bin. For simplicity,
a token counter is associated with each bin, and is incremented appropriately.

Upon receiving a packet, the mix randomly selects a token and removes it
from its bin. An expected inter-packet interval (EIPI) is chosen randomly from
the range represented by that bin. If another packet does not arrive before EIPI
expires, the mix sends a dummy packet to the next mix, and selects a new token
(the old token is not replaced). If a packet arrives before EIPI expires, this
means that the mix has chosen a “wrong” interval. It places the token back into
its bin, calculates the actual interval between the new packet and its predecessor,
removes a token from the bin corresponding to that interval, and forwards the
packet. This is done to avoid skewing the actual inter-packet interval distribution
towards short values. A new token is then randomly chosen, and so on.

The number of tokens decreases as more packets arrive on the connection.
Rarely, on an unusually long-lived connection, a packet may arrive after an
interval that falls into an empty bin bi. In this case, to avoid significantly affecting
statistical characteristics of the resulting flow, the token is removed from the next
non-empty bin bj such that i < j. Alternatively, all bins can be re-filled from the
distribution; the difference between the two methods is negligible in practice.

If all bins are empty, they are re-filled using a new sample from the distribu-
tion of inter-packet intervals, and the distribution itself updated, if necessary.



This adaptive padding algorithm repairs gaps that may have been caused
by intentional or unintentional packet drops. The algorithm is probabilistic, and
may randomly select a very short EIPI when there is a “legitimate” gap in the
packet flow (e.g., the sender’s application is silent). This may result in tremen-
dous amounts of cover traffic. One solution is to ignore the bins corresponding to
low intervals in the token selection algorithm, i.e., to only insert dummy packets
into relatively large gaps. We investigate the tradeoff between padding ratios
and effectiveness of adaptive padding against traffic analysis in section 5.2.

Destroying natural fingerprints. Real packet flows tend to be bursty, and
each flow naturally has a unique pattern of inter-packet intervals which can be
used as its “fingerprint” by the attacker in order to distinguish two or more
flows. This fingerprint can be eliminated by dispatching all packets at the same
constant rate, but this imposes prohibitive extra latency (see section 7).

The basic algorithm described above selects a new EIPI after receiving a
packet or after the previous EIPI expired. To destroy natural patterns, however,
gaps should be filled without adding packets where traffic is already dense. We
thus propose a more sophisticated dual-mode algorithm.

(Burst) After a packet has been received, a new expected inter-packet in-
terval is selected only from higher bins, i.e., those associated with long intervals.
This collection of bins will be referred to as the High-Bins Set (HBS).

(Gap) After the previously chosen expected inter-packet interval expired
without receiving a packet and a dummy packet has been sent, the new interval
is selected only from lower bins, i.e., those associated with short intervals. This
collection of bins will be referred to as the Low-Bins Set (LBS).

Intuitively, when the flow contains a natural burst, the next expected interval
is chosen to be long to decrease the chance of introducing a dummy packet where
packet density is already high. When the flow contains a natural gap, the next
interval is short, to increase the chance of introducing a dummy packet. HBS
and LBS can be configured based on observed traffic characteristics (see below).

Basic adaptive padding does not impose any extra latency on real packets.
(A small delay is needed to defeat active attacks, as described in section 6.)
Extra processing at each mix consists of generating a random number for each
received packet, and, if necessary, drawing a dummy packet from its store. This
is negligible compared to decryption and re-encryption that must be performed
on each packet. The exact amount of dummy traffic is a parameter of the system,
and depends on the desired effectiveness against timing analysis (see section 5.2).

5 Experimental evaluation

We evaluate four schemes: undefended, defensive dropping [17], a variant of de-
fensive dropping with constant-rate cover traffic (i.e., real traffic is not delayed,
only dummy packets are sent at constant rate), and adaptive padding. For each
scheme, attacker’s crossover error rate is computed on 3000 simulated flows.

To simplify comparisons with [17], we use the same model for network links.
The packet drop rate is drawn from an exponential distribution with the mean



of either 5% (between the sender and the first mix), or 1% (mix-to-mix links).
The average delay d is uniformly random between 0 and 100 ms. The actual
delay for each packet is drawn from an exponential distribution with mean d.

The traffic model in our simulations is based on actual TCP traffic traces
from Lawrence Berkeley Laboratory [16] and NLANR archives [21]. We found
that our results are consistent across all traces. The data presented in the rest of
the paper are based on the NLANR Auckland-VIII data set [20]. The distribution
of inter-packet intervals within a single TCP connection, used by the adaptive
padding algorithm in our simulations, was also extracted from these traces.

To simulate application traffic, we select an inter-packet interval at random
from the distribution, generate a “real” packet after the interval expires, and re-
peat. For adaptive padding and undefended simulations, this is exactly the traffic
emitted by the sender. For the variant of defensive dropping with constant-rate
cover traffic, a real packet is sent as soon as it is generated, and a dummy packet
is sent at some constant rate. For standard defensive dropping, both real and
dummy packets are sent at the same constant rate, i.e., real packets are placed in
a queue until it’s time to send them. We do not model TCP acknowledgements,
re-transmissions, exponential backoff in response to dropped packets, and other
TCP features that may be exploited by a sophisticated attacker. Our simple
model is sufficient to demonstrate the power of inter-packet interval correlation.

In the undefended simulation, each mix simply forwards packets to the next
mix. With defensive dropping, the first mix drops a dummy packet with probabil-
ity 0.6. With adaptive padding, mixes inject dummy packets using the dual-mode
algorithm of section 4 and the pre-set distribution of inter-packet intervals.

5.1 Attack model

The attacker observes a set of entry links and a set of exit links with the goal
to determine which exit link corresponds to which entry link.

Attacker’s observation time is set to 60 seconds, enough to defeat previously
proposed defenses. Increasing observation time reduces effectiveness of any de-
fense, including ours. Even small statistical differences between packet flows can
be detected if the observation time is long enough. We conjecture that long-term
attacks cannot be prevented without assuming that some senders or mixes emit
cover traffic in perfect synchrony, which cannot be achieved by any real system.

The attacker divides time into windows of W seconds [17]. Empirically, W =
1 gives the most accurate results. For each observed link, the attacker counts the
number of packets xk during the kth window, producing a sequence of packet
counts for each link. For every possible entry-exit pair, he computes the cross-

correlation of the two sequences as r(d) =
P

i
((xi−µ)(x′

i+d
−µ′))
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√P
i
(x′
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, where delay

d = 0 and µ, µ′ are the means of the two sequences.
If the correlation r(d) for a pair of links exceeds some threshold t, the attacker

determines that the links carry the same flow. Otherwise, he determines that they
carry different flows. For a given t, the false positive rate is the fraction of pairs
that carry different flows but were erroneously determined to carry the same flow;



the false negative rate is the fraction of same-flow pairs that were erroneously
determined to carry different flows. The attacker chooses t so that the false
positive and false negative rates are equal. This is the attacker’s crossover error
rate. High crossover rate means that the defense is effective.

5.2 Evaluation results

An overview of our results is in fig. 2. The crossover rates for defensive dropping
and adaptive padding are from configurations that produce, on average, one
dummy packet for each real packet (1:1 padding ratio). The constant rate for
both types of defensive dropping is 6.67 packets per second.

Undefended. Timing analysis is extremely effective against unmodified network
flows. (Recall that only inter-packet intervals are unmodified; all other defenses,
including encryption, are deployed, and no mixes are corrupted.) The crossover
rate is close to 0, i.e., there exists a correlation threshold that results in negligible
false positive and false negative rates. Inter-packet intervals on two links of the
same path have correlation close to 0.9 vs. less than 0.3 for unrelated links.
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Defensive dropping with constant-rate cover. The variant of defensive
dropping in which dummy packets are sent at constant rate while real packets
are sent as soon as they are produced by the application does not provide much
protection, with the crossover rate close to 0. Constant-rate cover traffic may hide
periods of inactivity, but does not eliminate patterns of inter-packet intervals.

Adaptive padding and defensive dropping. Defensive dropping and adap-
tive padding are the two defenses that offer some protection against timing anal-
ysis, increasing the attacker’s crossover rate to above 0.25 in our simulations.

The two defenses work for different reasons. Defensive dropping decreases
correlations within the same flow to 0.4 − 0.6, while raising (erroneous) corre-
lations of different flows to 0.3 − 0.5. This is due to constant-rate cover traffic,
which causes all flows to look similar initially. For defensive dropping to work,
other flows must be sent at the same constant rate as the protected flow.

Adaptive padding, on the other hand, raises correlation between different
flows only to 0.1−0.3, and most of the defensive effect is due to lowering correla-



tion within the same flow to 0.2−0.4. Adaptive padding thus provides standalone

defense for a flow even if other flows do not use any defenses.
Fig. 3 displays the fundamental tradeoff of adaptive padding between the

padding ratio and the attacker’s crossover error rate. As the padding ratio in-
creases, the attacker’s error rate goes up at the cost of increased network con-
gestion, as more dummy packets must be generated for each real packet.

At point A in fig. 3, LBS is bins b4−7, and HBS is bins above b12. The error
rate is raised only to .03, but only 1 dummy packet is needed per 9 real packets.
Defensive dropping achieves the same 1:9 padding ratio if the constant rate is set
to 3 packets per second. The resulting error rate of 0.27 is better than adaptive
padding, but the average extra latency per packet exceeds 3.5 seconds (see fig. 6).

At point B in fig. 3, LBS is set to bins b3−6, and HBS to bins above b11. On
average, this requires 0.56 dummy packets per each real packet and achieves 0.37
error rate with zero extra latency. By contrast, the constant rate that achieves a
comparable padding ratio for defensive dropping results in (significantly worse)
0.2 error rate, with average extra latency of 1.1 seconds per packet.

At point C, LBS is bins b0−8, and HBS is bins above b10. The resulting
padding ratio is around 1.3:1, and the attacker’s error rate is 0.48, close to the-
oretically optimal. In our simulations, defensive dropping was unable to achieve
similar error rates with padding ratios under 50:1.

Short paths. When paths are short (2 or 3 mixes) and defensive dropping is
used, attacker’s error rates decrease slightly. Fewer variations due to natural net-
work delays and drops are accumulated by the flows, and distinguishing features
of entry links are still pronounced on exit links, leading to higher correlations.

With adaptive padding, crossover rates decrease, too. Padding ratios decrease
as well, because fewer mixes inject dummy packets, e.g., at point B in fig. 3, the
error rate is 0.19 with the padding ratio of 1:3. Decreasing padding ratios tend
to outweigh decreasing error rates, i.e., for a given padding ratio, the error rate
for shorter paths is comparable or better than that for longer paths.

6 Active attacks

In addition to passively observing network links, an active attacker may impose
his own timing signature onto the target flow and attempt to recognize this
signature on other network links. We assume that he cannot create new packets
(this requires knowledge of the symmetric keys of all subsequent mixes), nor
replay packets (this is easy to prevent with caching and hash checking).

Artificial gaps. The attacker may drop several consecutive packets in the target
flow to create a large gap. Fig. 4 shows the results of simulating 3000 normal
flows and and 3000 target flows in which the attacker drops several consecutive
packets on the entry link 1 second after the flow has started.

Dropping even a small number of consecutive packets drastically decreases
the effectiveness of defensive dropping. With constant rate, all flows look very
similar initially, so a noticeable change to one of the flows, such as introduction
of a large gap, is almost guaranteed to create a recognizable feature.



With adaptive padding, artificial drops do not decrease the attacker’s error
rate. Intermediate mixes are likely to reduce the gap by injecting dummy packets.
Moreover, other flows may have similar gaps due to natural variations.
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Artificial bursts. The attacker can create a signature from artificial packets
bursts by holding up packets on a link and then releasing all of them at once.

We simulated this attack with a 5-second and 15-second attacker’s queue
(while very effective, the latter is somewhat unrealistic, as it is likely to result
in the higher-level TCP connection simply being dropped). Defensive dropping
provides no defense: the crossover rate is 0 in both cases, i.e., the attacker can
perfectly identify the target flow. With adaptive padding, the crossover rate
drops from .45 to .36 with a 5-second queue, and to .21 with a 15-second queue.

Our modified adaptive padding algorithm breaks up bursts by queueing all
packets whose inter-arrival time is in the first bin (i.e., very short). Each such
packet is delayed for a short random interval. Fig. 5 shows the tradeoff between
the crossover rate and the extra latency imposed on real packets. As expected,
the longer the delay, the better the defense. This penalty is paid only by packets
with extremely short inter-arrival times; the impact on normal flows is small.

7 Comparison with constant-rate defenses

We further compare adaptive padding with constant-rate defenses, including
variations such as the defensive dropping scheme of Levine et al. [17].

Latency is prohibitive. Constant-rate defenses fundamentally assume that
senders emit traffic at a constant rate. Low-latency mix networks, however, are
intended to provide anonymity for interactive applications such as Web browsing,
and it is well-known (and borne out by real-world traces such as [21]) that
Web traffic is bursty. Therefore, the sender must delay packets when the rate
of actual traffic generated by the application exceeds the pre-set constant rate.
Furthermore, this delay propagates to all subsequent packets. If the rate of real
traffic exceeds the pre-set constant rate, packet delays increase to infinity.

Fig. 6 quantifies the latency penalty. For example, if the constant rate is 5
packets per second, real packets are delayed by 1.1 seconds on average. This delay
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Fig. 6. Latency penalty of constant-rate defenses.

may be acceptable for relatively one-directional and non-interactive applications.
Constant-rate defenses may thus be a good choice for users who are willing to
tolerate increased latencies and are not worried about active attacks.

For interactive applications, however, extra latency is likely to be prohibitive.
Moreover, there is evidence that low latency is essential for user adoption of
anonymity systems [12]. A non-trivial increase in latency may cause fewer users
to participate in the system, resulting in lower baseline anonymity.

The average maximum delay for each flow in our simulations is approximately
3.5 seconds, with many flows delayed by almost 10 seconds. Delays like these
are likely to result in dropped TCP connections, disabling the network for all
purposes (such effects are beyond the scope of our simplified model).

By contrast, adaptive padding does not impose any extra latency against a
passive attacker, and only a small latency against an active attacker.

Everybody must send at the same constant rate. As observed in sec-
tion 5.2, constant-rate defenses are effective only if most flows in the network
are emitted at the same constant rate, which is clearly unrealistic. On the other
hand, adaptive padding is effective in protecting a single flow even if other flows
in the network do not use any defense against timing analysis.

There is no “right” constant rate. It may appear that the latency problem
may be solved by setting a high constant rate which matches the shortest inter-
packet interval(s) of actual traffic. Unfortunately, this is not feasible. Inter-packet
intervals associated with traffic bursts are so short that the constant rate must
be exceedingly high, resulting in vast amounts of dummy traffic when bursts
are not occurring. From the network perspective, this “solution” is equivalent to
taking the most congested time slice and expanding it to the entire connection.

Defense fails against active attacks. As shown in section 6, constant-rate de-
fenses, including defensive dropping, do not provide any defense against artificial
gaps or bursts introduced by an active attacker.

Defense fails at high traffic rates. With defensive dropping, only dummy
packets may be dropped by intermediate mixes. If the application generates real
packets at a higher rate than the chosen constant rate, most packets on each
link are real and cannot be dropped. This becomes simple constant-rate traffic,
which is vulnerable to basic timing analysis [14, 17].



Defense reveals presence of real traffic. Even if real traffic is sparse (but
bursty), the constant-rate blend of real and cover traffic produced by defensive
dropping will likely consist of alternating sequences of real and dummy pack-
ets. Because only dummy packets may be dropped by intermediate mixes, the
attacker can conclude that periods of sparse packets are padding and periods of
dense packets are real traffic. If constant-rate cover traffic with defensive drop-
ping is used to hide whether the connection is active or not, the attacker can
break the defense simply by observing packet density.

8 Creation and management of dummy packets

The main feature of our approach is that dummy packets are injected into
the flow by intermediate mixes (as opposed to the route initiator), in order
to “smooth out” statistical anomalies in inter-packet intervals. In the simplest
case, the mix creates dummy packets itself, encrypting them with the next mix’s
key. The next mix decrypts the packet, recognizes it as a dummy, re-encrypts
it and forwards it on. A passive attacker cannot feasibly distinguish encrypted
dummy packets from encrypted real packets by observing the network. An active
attacker who can compromise a mix, however, will be able to recognize dummy
packets generated by the preceding mixes, negating the effects of cover traffic.

Pre-computation of dummy packets. For security in the presence of com-
promised mixes, injected dummy packets should be indistinguishable from real
packets by all subsequent mixes. If layered encryption is used, dummy packets
should be encrypted with the the same keys in the same order as real packets.

An intermediate mix does not know its successors in the mix chain, and
thus cannot properly encrypt a dummy packet itself. One solution is to have the
initiator pre-compute large batches of dummy packets for all mixes in the chain.
This is done offline, e.g., during route setup, and thus has no impact on the
bandwidth and latency of actual communication. During route setup, each mix
receives from the initiator a batch of dummy packets. The batch is encrypted
with their shared pairwise key. Each dummy packet is properly encrypted with
the keys of all successor mixes (this does not leak their identities). Whenever the
mix needs to inject a dummy packet, it simply gets it from the batch. None of
its successors on the route can tell a real packet from an injected dummy packet.

These batches can be replenished periodically, or, depending on the imple-
mentation, a mix may signal to the route initiator that it needs a new batch when
the connection is quiet. This approach is secure against compromised mixes, and
trades off storage at the intermediate mixes against online computation (since
mixes no longer generate dummy packets on the fly), resulting in faster perfor-
mance. It also prevents malicious mixes from flooding the connection with bogus
dummy packets, because they will not decrypt properly at the successor mixes.

Injection of pre-computed packets into a stream of encrypted packets assumes
that encryption is block cipher-based, as in, e.g., the Freedom system [5]. If a
stream cipher is used, as in onion routing [27, 11], the state of the cipher used
for the ith layer of encryption must be synchronized between the sender and the



ith mix in the path. Because the sender cannot predict when an intermediate
mix may need to inject a dummy packet, pre-computation is infeasible, and an
alternative mechanism such as reverse paths (see below) must be used.

Malicious clients and servers. Vulnerability of real-world mix networks to
timing analysis performed by malicious clients and servers has been shown by,
respectively, Øverlier and Syverson [23], and Murdoch and Danezis [19]. In our
case, we assume that dummy packets are sent beyond the last mix to the desti-
nation server, and that the latter can recognize and discard them.

This can sometimes be achieved without server cooperation. For example, if
the sender knows that the server discards all packets with an invalid message
authentication code (MAC), he can append invalid MACs to all dummy packets.
Even if the attacker compromises the last mix, he does not learn the key shared
between the sender and the destination, and thus cannot check MAC validity.

In general, adaptive padding requires server cooperation, and thus does not
protect from malicious servers. This may appear to be a serious disadvantage viz.
sender-originated cover traffic, but, in reality, many low-latency applications such
as Web browsing are bidirectional, and thus also require server cooperation. For
instance, if defensive dropping is used to protect HTTP connections, a malicious
server can easily track propagation of its responses back to the client.

Protection offered by adaptive padding (or, in general, by any mix-injected
cover traffic) is a mirror image of protection offered by sender-originated cover
traffic. With the former, the last link of a mix chain is padded, but the first
link is not. With the latter, the first link is padded, but the last link is not.
Therefore, the former requires server cooperation, while the latter requires client
cooperation (and is insecure against a malicious client).

Reverse routes. Another solution is to reverse the conventional route setup
process so that the server (rather than the initiator) ends up sharing a key with
each mix in the chain. The sender encrypts packets only with the server’s key
and sends them to the first mix on the path. Each succeeding mix encrypts the
packet with the key it shares with the server. The server unwraps all onion layers
of encryption. (A similar mechanism is used by location-hidden servers in Tor.)
With reverse routes, intermediate mixes can easily inject dummy packets into
the flow — all they need to do is simply encrypt them with the key they share
with the next mix, and send them with the proper route identification.

The Øverlier-Syverson attack on hidden servers demonstrates the importance
of protecting reverse paths from malicious clients. Since this cannot be done with
sender-based defenses, mix-injected cover traffic is a better solution in this case.

9 Challenges and future directions

Attacks considered in this paper by no means exhaust the list of possible threats
against low-latency mix networks. We made the standard, unrealistic assumption
that all connections start at the same time. In reality, attacks based on correlat-
ing start and end times of connections may prove very successful. In general, it is



very difficult to hide connection start and end times using dummy traffic because
the mix network handles dummy and real packets differently (e.g., dummies can
or even should be dropped, while real packets are never dropped).

With adaptive padding, any intermediate mix may inject a dummy packet.
The more mixes a flow has traversed, the denser it tends to become. The attacker
may be able to estimate the hop count of a flow by measuring its density. This
cannot always be used to attack anonymity, however. Furthermore, padding
ratios are higher on the links closer to the destination. Even when the average
padding ratio is low, links toward the end of the path may experience more
congestion. On the flip side, the client-side links, which tend to be slower and less
reliable, are free of padding. In two-way communication, where the same route
with adaptive padding is used in both directions, the padding ratios balance out.

References

1. A. Back, I. Goldberg, and A. Shostack. Freedom Systems 2.1 security issues and
analysis. http://www.freehaven.net/anonbib/cache/freedom21-security.pdf,
May 2001.
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