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Abstract. In this paper we put forward a new onion routing protocol
which achieves forward secrecy in a fully non-interactive fashion, without
requiring any communication from the router and/or the users and the
service provider to update time-related keys. We compare this to TOR
which requires O(n2) rounds of interaction to establish a circuit of size
n. In terms of the computational effort required to the parties, our pro-
tocol is comparable to TOR, but the network latency associated with
TOR’s high round complexity ends up dominating the running time.
Compared to other recently proposed alternative to TOR (such as the
PB-OR and CL-OR protocols) our scheme still has the advantage of be-
ing non-interactive (both PB-OR and CL-OR require some interaction to
update time-sensitive information), and achieves similar computational
performances. We performed extensive implementation and simulation
tests that confirm our theoretical analysis. Additionally, while compar-
ing our scheme to PB-OR, we discovered a flaw in the security of that
scheme which we repair in this paper.

Our solution is based on the application of forward-secure encryption.
We design a forward-secure encryption scheme (of independent interest)
to be used as the main encryption scheme in an onion routing protocol.

1 Introduction

As we move to use network communication in more and more aspects of every-
day’s life, it has become apparent that our privacy is at stake. The ability to
monitor electronic communication, to store large amount of data, and to run
sophisticated analytics on it, allows a sufficiently motivated party to ”connect
the dots” between various on-line activities of a specific user and get a pretty
accurate picture of his/her private life.

These privacy concerns were recognized since the beginning of the Internet
age, and anonymous communication was conceived as a possible approach to
! Work partially done while student at University of Catania.

J. Lopez and G. Tsudik (Eds.): ACNS 2011, LNCS 6715, pp. 255–273, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



256 D. Catalano et al.

their solutions. Anonymity is the user’s ability to hide not only her identity but
also her network information (e.g. her network address). This is of utter impor-
tance in many real life applications, where a user’s identity should be decoupled
from her network activities (e.g. voting, e-cash, anonymous credentials, etc.).

Chaum in 1981 [8], proposed the notion of a anonymous channel, realized
through a mix-net: very informally, his idea was to route messages through a
series of nodes (the mix-net). The messages are ”wrapped” in several layers
of encryptions and sent to the first node in the mix-net. Each node, batches a
number of received ciphertexts, peels off a layer of encryption from each of them,
and sends the resulting values in permuted order to the next node. The last node
in the mix-net delivers the messages to the recipients. Anonymity derives from
the fact that since each node permutes the messages in a randomized order before
forwarding, no traffic analysis can actually link the sender to the receiver.

Goldschlag et al. introduced in [17] the so-called Onion Routing approach
which is based on Chaum’s idea as follows. Consider a setting defined by: a ser-
vice provider, a set of users and a set of nodes (called onion routers). The user’s
goal is to establish an anonymous channel that allows him to send messages over
the network without being identified. In order to do so, he selects a random set of
nodes (called a circuit), wraps the message with several layers of encryption, one
for each node, and sends it through these intermediate nodes. Because of their
layered composition such wrapped messages are called onions. Whenever a node
receives a message, it decrypts it and immediately sends the resulting value to the
next node. Note that differently from Chaum’s mixers, an onion router does not
collect and permute a batch of messages before forwarding, but it immediately
forwards what it receives. Roughly speaking, since the user chooses a random
subset of the routers to forward his messages, anonymity is guaranteed by the
assumption that the adversary cannot monitor the entire set of onion routers,
but has only a local view of the network communication. This very simple and
elegant idea has proven itself very popular over the Internet. Besides leading to
several other constructions and implementations (e.g. [17,9,25,18,15,26,14]), it
gave birth to the Onion Routing Project, later replaced by Tor [14] (the sec-
ond generation onion router) which provides privacy and anonymity to a large
number of users over the Internet. At the moment it counts, roughly, 1000 onion
routers and hundreds of thousands of users over the world.

An important aspect of onion routing protocols is how messages travel se-
curely through each onion router. The idea given in [17] proposes that the user
encrypts a random symmetric key with the public key of each onion router: the
symmetric key is used to encrypt the corresponding onion layer and the name
of the next node in the circuit. This approach, unfortunately, is not robust in
the face of possible server corruptions. Indeed if an adversary obtains the long-
term secret key of a router O, it can then decrypt all the ciphertexts received
by O: particularly troubling is that the adversary can decrypt communication
that happened before the leakage of the secret key. Resistance to such attacks
has been already recognized as an important security property (that is called
forward secrecy) in other cryptographic contexts. So, even for onion routing,
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ideally we would like to have a protocol that is forward-secure, namely such that
a router’s corruption does not reveal anything about communication prior to the
corruption.

In the context of Tor, Dingledine et al. [14] proposed a solution which relies
on using the routers’ public keys only to establish a temporary session key via an
(interactive) Diffie-Hellman [12] key agreement. In order to get anonymity such
interaction is made part of a specific protocol called Tor Authentication Protocol
(TAP) which was proven secure by Goldberg [16]. The main idea of TAP is the
telescoping technique that allows to construct the circuit and to exchange the
temporary keys anonymously. However, this technique has a major drawback:
its bandwidth and round complexity. In fact, in order to build a circuit of length
n it is required to exchange O(n2) (symmetrically encrypted) messages. Øverlier
and Syverson [24] later improved the efficiency of TAP by proposing the use of
only half-certified Diffie-Hellman key-agreement, but the round complexity of
telescoping is still quadratic.

A related notion of forward secrecy (sometimes called eventual forward secrecy
in the literature) can be realized by frequently changing the long-term server
keys, in order to minimize the security impact of key leakage. If the adversary
learns the secret key of a server O, it may only learn the communication related to
the validity period of that key. The trivial implementation of this idea (changing
the servers public keys) would be very complicated in practice as it forces the
routers to generate new keys with corresponding valid certificates, and the users
to repeatedly obtain such certified keys.

Recently, two approaches were proposed to achieve eventual forward secrecy
in a more efficient and simple way. In 2007, Kate et al. [20,21] proposed using
identity-based encryption schemes such as [4,29] to construct an onion routing
protocol called PB-OR (for pairing-based onion routing). In identity-based cryp-
tography (introduced by Adi Shamir in [27]) the parties’ public keys are their
identities, and the secret keys are provided to them by a trusted Key Generation
Center (KGC). PB-OR uses the original onion-routing idea to encrypt messages
using the public key of the routers, except that in this case the routers’ public
keys are their identities together with the validity period. Therefore a router’s
corruption reveals only the messages encrypted during the particular period of
the corruption. PB-OR has two major drawbacks: (i) the existence of a trusted
KGC who can decrypt any message in the network; (ii) it requires the routers to
interact with the KGC at each validity period to obtain new secret keys. While
the former can be solved by using known techniques (e.g. a distributed KGC),
the latter is more annoying and seems to be inherent in that construction.

These two drawbacks were addressed in a subsequent paper by Catalano et
al. [7] who suggested using certificateless encryption (rather than identity-based)
to construct the onions. Certificateless encryption [1] is an hybrid setting that lies
between public key and identity-based cryptography: each user has an identity
string ID with a matching secret key produced by a KGC and also a public/secret
key pair, as in the traditional public key model but with the advantage that such
key needs not be certified. Certificateless encryption does not suffer the problem
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of key escrow as the KGC cannot decrypt the messages sent to a user. The
CL-OR protocol in [7] achieves eventual forward secrecy by having the routers
periodically change their public keys: compared to PB-OR, CL-OR requires the
users to interact with the service provider at each time period to obtain the
routers’ new public keys (but with the advantage of not having to manage and
verify certificates).

Our Contribution. This paper presents a new onion routing protocol which
outperforms TOR (and the other proposals such as PB-OR and CL-OR as well).
The main improvement of our proposal is that it is fully non-interactive. Our
main idea is to achieve eventual forward secrecy by using forward-secure identity-
based encryption (fs-IBE) for the public keys of the routers.

Forward-secure public-key encryption (fs-PKE) was originally proposed by
Anderson in [2] exactly as a way to achieve eventual forward secrecy for public-
key encryption, without requiring users to continuously change their public keys.
In Anderson’s idea, a user U of a fs-PKE scheme publishes a static public key
pkU and senders encrypt messages using this public key and a time value t. To
decrypt such ciphertexts, U uses a secret key skU,t. At the beginning, U holds
the secret key skU,0, and at each time period U updates its secret key from skU,t

to skU,t+1 and erases skU,t. This process must be one-way – while it is easy
to compute skU,t+1 from skU,t the reverse must be hard – in order to achieve
eventual forward secrecy: if skU,t is compromised past communication remains
secret. Our contribution can be described as follows:

– First, we propose a new onion routing protocol fs-ID-OR, which uses the
“classical” onion-routing approach to construct onions by using the static
public keys of the routers, except that we use an identity-based forward
secure encryption (fs-IBE) scheme for the routers’ public-keys.

– Next, we build an fs-IBE scheme by carefully applying a generic paradigm by
Canetti et al. [6] to the Hierarchical Identity-Based Encryption of Boneh et
al. [3]. This scheme is tailored to the onion-routing application and has other
properties (discussed below) which can make it of independent interest.

The advantages of fs-ID-OR compared to PB-OR and CL-OR are substantial.
Compared to PB-OR, our new scheme does not require the KGC to be involved
in the generation of new secret keys for the routers: indeed in fs-ID-OR the
update of the secret key at each time period is a local, non-interactive procedure
performed by the router. Compared to CL-OR the public keys of the routers are
fixed throughout all time periods (only the secret keys change) so the users do not
need to obtain new public keys for the routers after each time period. Compared
to Tor, fs-ID-OR has a completely non-interactive circuit-building protocol with
linear round complexity. This makes fs-ID-OR a truly non-interactive solution as
it requires no interaction between the routers, the KGC or the users to update
time information after each time change.

It is fair to notice that in practice clients have to receive up-to-date informa-
tions about the state of the network to ensure that they create correct circuits
(e.g. restrictions on the paths, status of online nodes, delays, etc.) since these
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informations are all security sensitive items. Therefore a truly secure solution
seems to be interactive anyway, and the advantage of our proposal limited.
However, we argue that the cost of exchanging and processing cryptographic
information related to the protocol is likely to be orders of magnitude larger
than the cost of receiving network status updates, and therefore removing in-
teraction from the cryptographic part of the protocol is not just a theoretical
exercise, but a real practical advantage.

Note that the level of protection afforded by eventual forward-security is re-
lated to the frequency of updates of the long-term keys (more frequent updates
imply less past information being leaked in case of a key compromise). Because
our solution is non-interactive, we have removed the major cost of key updates,
thus making very frequent updates possible. Remarkably, our non-interactive so-
lution does not come with high efficiency cost. In terms of computational load,
our protocol is comparable with PB-OR, and definitely better than Tor (which is
saddled by the cost of telescoping). The performance details of our protocol are
discussed in Section 6 where we report an extensive implementation and simula-
tion tests. The basic version of our protocol works in the identity-based setting:
therefore we must assume a trusted KGC who has the ability to decrypt all com-
munications, as in PB-OR. However, we stress on that it is possible to modify our
protocol to work in both the classical PKI setting and in the certificateless setting
so to avoid the key-escrow problem. We discuss these variations in Section 4.

Note. While proving the security of our scheme, we noticed a small flaw in one
of the security arguments in [21]. They claim that the anonymity property can be
achieved by assuming that the encryption schemes used in the Onion Routing
protocol are simply semantically secure. But our proof of security shows that
anonymity relies in a crucial way on assuming that the encryption schemes are
secure against chosen ciphertext attack.

Other Related work. We refer the reader to the work in [23,5] for formal
security definitions for the problem of onion routing. We discuss the relationship
of our work with respect to the Camenisch and Lysyanskaya formal model [5] in
Section 2. A forward-secure (hierarchical) identity-based public key encryption
is presented by Yao et al. in [30]. Our new scheme is somewhat uncomparable to
theirs: our scheme was designed to satisfy only the minimal security properties
needed for the onion-routing application, while the scheme in [30] proposes ad-
ditional security properties which might be useful in other contexts. As a result
our scheme is simpler and more efficient (in particular it allows for constant size
ciphertexts), but does not satisfy all the security properties proposed in [30].

2 Forward-Secure Identity-Based Onion Routing

In this section we introduce the notion of Forward-Secure Identity-Based Onion
Routing (fs-ID-OR). As usual, an onion routing protocol is characterized by a
service provider, a set of “onion routers” and users. The goal of the protocol is to
provide anonymity over a network to users and the basic idea is that users route
their traffic throughout an encrypted circuit of randomly chosen onion routers.
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In addition, our solution considers forward-secrecy, a property which is in
general quite important for cryptographic protocols. Informally, it guarantees
that the security properties still hold even if the adversary can corrupt all the
parties and learn their secret keys after a protocol session is expired. If one
focuses only on adversaries that can corrupt parties after a specific time period
τ , then we call this property eventual forward-secrecy. Otherwise it is called
immediate forward-secrecy. In our work we will focus on eventual forward-secrecy
since it is the strongest notion that is achievable in a non-interactive way. Our
definition of fs-ID-OR follows the traditional notion of onion routing but focuses
on the identity-based setting where each onion router is represented by a unique
identity string ORi (e.g. its name, address, etc.) and receives a secret key related
to such string by a trusted entity, called the Key Generation Center (KGC).

In order to consider forward-secrecy, we assume that the time is split into
time periods of the same length. A fs-ID-OR protocol consists of the following
phases:

Setup and Key Generation. The service provider generates the global pa-
rameters of the system and makes them available to all users. When an onion
router with identity ORi joins the system at time t, the service provider acts
as a KGC and uses its master secret to generate a private key skORi,t for ORi.
When a time period t expires, each onion router is required to update its secret
key, that means that it runs a specific algorithm that on input skORi,t outputs
skORi,t+1 while the old key is erased.

Circuit construction. In this phase the user firstly has to obtain a list L
containing the identities of all the available onion routers. Such list is maintained
by the KGC and is updated at a specific interval t′. We notice that t′ might also
be different from the τ used for updating the keys. Next, the user chooses an
ordered set of n onion routers OR1, . . . , ORn at random among those in L. This
ordered set is called circuit and the number n is typically fixed and specified in
the protocol parameters. In order to send messages through the circuit at time t,
the user builds a special ciphertext O1, called “onion ciphertext” such that, for
all i = 1 to n onion router ORi is able to partially decrypt the onion Oi (using
its secret key of time t). From such partial decryption it obtains: (i) the address
of the next router ORi+1 in the circuit (ii) and another onion ciphertext Oi+1.
The user sends O1 to OR1 and whenever router ORi receives Oi, it decrypts
it and forwards Oi+1 to ORi+1. Finally, the last router of the circuit gets the
message m and the address P of the actual recipient, and forwards m to P .

2.1 Security of Forward-Secure Identity-Based Onion Routing

Now we describe the security properties that a fs-ID-OR protocol should satisfy.

Integrity and Correctness. Correctness states that when parties follow the
protocol, then the recipient should get the message that was originally sent and
encrypted by the sender. Let n be a pre-specified upper bound for the number of
routers in a circuit. Then we say that an onion routing protocol satisfies integrity
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if it is possible to recognize an onion ciphertext which is intended for more than
n routers.

Cryptographic Unlinkability. Cryptographic unlinkability formalizes in a
cryptographic way the fact that a fs-ID-OR protocol provides anonymity. In-
formally, this property says that an attacker should not be able to find a link
between the sender and the receiver of a given communication. We point out, as
explained in [21], that network-level attacks are not considered at this stage.

Consider the following game between an adversary A and a Challenger:

Setup. The Challenger generates the public parameters and gives them to A.
Phase 1. In this phase the adversary is allowed to:

– corrupt onion routers and learn their secret keys (at specific time t);
– submit a tuple (OR, t, O) to get the decryption of O under OR’s secret

key at time t.
Challenge. At some point the adversary is allowed to choose a message m,

a time period t∗ and routers OR1, OR′
1, OR2, OR′

2, ORH such that ORH

is honest (i.e. ORH has not been corrupted in the previous phase, or it has
been corrupted at time t > t∗). The Challenger flips a binary coin b

$← {0, 1}
and proceeds as follows. If b = 0 it creates:
– O1 as the onion for the circuit (OR1, ORH , OR2)
– and O′

1 as the onion for the circuit (OR′
1, ORH , OR′

2).
Otherwise, if b = 1 it creates
– O1 as the onion for the circuit (OR1, ORH , OR′

2)
– and O′

1 as the onion for the circuit (OR′
1, ORH , OR2).

Let OH , O2 and O′
H , O′

2 be the onion ciphertexts contained into O1 and O′
1

respectively. Finally (O1, O′
1) is given to the adversary.

Phase 2. A can proceed as in Phase 1 except that:
– ORH cannot be corrupted at time t ≤ t∗;
– A cannot submit (ORH , t∗, OH) and (ORH , t∗, O′

H) to the decryption
oracle (otherwise the adversary would trivially win);

– A can ask to the Challenger the decryption of a pair (O, O′) under
ORH ’s secret key at time t∗. However in this case the Challenger does
the following. It first decrypts O and O′ and gets (OR, O) and (OR′, O′)
respectively. If OR = OR2 and OR′ = OR′

2 then the Challenger outputs
((OR, O), (OR′, O′)). Otherwise if OR = OR′

2 or OR′ = OR2 then A is
given ((OR′, O′), (OR, O)) (i.e. the tuple corresponding to OR2 is always
given first). We notice that such a requirement is essential, otherwise the
adversary might trivially win the game.

Guess. At the end, the adversary outputs a guess b′ for b and it wins if b′ = b.

We define the advantage of an adversary A in this game as Advanon
ID−OR(A) =

2 Pr[b′ = b] − 1 and we say that an onion routing protocol has cryptographic
unlinkability if for any PPT adversary A, A’s advantage is at most negligible.

Remark. A more general definition would consider an adversary A that in the
challenge phase can choose circuits of length n instead of length 3. However,
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since we assume that all but one (i.e. ORH) routers can be corrupted, one may
think to OR1 (resp. OR2) as the collapsed set of adversarially controlled routers
before (resp. after) the single honest one (i.e. ORH), and the same can be done
for OR′

1, OR2 and OR′
2.

Circuit Position Secrecy. This property says that it should not be possible to
learn a router’s position in the circuit by looking at the ciphertext it is receiving.
In those constructions where the onion ciphertexts are built as re-encryptions
with several keys (e.g. Γ = EK1(EK2(· · ·EKn(m) · · · ))) this property cannot
hold. Camenisch and Lysyanskaya [5] showed that it is in fact sufficient to look
at the ciphertext’s size to derive such information. Indeed, in every randomized
encryption scheme the ciphertext space is bigger than the plaintext one (typ-
ically by a constant). However solutions to this problem have been proposed
[5,21,11,19].

3 A Generic Construction of FS-ID Onion Routing

In this section we show how to construct a fs-ID-OR protocol in a black-box
way from any forward-secure identity-based key encapsulation mechanism (fs-
IB-KEM) and a symmetric encryption scheme.

Our construction generalizes the idea of Kate et al. [21] whose scheme can
be seen as an instantiation of our generic construction when using the IB-KEM
of Boneh and Franklin [4] and considering an interactive protocol for updating
routers’ keys (i.e. the KGC generates new keys every time period).

In what follows we define the primitives that are relevant for our construction.

Forward-Secure Identity-Based Key Encapsulation. A Forward-Secure
Identity-Based Key Encapsulation Mechanism (fs-IB-KEM) is defined by the
following algorithms:
Setup(1k, T ). It takes as input the security parameter k and the total number

of time periods T and outputs a public key MPK and a master secret key
MSK.

KeyGen(MSK, ID, t). The key generation algorithm uses the master secret key
to produce a private key skID,t that is related to the identity ID and the time
period t.

KeyUpdate(skID,t). Given in input skID,t (the secret key of identity ID for time
period t) the key update algorithm outputs a new key for time period t + 1.

Encap(MPK, ID, t). Given the master public key, an identity ID and a time pe-
riod t, the encapsulation algorithm outputs a ciphertext C and a session key
K.

Decap(skID,t, C). The decapsulation algorithm uses the secret key of identity ID
and time period t to recover the session key K from a ciphertext C.

Correctness requires that for all identities ID ∈ {0, 1}∗ and time periods 0 ≤ t <
T :

Pr

[
(MPK, MSK) $← Setup(1k, T ); skID,t

$← KeyGen(MSK, ID, t);
(C, K) $← Encap(MPK, ID, t); K ′ ← Decap(skID,t, C) : K ′ = K

]
= 1
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We notice that the same holds when the secret key skID,t is obtained via the
key update algorithm. Below we define the notion of forward-security against
chosen-ciphertext attacks (fs-ID-IND-CCA) for fs-IB-KEM schemes. Consider
the following game between an adversary A and a Challenger:

Setup. A pair of master keys (MPK, MSK) $← Setup(1k, T ) is generated and
the adversary is given MPK.

Phase 1. In this phase the adversary is given access to oracles breakin(·, ·) and
Decap(·, ·, ·) as follows:
– On input (ID, i) the breakin oracle computes the secret key skID,i and

gives it to the adversary.
– On query (ID, i, C) to the decapsulation oracle, the Challenger computes

the key skID,i and gives K ← Decap(skID,i, C) to the adversary.
Challenge. At some point the adversary is allowed to output a pair (ID∗, t∗)

such that either ID∗ is different from all the identities queried to breakin in the
previous phase or ID∗ = IDj and t∗ < tj (where (IDj , tj) was the j-th query
to breakin). The Challenger computes (C∗, K0)

$← Encap(MPK, ID∗, t∗) and
picks a random session key K1

$← K. Then it flips a random bit b
$← {0, 1}

and gives (C∗, Kb) to the adversary.
Phase 2. As Phase 1 except that the adversary is not allowed to query the

decapsulation oracle on (ID∗, t∗, C∗) and the breakin oracle on (ID∗, j) with
j ≤ t∗.

Guess. At the end of the game the adversary outputs a bit b′ as its guess for b.

We define the advantage of A in this game as

Advfs−IND−ID−CCA
IB (A) = |2 Pr[b = b′] − 1|.

Definition 1 (fs-IND-CCA security). A fs-IB-KEM is forward-secure
against chosen-ciphertext attacks if for any PPT adversary A we have:
Advfs−IND−ID−CCA

IB (A) ≤ ε, where ε is negligible in the security parameter.

3.1 Our Generic Construction

Let IB = (Setup, KeyGen, KeyUpdate, Encap, Decap) be a fs-IB-KEM and E =
(KG, E, D) be a symmetric encryption scheme (whose notion is quite standard,
and is omitted for lack of space). We construct the following protocol:

Setup. In this phase the KGC runs the setup algorithm of IB to obtain a master
public key MPK and a master secret key MSK. The master public key is made
available to all users together with informations about the time. We assume the
time to be split into time periods of length τ (e.g. τ = one hour) such that when
such a period expires, each onion router updates his secret key as explained in
the next phase. Moreover, the KGC maintains a list L containing the identities
of all the onion routers available at a specific time. Such list is updated at a
specific interval τ ′, which does not have to be necessarily equal to τ .
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Key Generation. Whenever an onion router ORi joins the system, at time t,
the KGC generates a secret key skORi,t

$← KeyGen(MSK, ORi, t) for it. To achieve
forward secrecy, when a time period t expires each onion router ORi is required
to update his secret key by running skORi,t+1 ← KeyUpdate(skORi,t) and erasing
skORi,t from its memory.

Circuit construction. Assume that a user wants to build a circuit at time t.
First he obtains the updated list L from the KGC and then he chooses an ordered
sequence of n onion routers OR1, . . . , ORn at random among those in L. Next,
for all i = n to 1 it proceeds as follows. It runs (Ci, Ki)

$← Encap(MPK, ORi, t)
and creates “onion ciphertext” Oi = (Ci,Γi) where Γi = EKi(ORi+1, Oi+1). The
user sends O1 to the first onion router in the circuit. Whenever onion router
ORi gets a pair Oi = (Ci,Γi) it recovers Ki ← Decap(skORi,t, Ci) and then runs
(ORi+1, Oi+1) ← DKi(Γi). Finally it sends Oi+1 to ORi+1 (which is the next
router of the circuit).

The first time a user is using a circuit, he wants to be aware that all the chosen
routers are available. Therefore it sends a special message ⊥ through the circuit
(i.e. Γn = EKn(⊥)). When an onion router decrypts and obtains ⊥ it learns
that it is the last router of the circuit and sends back a confirmation message
EKn(Ack) to the previous router. Upon the receipt of a confirmation message
an onion router ORi encrypts it using Ki and sends it to the previous router.
For this reason, we assume that each router keeps in memory a session state
containing the two adjacent nodes and the session keys. We notice that this is
also useful to prevent replay attacks. Finally, upon the receipt of a confirmation
message, the user verifies its validity by decrypting it using the session keys
K1, . . . , Kn.

Once the circuit has been successfully established, the user will use it to
send messages over the network. In particular, he will re-use the same session
keys K1, . . . , Kn to form the onions. This allows to avoid expensive asymmetric
encryption (and decryption) operations.

3.2 Security

Integrity and Correctness. Let n be the fixed upper bound for the number of
routers in the circuit. We notice that an onion ciphertext containing more than n
layers of encryption can be easily recognized by looking at its length. Therefore
our protocol has integrity. On the other hand correctness easily follows from the
construction and the correctness of the two employed encryption schemes.

Cryptographic Unlinkability. The property is proven by the following theo-
rem whose proof is omitted for lack of space.

Theorem 1. If IB is fs-ID-IND-CCA secure and E is IND-CCA secure, then
the protocol given in Section 3 satisfies cryptographic unlinkability.

A remark on cryptographic unlinkability. The previous theorem proves the
cryptographic unlinkability of our generic construction by assuming that both
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the fs-IB-KEM and the symmetric encryption schemes are secure in an IND-
CCA sense. We need this property because of the adversary’s (realistic) ability
to ask decryption of onions (e.g. he may simply send an onion to a router and
look for its outgoing packets).

Cryptographic unlinkability was first defined in [21] (though in a slightly less
formal way). There the authors claimed that for their construction this property
is implied by the IND-CPA security of the symmetric encryption scheme. The
proof of this claim is not formal and it is unclear how the proof can manage the
adversary’s decryption queries in the “C processing” phase.

Moreover, we notice that if only IND-CPA security is considered, then the
adversary might modify only one of the two challenge ciphertexts OH , O′

H in
such a way that, after seeing their decryptions, it can recognize which of the
two onions they come from. More precisely, A (who owns all secret keys but
ORH ’s) may keep O′

H the same and modify OH such that the encrypted onion
will decrypt to a random message1. When A later receives the two decrypted
onions, it will be able to recognize what was the path chosen by the challenger.
On the other hand, in our case assuming IND-CCA security allows to obtain a
correct and formal proof of cryptographic unlinkability.

Circuit Position Secrecy. Unfortunately, our protocol does not satisfy this
property as it is vulnerable to the attack showed by Camenisch and Lysyan-
skaya in [5] that allows to learn the circuit’s position of a ciphertext’s recipient.
Precisely, this can be done by looking at the length of a ciphertext. However,
if one is interested into this property, then it is possible to slightly modify our
protocol using the technique proposed by Kate et al. in [21]. Its application to
our protocol is straightforward and thus we can obtain a protocol with circuit
position secrecy, even if this comes at the cost of having longer ciphertexts.

4 Certificateless and PKI Variants

The onion routing scheme we presented in Section 3, uses an identity-based
forward-secure encryption for the routers. This means that the routers’ iden-
tities serve as their public keys and the secret keys are provided to them by a
trusted KGC. We chose this approach to minimize the size of the public infor-
mation required to run the system: public keys and certificates (users need to
know only the KGC’s). The obvious drawback of this approach is key escrow:
the KGC has the ability to decrypt any message. In this section we describe two
simple variations to eliminate the key escrow problem from our scheme. One will
yield a scheme in the classical PKI setting: each router has his own public key
and certificate. The second variation will be a certificateless (CL) scheme: in this
case together with the KGC’s keys, routers will hold public keys which however
need not be certified. Both variations pay some price compared to the identity-
based scheme presented earlier: when instantiated with our scheme of Section 5,

1 The definition of IND-CPA security does not rule out that this is possible, and indeed
it can be done in many IND-CPA secure schemes.
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the PKI version has to face long public keys (but no increase in computation);
the CL one requires a few extra exponentiations to the user. Details follow.

A PKI Variation. To obtain eventual forward secrecy for an onion-routing
protocol, it is sufficient to use any forward-secure encryption scheme, not nec-
essarily an identity-based one. In particular, one could use our scheme where
each router acts as his own KGC, and give himself different keys for each time
period. If we were to follow this approach, there would be no centralized KGC
and no key escrow problem. To create an onion, a user would have to do the
same amount of work as in the identity-based scheme above. The only problem
is that the concrete scheme we propose in Section 5 has longer public keys. Thus
the amount of data to be stored at each user would be large.

A Certificateless Variation. There is a generic way to transform any ID-
based encryption into a CL one [1]. The receiver R, who already holds a secret
key skR related to his identity and provided to him by the KGC, also publishes
an independent public key PK and keeps the secret key SK. To encrypt a
message m for R, a sender splits m = m1 ⊕m2, with m1 random, and sends m1

encrypted with the ID-based scheme, and m2 encrypted under PK. As pointed
out in [1] the public key PK needs not be certified to belong to R (intuitively this
is because only R can decrypt m1). The advantage is that now the KGC cannot
decrypt the message m. This generic paradigm can be efficiently implemented
in our case. In our protocol the user establishes a shared symmetric key ki with
the ith router in the circuit using the id-based KEM described in the previous
section. The key ki is used to encrypt the ith layer of the onion. To transform
this scheme into a CL one, each router can publish a public key and the user runs
another KEM to establish another key k′

i with it, and the ith layer of the onion is
encrypted with ki⊕k′

i. An efficient instantiation of this KEM could be any KEM
that works over the same cyclic group used for the ID-based scheme (so that no
new public information must be generated), e.g. establishing a random key using
ElGamal. This approach requires the user to compute n extra exponentiations
to create an onion (n is again the length of the circuit).

5 The Proposed Construction

In this section we present a concrete scheme that realizes a fs-IB-KEM with
T = 2"+1 − 1 time periods. Our solution is presented in two steps. First, we give
a forward secure identity based encryption scheme (fs-IBE) that is probably
secure only in an IND-CPA sense. Next, we apply a simple variant of Dent’s
transformation [10] in order to convert our basic fs-IBE into an IND-CCA secure
fs-IB-KEM.

As for the first construction, we construct our fs-IBE as follows. Following the
idea of Canetti-Halevi-Katz [6], we use a binary tree of height $ where each time
period is associated with a node of the tree according to a pre-order traversal.
If wt is the node of the tree associated with time period t we have:
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– w0 = ε, i.e. the root of the tree;
– if wi is an internal node, then wi+1 = wi||0 (where || is the concatenation

operator);
– if wi is a leaf node (and i < T − 1) then wi+1 = w′1 where w′ is the longest

string such that w′0 is a prefix of wi.

The proposed scheme builds upon the HIBE of Boneh, Boyen and Goh [3] and
the generic construction of Canetti-Halevi-Katz [6] as follows. The first level of
the hierarchy contains the identities and then each identity has below a binary
tree that represents the evolving time. In this setting a user who is given skID,0

can derive the secret keys for all the nodes in its binary subtree, that is for all
successive time periods. In order to achieve forward-security, users are required to
update their keys every time the period expires. More precisely a user computes
skID,t+1

$← KeyUpdate(skID,t) and deletes skID,t. The construction is based on
the decisional weak $-Bilinear Diffie Hellman Inversion Assumption ($-wBDHI∗
for short) that was introduced by Boneh, Boyen and Goh in [3]. The $-wBDHI∗
problem is defined in a bilinear group G of prime order p where g ∈ G is a
generator. Given D = (g, h, gα, gα

2
, ..., gα

!
), for random α ∈ Z∗

p and h ∈ G, we
say that an algorithm A has advantage ε in solving decisional $-wBDHI∗ in G if

∣∣∣Pr[A(D, e(g, h)α
!+1

) = 0] − Pr[A(D, e(g, g)z) = 0]
∣∣∣ ≤ ε

where the probability is taken over the random choices of α, z ∈ Z∗
p and h ∈ G.

The $-wBDHI∗ assumption holds in a bilinear group G if, for any $ polynomial
in k, any polynomially bounded adversary A has at most negligible advantage.

The scheme follows:

Setup(1k, $). Let G and GT be two groups of prime order p equipped with a
bilinear map e : G × G → GT . Let g ∈ G be a generator. Pick a random
α

$← Z∗
p and set g1 = gα. Then take random elements g2, u, v, h1, . . . , h"

$← G,
compute z = e(g1, g2) and select an hash function H : {0, 1}∗ → Z∗

p. The
master public key is MPK = (p, G, GT , g, g1, g2, z, u, v, h1, . . . , h", H) and the
master secret key is MSK = gα2 .

KeyGen(MSK, ID, t). Let skID,w be the key of the node w where w is a binary
string of length at most $. A key skID,t is organized as a stack of node keys
where skID,wt is on top.
A node key skID,wt is computed as follows. Let wt = w1 · · ·wk (with 0 ≤ k ≤
$) be the binary string representing the node wt. Pick a random r

$← Z∗
p and

compute d0 = gα2 (uvH(ID)
∏k

i=1 hf(wi)
i )r, d1 = gr, bi = hr

i for i = k + 1 to $.
Since 0 /∈ Z∗

p f : {0, 1} → Z∗
p is a function that maps 0 and 1 to specific values

of Z∗
p (e.g f(0) = 1, f(1) = 2). Thus we have skID,wt = (d0, d1, bk+1, . . . , b").

Finally skID,t contains all the node keys of the stack that are needed to derive
the keys of successive time periods. We notice that the stack will contain at
most O($) node keys.

KeyUpdate(skID,t). First pop the first key from the stack. If wt is a leaf node,
then skID,wt+1 is the next key on the stack. Otherwise, if wt is an internal
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node, compute (skID,wt0, skID,wt1) as described below and push skID,wt1 and
then skID,wt0 onto the stack. In both cases the node key skID,wt is erased.
Given the node key skID,wt = (d0, d1, bk+1, . . . , b"), a key skID,wtb for b ∈ {0, 1}
is obtained as follows. Pick a random t

$← Z∗
p and compute

d′0 = d0(uvH(ID)
k∏

i=1

hf(wi)
i hf(b)

k+1)
tbf(b)

k+1, d′1 = d1g
t, b′i = bih

t
i

for i = k + 2 to $. It is easy to notice that such key is correctly distributed
for randomness r + t.

Encrypt(MPK, ID, t, m). Let wt = w1 · · ·wk be the node of the tree associated
with t. Pick a random s

$← Z∗
p and compute C0 = (uvH(ID)

∏k
i=1 hf(wi)

i )s,
C1 = gs and C2 = zsm. Finally output C = (C0, C1, C2).

Decrypt(skID,t, C). The message is recovered by computing m = C2e(C0,d1)
e(C1,d0)

.

The security of the scheme follows from the following theorem whose proof is
omitted for lack of space.

Theorem 2. The scheme is fs-IND-ID-CPA secure if the decisional ($ + 1)-
wBDHI* holds and H is modeled as a random oracle.

Now we show how to convert the construction given above into a IND-CCA
secure fs-IB-KEM using a very simple variant of Dent’s transform [10]. Such a
transform allows to convert a forward secure IBE satisfying very weak security
requirements into an IND-CCA secure fs-IB-KEM. Specifically the underlying
IBE is required to be only one-way forward secure.

Suppose Π = (Setup, KeyGen, KeyUpdate, Encrypt, Decrypt) be a secure (in the
weak sense mentioned above) fs-IBE scheme with a finite and efficiently sam-
pleable message space M. We assume that the Encrypt algorithm uses random
values taken from a set R. We can write Encrypt as a deterministic algorithm
C ← Encrypt(MPK, ID, t, m; r) where r

$← R. The only difficulty in applying
the method of Dent [10] is that we must re-encrypt the recovered message for
integrity check. In the context of forward secure IBEs, this means one must
know the time period and the identity under which the message was originally
encrypted. In our setting (i.e. the specific application of onion routing) we over-
come this difficulty as such information is available to routers.

We transform the fs-IBE scheme Π with a finite and efficiently sampleable
message space M and maximum number of time periods T into a fs-IB-KEM
scheme Π ′ = (Setup, KeyGen, KeyUpdate, Encap, Decap) using two hash func-
tions:

H1 : {0, 1}∗ × {0, 1}∗ ×M → R and H2 : {0, 1}∗ → {0, 1}k .

6 Efficiency and Comparisons

In this section we compare the efficiency of our proposal with those of the other
known solutions: the certificateless onion routing (CL-OR) protocol of Cata-
lano et al. [7], the pairing-based onion routing (PB-OR) scheme of Kate et al. [21]
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and the actual Tor protocol (we refer to the official specifications [13]). Basically,
all these solutions differ only in the way the symmetric keys are established, so
we decided to analytically compare the cost of building a circuit of length n from
the perspective of both a user and an onion router. All the tests are carried on
considering security parameters of 80 and 128 bits: as widely suggested in [31,32],
the latter should be considered in order to gain an adequate long-term security
level.

In what follows we briefly describe the operations involved during the building
of a circuit in the considered protocols.

Tor. The Tor protocol incrementally builds the circuit using the telescoping
technique and each new key is established using a Diffie-Hellman (DH) key-
exchange [12]. Its specifications require that the user sends to each onion router
the DH component encrypted using an RSA key associated to the router. It
follows that: a user computes 1 RSA encryption and 2 exponentiations for each of
the n routers; an onion router performs 1 RSA decryption and 2 exponentiations.
Even if not required by Tor’s specifications [13] we consider pre-computation on
the fixed base for one of the two exponentiations of the DH key-exchange. For a
security level of 80 bits we need a 1024-bits RSA modulus and a 1024-bits finite
field for Diffie-Hellman. The specifications given in [13] suggest to use 65537 as
fixed RSA exponent and to optimize DH with exponents of 360 bits and generator
2. In order to get a 128-bits security level, the sizes of the RSA modulus as well
as of the DH finite-field have to be of 3072 bits. Tor’s specifications [13] require
a periodic update of the onion routers’ keys.

PB-OR. We consider an implementation of the pairing-based onion routing
protocol over a group of points of elliptic curves using the PBC library [22].
More specifically, following the indications of the authors, a type A (in the PBC
nomenclature) curve is used in order to get fast pairing operation e : G × G →
GT . Kate et al. suggest that each user can pre-compute a pairing application
for each onion router (as a function of some public parameter and of onion
router’s identity); such values have to be re-computed every time the KGC’s
keys change (e.g. every day). Therefore, in order to build a circuit of length n, a
user has to compute n exponentiations in G and n exponentiations in GT : both
the operations can be speed-up using pre-computation on the fixed base. On
the other hand, each onion router has to compute one pairing but an optimized
implementation can exploit a pre-computation on the pairing application that
makes use of a fixed parameter (such functionality is offered by PBC library).

CL-OR. For the CL-OR protocol2 of Catalano et al. we also consider an im-
plementation over EC using the PBC library but, as suggested by the authors,
using a type F curve in order to gain fast operations on smaller group ele-
ments. The user can pre-precompute some values that are function of the onion
router’s identities and public-keys. The on-line computation of the user requires

2 In [7] there are two implementations available: we consider the fastest that makes
use of the Strong Diffie-Hellman assumption in the Random Oracle model.
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3 exponentiations on the working group: only 2 of them can be performed using
pre-computation on the fixed bases. In such protocol, each onion router requires
2 exponentiations to compute the session-key: none of them can use such kind
of pre-computation.

Our Protocol. For this comparison we consider our proposal of Section 5 imple-
mented on a type A curve (like the PB-OR protocol). Observe that to compute
C0 = (uvH(ID)

∏k
i=1 hf(wi)

i )s, many values can be entirely pre-computed off-line
by the user: the values uvH(ID) as well as the values hf(wi)

i . The remaining notable
tasks for the user, for each onion router in the circuit, are: two exponentiations
over G (one for C0 and one for C1 = gs) and one exponentiation in GT to com-
pute C2 = zsm. Notice that the latter two exponentiations can be optimized
with pre-computation on the fixed bases g, z. Each onion router involved in the
circuit establishment has to compute 2 pairings for decryption (but with partial
pre-computation as in PB-OR) as well as a new encryption to fulfill the integrity
check required by Dent’s transformation.

In a fully operational implementation of an onion routing network, the key
establishment phase involves the use of other minor tools: a symmetric encryp-
tion scheme (e.g. AES) to protect the passing messages using the negotiated
session keys and fixed TLS channels among the connected onion routers. For
sake of simplicity we ignore the computational load related to such operations
since they are used by all the protocols considered in our comparisons. Moreover,
in the case of AES, its time complexity is negligible if compared with the other
involved cryptographic tools.

As a first step, all the operations were implemented using the PBC library
(version 0.4.18) on a 2.4GHz Intel Core 2 Duo workstation running Mac OS X
10.5.63.

As one can see from Table 1, from a purely computational perspective our
solution is not faster than previous protocols but its computational costs are
definitely practical. In these comparisons it is worth noting that the Tor cir-
cuit construction is an interactive protocol that requires a quadratic number of
exchanged messages. Therefore if we consider the natural network latency we
obtain that, even for the shortest possible circuit (i.e. 3 nodes), our protocol is
faster than Tor in constructing an entire new circuit. In fact, assuming a network
latency of 50 ms, Tor requires 627 ms to complete the circuit construction while
our protocol needs only 370 ms.
A look at Interaction. We stress that the main contribution of our work
is that the resulting OR protocol is totally non-interactive solving a problem
that is yet unsolved in currently known solutions. Indeed, all the other onion
routing protocols require interaction in some phase of the protocol. Tor is clearly
interactive in the circuit construction phase due to the use of telescoping. In PB-
OR the routers have to obtain new private keys from the KGC every time the
key validity period expires (a heavy workload for the KGC!). On the other hand,

3 The computational costs of each operation are ommitted for lack of space. They are
available in the full version of this work.
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Table 1. Total times for building a circuit of n routers and protocol features

Times and features
Tor PB-OR CL-OR our protocol

user OR user OR user OR user OR

Time for 80 bits security (ms) 2.3n 6.9 1.1n 3.9 2.1n 3.4 7.8n 15.6
Time for 128 bits security (ms) 16.5n 93.3 9.3n 57.3 5.1n 8.2 63.4n 178.0
Number of exchanged messages n(n + 1) 2n 2n 2n

IND-CPA security level × ! ! !
IND-CCA security level × × ! !

Non-inter. circuit construction × ! ! !
Non-inter. key-update by OR × × ! !

Non-inter. by user after OR key-update × ! × !
Absence of key-escrow by KGC ! × ! ×

in CL-OR the routers can generate the updated keys by themselves but the users
have to obtain such new keys (e.g. by querying a directory server) every time
they are changed.

We stress that in our protocol onion routers can update their keys without
interacting with any party, and this process is transparent for the users who
keep using always the same public keys (i.e. routers’ identities). It is interesting
to note that the non-interactive nature of our key update allows to reduce the
security gap between eventual and immediate forward-security. We can indeed
arbitrarily reduce the refresh period of routers’ keys without any further network
overhead: this is not true for PB-OR and CL-OR. Finally, we observe that the
slightly higher computational cost of our solution is due only to the fact the best
fs-IB-KEM we can achieve has to perform pairings computation. Although this
is currently a limitation, we believe that the purely non-interactive nature of our
protocol, more than compensate for the slight increase in computational cost.
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