
Cryptographic Protocol Analysis of AN.ON

Benedikt Westermann1, Rolf Wendolsky2, Lexi Pimenidis3, and Dogan
Kesdogan1,4

1 Q2S?, NTNU, 7491 Trondheim, Norway
2 JonDos GmbH, 93055 Regensburg, Germany

3 iDev GmbH, 50672 Cologne, Germany
4 Chair for IT Security, FB5, University of Siegen, 57068 Siegen, Germany

Abstract. This work presents a cryptographic analysis of AN.ON’s
anonymization protocols. We have discovered three flaws of differing
severity. The first is caused by the fact that the freshness of the session
key was not checked by the mix. This flaw leads to a situation where an
external attacker is able to perform a replay attack against AN.ON. A
second, more severe, error was found in the encryption scheme of AN.ON.
An internal attacker controlling the first mix in a cascade of length two
is able to de-anonymize users with high probability. The third flaw re-
sults from the lack of checks to ensure that a message belongs to the
current session. This enables an attacker to impersonate the last mix in
a cascade.
The flaws we discovered represent errors that, unfortunately, still oc-
cur quite often and show the importance of either using standardized
crytpographic protocols or performing detailed security analyses.

1 Introduction

In recent years anonymous communications have become an important building
block for privacy-preserving systems. Anonymous channels are often an uncon-
ditional requirement for e-voting, e-health or anonymous credential systems.
Many techniques have been proposed in theory, for example Tarzan[1] or Mor-
phMix[2]. However, only a few systems have been widely deployed. In terms of
number of users, the two major deployed anonymization systems are Tor[3] and
AN.ON/JonDonym5[4].

In general, publications concerning anonymous communications deal with at-
tacks on the network layer, performance improvements or the consolidation of
knowledge with regards to anonymous communication in general. Unfortunately,
the underlying cryptographic protocols have not received the same attention,
despite the fact that anonymity strongly depends on the correct practical com-
bination, usage and implementation of cryptographic primitives.
? “Center for Quantifiable Quality of Service in Communication Systems, Center of

Excellence” appointed by The Research Council of Norway, funded by the Research
Council, NTNU and UNINETT. http://www.q2s.ntnu.no

5 Also known as “JAP”, the name of the client software, or “Java Anon Proxy”.



This paper takes a closer look at the cryptographic protocols used for the
anonymization process of AN.ON, and discovers several vulnerabilities. The fol-
lowing two sections describe the basic concepts of AN.ON, the attacker model
and the underlying assumptions of the system. Section 4 continues with the au-
thentication protocol involving the user and the first server. Section 5 presents
an attack on the general encryption scheme used by AN.ON. Section 6 discusses
a flaw in the mix initialization protocol. The previous work in this area is pre-
sented in Section 7, following a discussion in Section 8 about the reasons for
these flaws. Finally, we present our conclusions.

2 Description of AN.ON

AN.ON, short for Anonymity Online, is a project that provides anonymity on the
network layer. More precisely, it offers sender anonymity against the receiver of
a message and relationship anonymity against a local attacker, such as an eaves-
dropper of an Internet connection. In terms of web browsing, sender anonymity
means that a web server cannot identify a user via their IP address. Relationship
anonymity means that a local attacker cannot identify the sender or receiver of
a message. Thus, an attacker can at most identify the sender or the receiver, but
not both [5].

In order to establish such a service, AN.ON uses the so-called mix servers
otherwise known simply as mixes[6]. A mix is an intermediate entity between a
sender and a receiver of a message. Its task is to establish anonymity for the user.
A mix accomplishes this by hiding the relation between incoming and outgoing
messages. In [4] the authors propose the usage of encryption and reordering of
messages to establish anonymity. However, for performance reasons the reorder-
ing of messages is typically deactivated in AN.ON.

M1

M1

M2

M3

M2 M1 M3 M2 M1 M3

M2

M3

first
mix

second
mix

third
mix

receiver 1

receiver 2

receiver 3

M

M

M : message encrypted with the key of the third mix

: message encrypted with the key of the second mix

: message encrypted with the key of the first mix

sender 3

sender 2

sender 1

Fig. 1. Example for a cascade in AN.ON

To provide relationship anonymity regarding the operator of a mix, several
mixes are typically chained together. Such a chain is called a cascade (see Figure
1). The order of the mixes is chosen by their operators and cannot be changed by



a user. Every packet which is received by the first mix in the cascade is forwarded
to a second mix and so forth. By these mechanisms, AN.ON aims to establish
anonymity for a user under the assumption that not all mix operators collude.

The basic anonymization process works in the following way: a sender en-
crypts a message, which includes the final destination, with a symmetric key. The
key is shared between the last mix in a given cascade and the user. The result
of the encryption is again encrypted with a symmetric key that is shared with
the predecessor of the last mix. This procedure is repeated until the first mix in
the cascade is reached and thereby the typical layered encryption is created.

Afterwards the message is sent to the first mix. This mix uses its shared
symmetric key to decrypt the message and forwards the result to the next mix,
which also decrypts the message. When the last mix in cascade is eventually
reached, the mix performs the final decryption of the message and is thus able to
get the destination of the message. Finally, the unencrypted message is forwarded
to the destination.

In addition to senders, receivers and mixes, there is an additional party, the
so-called infoservice. This service, operated by a third party, provides users of
the system with the necessary information about the cascades.

3 Scope, Assumptions and Course

The analysis in this paper looks in detail at the protocols used in the mix server
version 00.08.60 of AN.ON. This was the most recent version at the time of our
analysis and was released in February 2009.

Our analysis focuses on the anonymization process and ignores the protocols
that are involved in the information distribution process, which normally involves
the infoservice. Due to this, we assume that a user knows the public signature
keys of the mixes. Generally, we assume that every mix uses an uncompromised
key pair to sign data.

Our assumed adversary has the capabilities of a local active attacker. Thus,
the attacker is only able to eavesdrop some connections of either the user, the
mixes or the final destination, but not all at the same time. The attacker is also
able to add, modify, replay or drop packets passing an observed link. We further
assume that the attacker can operate a single mix in the cascade. Finally, we
assume that the attacker is not able to break basic cryptographic primitives,
such as AES or RSA, but is assumed to possess all prior private keys that are
no longer used by the mixes. Note that this attacker model is weaker than the
attacker that was originally proposed in [4], in which the authors assume a global
attacker. However, recent publications have shown that AN.ON is not able to
resist this kind of attacker in practise[7, 8].

In order to retrieve the information about the protocols we made use of a
technical report describing the anonymization process[9]. We have also examined
the source code in order to find undocumented changes in the protocols. The
results of the analysis were discussed with developers of the AN.ON project, who
also helped us to retrieve the mix authentication protocol, see Section 6.



4 Authentication Protocol of the First Mix

Before we describe the protocol it is necessary to take a brief look at the so-called
descriptors that are provided by the infoservice. A descriptor is an XML-based
document which describes the entities of a cascade. It contains general informa-
tion about the cascade, a description for each mix and a signature for the whole
document. The last of these is provided by the first mix in the cascade. The
description of each mix is also signed by the corresponding mix. The signature
aims to prevent a malicious modification of the mixes’ descriptions. The descrip-
tion of a mix includes different public keys, a timestamp and X509 certificates
for the included public keys.

In this section of the paper we assume that when a user receives a descriptor
with a valid signature of a known authority, they possess every public key of the
mixes in the cascade. In addition we assume that all keys are not compromised
by an adversary and that the certificates are up-to-date.

The mix authentication protocol aims to create a session key between the JAP,
which is the client application, and the first mix in a cascade. The preconditions
for the protocol are that a user knows the public signature key of the first
mix. The mix owns the corresponding key pair, which is only used to produce
signatures. In addition to this key pair the mix also possesses a public key pair
that can only be used for encryption. However, the key which is used for the
encryption is not initially known by the JAP.

Figure 2 shows a message sequence chart of the mix authentication protocol
at an abstract level. We assume that the JAP knows the public signing key
KM1 of the first mix. The known relation is represented by the 3 sign. The mix
holds two key pairs: the first key pair is (K−1

M1 , KM1) which is used only to sign
documents. The second key pair is (K−1

M1
e
, KM1

e
). Its public key can be used by

the JAP to encrypt messages for the mix.
In the first message that is sent by the first mix to the user, a descriptor

for the cascade is transmitted. The descriptor includes, among other data, the
public encryption key KM1

e
of the first mix. In order to simplify the presentation

we represent the remaining information by m. For example, the keys of the other
mixes are included in m. The whole descriptor is signed by the first mix, which
is denoted by {H(m, KM1

e
)}K−1

M1 . After the message is received by the JAP, it
verifies the signature. If this succeeds it also knows the public encryption key of
the first mix. In the next step, the JAP generates a symmetric session key and
sends the key encrypted with the public encryption key KM1

e
to the first mix.

Since the first mix owns the corresponding private key, it is able to decrypt the
message. Thus, it also knows the symmetric session key. Finally, the mix sends
a confirmation to show the possession of the symmetric key to the JAP. The
confirmation is basically a hash of the descriptor, the session key and the public
encryption key of the first mix.

A closer look at the protocol shows that a mix has no guarantee that the mes-
sage containing the session key was created in the current session. An attacker
can send, instead of a new message, a recorded message of an old session. This is
known as a replay. The mix cannot check, in this protocol, whether the session



JAP

J

First Mix

M1

J ∋ KM1 M1 ∋ K−1

M1
e

,KM1
e

,KM1 ,K−1

M1

1 : m,KM1
e

, {H(m,KM1
e

)}K−1

M1

J ∋ KM1
e

KJM1 ∈R {0, 1}∗

2 : {KJM1}KM1
e

M1 ∋ KJM1

3 : {H(m,KJM1 ,KM1
e

)}K−1

M1

msc Authentication Mix Protocol (JAP ↔ First Mix)

Fig. 2. Mix Authentication Protocol

is a replay or not. Thus, the whole anonymization process may be vulnerable to
replay attacks.

As we did not find any replay protection in the other protocols, we tried to
replay the whole session including several HTTP requests. We used the exist-
ing service “Dresden” in order to check if a replay is possible. To this end, we
recorded a session of a short sequence of website queries and their replies. For
testing purposes, we retrieved a website which was hosted on a server under our
control. The second and third website were hosted on foreign servers. The last
website again was located on a server which was under our own control.

To replay the session we simply connected to the mix and sent all the previ-
ously recorded raw packets in the mix. Shortly after the replay was started we
were able to observe HTTP requests on both of our web servers. Both HTTP re-
quests were sent by the last mix of the “Dresden” cascade. Thus, in the version
we evaluated there was no protection against replay6. This lack of protection
leads to various different attacks threatening not only the anonymity of a user
with respect to a global attacker[6]. For instance, an attacker could replay a
post command which modifies data on the web server in order to threaten data
integrity.

The replay attack can be limited to an internal attacker if the mix ensures
that the received key is fresh. The simplest solution seems to be to establish
a TLS connection between the user and the first mix. However, whether this
solution suits AN.ON’s requirements is not within the scope of this paper.

This change only protects against an external attacker. In order to protect
against replay by an internal attacker other countermeasures are necessary, such

6 Replay protection is under development, but takes place at a higher level



as the solution described in [10]. Here the authors try to find a trade-off between
storing every used key in a database, performance and security. Their idea is to
use small parts of a symmetric key to mark a time period. Some parts of the
key are predictable, which subsequently lowers the strength of the symmetric
key. An identifier of every used key is stored in a database during a given time
period. Only keys that are within the current time period, and that are not
already stored in the database, are accepted for a new connection.

5 Attack on AN.ON’s Encryption/Decryption Scheme

In this section we concentrate on the encryption and decryption of exchanged
messages.

5.1 Structure of Mix Packets

As briefly described in Section 2, a user forwards packets along a chain of mixes.
For each hop, the user adds a layer of encryption around the message which is
later removed by the corresponding mix.

To analyse the protocol it is necessary to examine the structure of the packets.
Figure 3 illustrates the structure of a packet which is sent by a user to the first
mix. The first part is the mix packet header. Its size is 6 bytes and it contains
a channel ID and some flags. The remaining part can be used to transfer data
from the user to the last mix in the cascade. It is important to notice that only
the last 992 bytes travel along the whole cascade. The first 6 bytes (channel ID
and flags) can be completely modified at each hop. It is therefore necessary to
encrypt different parts of the packet in different ways with different keys.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 .. 32
33 .. 64 Payload (992 Bytes)…

966 .. 998

header of a mix packet payload of a mix packet

Ch. ID + Flags

sym. channel encryption

Fig. 3. The Structure of a Mix Packet

One encryption layer is added to protect the confidentiality of the channel ID
and the flags during the transmission between adjacent entities. Obviously, the
symmetric key for the encryption is shared by exactly two adjacent parties. For
purposes of speed optimization the whole packet is not encrypted, only the first
16 bytes (128 bit). Thus, this layer of encryption includes the channel ID, the
flags and the remaining 10 bytes of the payload of the message. For encryption,
AES is used in the output feedback mode (OFB, see Section 5.2)).

The structure and the encryption of the payload depend on whether a mix
packet is the first in an anonymous channel, or a packet of an already opened
channel. If a mix receives a packet it checks, based on the channel ID and the



flags, if the packet opens a new stream. Such a packet is called a channel-open
packet. In this case, the mix decrypts the first 128 bytes by using its RSA private
key7. The first part of the decrypted bytes contains a symmetric key (16 bytes).
This is used for decrypting both the remaining 864 bytes of the packet and the
subsequent packets of the anonymous channel. If the mix is an intermediate mix,
the remaining part of the packet is encrypted for the next mix (see Figure 4).
Thus, the mix needs to forward the packet to the next mix. Before the packet
is forwarded, the mix removes its key (16 bytes) from the packet and adds 16
bytes of random data to the end in order to preserve the length of the packet.
Finally, the mix forwards the payload together with a matching header to the
next mix. If the mix is the last mix in a cascade it decrypts the first 128 bytes
with its private RSA key and the remaining bytes with the symmetric key which
is stored in the first 16 bytes of the packet. In addition to the payload a mix
packet for a last mix contains a header field after the key. This field indicates
how many of the 992 bytes for the payload are used for data, as well as the type
of the data. The remaining bytes are random data (see Figure 5).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 .. 32 Symmetric Key (K) for Mix
…

Encrypted data for the next Mix (976 Bytes)…
960 .. 992

Fig. 4. The structure of the payload for intermediate mixes for the initial packet.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 .. 32 Symmetric Key (K) for Mix Len
… Data of the user (Len Bytes)…

976 – Len Bytes of Random Data (Padding) 960 .. 992

Fig. 5. The structure of the payload for the last mix for the initial packet.

In the case of subsequent packets only one encryption scheme is used. The
whole payload is encrypted symmetrically with the key that was sent within the
channel-open packet. Each mix uses its key to decrypt the 992 bytes of payload.
When the packet is decrypted by the last mix, the packet can again be divided
in three parts: the header, the data and random data.

In order to process replies, every mix encrypts the data received by the
successor mix and forwards it to the predecessor mix. The structure of the mix
packet is equal to the structure a subsequent packet. Thus, the whole packet is
symmetrically encrypted. The same symmetric keys are used by the mixes for
both transmission directions. The algorithm used is AES in OFB-mode.
7 In the case of the first mix, this part is symmetrically encrypted. Since this is not

important for the attack we omit a further explanation.



5.2 Output Feedback Mode (OFB)

AN.ON uses AES in OFB mode for its symmetrical encryption operations. The
objective of the OFB mode is to produce a infinite key stream. To this end,
it uses an initialization vector and a key. The initialization vector is encrypted
with AES, which uses the key. The result of this is used twice: first, it is XORed
with the plain text. Second, it is used in the subsequent round instead of the
initialization vector. Figure 6 illustrates the mode of operation of OFB.

Fig. 6. Sketch of the output feedback mode

5.3 The Attack

As mentioned above, a mix uses the same key to decrypt messages in the sending
direction as well as to encrypt the messages in the receiving direction. Moreover,
a mix uses the same initialization vector for both directions. Therefore, a mix
produces the same key stream for both directions.

We denote with km
i the byte of the i-th position in the key stream of mix

m. Let di denote the i− th data byte in the data stream8 and with ci the final
encrypted message byte at position i. To distinguish the sending and receiving
direction we use either the superscript r or s for ci and di respectively.

At first we formalize the receiving situation where a packet travels from the
last mix along the cascade to the user. Let p denote the position of the last
mix that processed the packet and let n be the number of mixes in the cascade.
Thus, if the user receives a packet, p is equal to 1 since the first mix was the
last involved mix. Let i denote the byte position in the byte stream of a packet.
Based on the notation we can describe the ith encrypted byte in the receiving
direction by:

cr
i (p) = dr

i

n⊕
j=p

k
mj

i i ≥ 0 ∧ 1 ≤ p ≤ n (1)

However, if we take a look at the sending direction the situation is slightly
different due to the payload structure of the initial packet in a data stream. Recall
8 The data stream includes the 3 byte header of each packet as well as the padding.



that if an intermediate mix in a cascade receives a channel-open packet in a data
stream, the first 128 bytes are asymmetrically encrypted and the following bytes
symmetrically. During processing, an intermediate mix removes its key from the
payload (and adds 16 bytes to the end). Now the packet is forwarded to the next
mix who expects again that the first 128 bytes of the payload are encrypted
asymmetrically and the remaining bytes are encrypted symmetrically. Thus, the
key streams of the mixes need to be shifted by a user by 16 byte per hop. The
reason for the shift is the symmetric key that is stored in the first 16 bytes of
the initial data stream packet.

By formalizing the encryption, we result in:

cs
i+128(p+1) = ds

i+128

n⊕
j=p+1

k
mj

i+(n−j)∗16 0 ≤ p ≤ n−1 ∧ i ≥ (n−p−1)·16 (2)

for the i-th encrypted byte.
The equations 1 and 2 become interesting if we consider the first mix in a

cascade of length 2. By using both formulas we result in:

cr
i (2) = dr

i ⊕ km2
i (3)

cs
i+128(2) = ds

i+128 ⊕ km2
i (4)

The xor of both encrypted values result in:

cr
i (2)⊕ cs

i+128(2) = ds
i+128 ⊕ dr

i (5)

In case of AN.ON most of the traffic that is transfered over the cascade is normal
HTTP traffic, which includes the HTTP header. Moreover, the content of an
HTTP header is partially known by the adversary. Thus, an attacker can use
the known parts in order to decrypt unknown parts of the HTTP header with
help of Formula 5. This becomes critical in AN.ON if the attacker is able to
reconstruct the request line or the Host field in an HTTP request. The former
includes the requested URL and the latter the queried host. Therefore, if an
attacker is able to reconstruct parts of either the Host field or the request line
he has deanonymized the user.

For a proof of concept, we have recorded the payload parts of the packets
that were either sent from the first mix to the second mix (p = 1) or sent from
the second mix to the first mix (p = 2) in the Dresden-Dresden cascade. We
therefore assume an internal attacker on the first mix. In order to correct the
offset of the sending stream we removed the first 128 bytes of the stream. The
result of this was XORed with the receiving stream. To omit the 3 bytes of the
payload header we removed the first 3 bytes of the result and XORed it with the
most probable HTTP response line “HTTP/1.0 200 OK\r\n”9. This procedure
resulted in the string “st: www.google.de” which is the last part of the Host field
in the original HTTP request header. Thus, we uncovered the destination of the

9 There are only a few different possibilities for the response line.



request simply through the use of two recorded encrypted packets that were sent
and received by the first mix. Since the first mix in the cascade also knows the
IP address of the user, an internal attacker is able to revoke the relationship
anonymity without the help of the second mix. Clearly, this contradicts to the
objectives of AN.ON.

For our attack we have assumed a local internal attacker. Nevertheless, an
external attacker is also able to perform the attack, even though it is slightly
more difficult. This difficult is for three reasons: firstly, the attacker does not
know the mapping between incoming and outgoing messages. Thus, they cannot
map directly the IP address of the sender to the uncovered receiver. Secondly, the
attacker cannot use the first 7 bytes of the HTTP response in the payload due
to the channel encryption. Thus, they have less information available. Thirdly,
the attacker cannot easily recognize which received packet belongs to which sent
packet. These constraints are not, in our opinion, a significant challenge. The
mapping can be received due to the fact that the packets are processed in a FIFO
order. The fact that the attacker misses 7 bytes merely lowers the probability of
success slightly. The last challenge can be addressed by probing which received
packet leads to a useful output with respect to a recorded sent packet. If we
assume the external attacker is able to master the first and third challenge, they
are able to deanonymize the user in our example. The attacker is able to retrieve
“.google.de” without any further guesses.

5.4 Discussion of the Attack

The attack presented above is based on several problems. Firstly, the plain text
of the encrypted message is partially known. Secondly, the encryption is a XOR
encryption and therefore an encrypted bit only depends on a single bit of the
plain text as well as the key stream. Thirdly, the same parameters are used for
both directions. The first and the second fact are difficult to avoid due to the
design of AN.ON. Thus neither the cipher feedback (CFB) nor the cipher block
chaining (CBC) mode can be used , due to the processing of the initial packet
in a data stream. The electronic codebook (EBC) mode is also not suitable as it
does not hide data patterns. Thus, it is only possible to change the parameters
of the encryption, preferably the key. The key streams of both stream directions
thus become different. In a conversation with the developer[11] it was mentioned
that AN.ON recently became aware of these risks and that changes had been
made in order to use different keys. This was independent of our analysis. Hence,
the mix software has already been updated to reflect this issue.

6 Attack on the Mix Authentication Protocol

In this section we look at the cascade initialization protocol between mixes. The
protocol aims to exchange a key with adjacent mixes in the cascade. In addition,
it should also mutually authenticate the mixes.



Let m1, . . . ,mn the mixes in a cascade. The protocol begins with the estab-
lishment of a TCP connection between the mixes mi and mi+1. Note that mi

initiates the connection to mi+1.

Mix i

M i

Mix i + 1

M i+1

M i ∋ K−1

Mi ,K
−1

Mi
e

,KMi+1 M i+1 ∋ K−1

Mi+1 ,KMi

Generate K−1

M
i+1
e

n ∈R {0, 1}∗

1 : m,K
M

i+1
e

, n, {H(m,K
M

i+1
e

, n)}K−1

Mi+1

M i ∋ K
M

i+1
e

KMiMi+1 ∈R {0, 1}∗

2 : {KMiMi+1}K
M

i+1
e

, {H({KMiMi+1}K
M

i+1
e

, n)}K−1

Mi

M i+1 ∋ KMiMi+1

msc Authentication between Mixes (M i ↔ M i+1)

Fig. 7. Mix Authentication Protocol

Figure 7 depicts the protocol between two mixes. It starts with the generation
of a nonce (n) and an asymmetric encryption key (K−1

Mi+1
e

) by the mix i + 1.
Afterwards, mix i + 1 transmits its description (m), its public encryption key
(KMi+1

e
), the generated nonce and a signed hash of the triple (m, KMi+1

e
, n) to

mix i. Mix i checks whether the received signature is valid with respect to the
known key of mix i + 1 or not. In the former case mix i generates a session key
and encrypts the session key with the received key KMi+1

e
. The result is sent

together with a signature of the encrypted key and the nonce to the mix i + 1.
Mix i + 1 checks the validity of the signature with respect to the configured
public key of mix i. If it succeeds mix i + 1 uses the received key as symmetric
key for the channel encryption between the two mixes.

A problem arises when an attacker compromises the private encryption key
of the last mix in the cascade, possibly at a later point in time. In this case the
attacker is able to replace the certified mix with his own mix. To this end, the
attacker needs a recorded session of the authentication protocol in which the
compromised key was used. In order to mount the attack the attacker redirects
the TCP connection from the certified mix to its own mix. Afterwards, the mix
replays the first message of the previous session to the mix i. Due to the fact
that the signing key is usually changed only once a year, the mix i will most



probably accept the signature of the “certified” mix. In correspondence with
the protocol, mix i generates a session key and sends the encrypted session
key together with its signature back to the attacker. The attacker who knows
the private encryption key can now decrypt the session key and is therefore
authenticated in the cascade as certified mix even though he does not possess
the signature key. A user is unable to distinguish the attacker from the certified
mix at a later date via the existing protocols. Therefore, the attacker is able to
eavesdrop on all the outgoing data of the users, which may contain identifying
information. However the attacker is not able to deanonymize users solely based
on this attack.

At a first glance, the attack looks impractical due to the fact that an attacker
needs to compromise one of the private encryption keys. However, if we consider,
for example, the recent OpenSSL bug in the Debian Linux distribution10[12], this
attack becomes more practical. The mix software relies on OpenSSL, and thus
any asymmetric encryption key generated by a mix which used a vulnerable
OpenSSL library is potentially compromised. This means that an attacker can
immediately retrieve the private key from a given public key generated by a
vulnerable OpenSSL version. Hence, if an attacker once recorded a session in
which a mix used a vulnerable key, he is able to impersonate the mix with the
attack described above. The only way to circumvent the attack in the current
version is to replace every signature key that has been used with a vulnerable
OpenSSL version. Obviously, the protocol also needs to be fixed to counter the
described attack.

It is worth noting that this protocol is based on the “Key Transport Mech-
anism 4” of the ISO/IEC 11770-3:2008 standard[13]. The author of the AN.ON
protocol modified it slightly in order to authenticate mixi+1 as well. The author
therefore included a signed version of the mixi+1’s encryption key as well as
the descriptor of the mix. In addition he omitted the identity of mix from the
encrypted secret, which could lead to other attacks. This example shows how
dangerous it is to modify standardized cryptographic protocols to apply them
beyond their intended use.

For the protocol in Section 4 we see no reason why a custom-made or a
modified standard protocol is necessary for the authentication and encryption.
TLS supports client and server authentication via X509 certificates and is addi-
tionally able to secure data transmitted later. This protocol should therefore be
suitable for the communication and authentication between the mixes. One rea-
son to choose another protocol might be performance, as some data is encrypted
unnecessarily in this scheme.

7 Related Work

This paper is the first cryptographic protocol analysis of AN.ON’s anonymiza-
tion process. In 2009, Westermann[14] performed a security analysis of AN.ON’s
payment system, but did not take the anonymization process into account.
10 A vulnerable version can only generate a limited number of keys



For I2P11, an anonymously developed anonymization service, there is no
published description of the anonymisation protocol available and to the best of
our knowledge also no publicly available security analysis.

In contrast to AN.ON and I2P, the cryptographic protocols of the Tor sys-
tem have been analyzed[3] with the NRL protocol analyzer[15]. In 2006 Gold-
berg proved that the Tor authentication protocol is secure in the random oracle
model[16]. In general, this does not guarantee that the implementation has no
flaws with respect to the implementation of the protocol and the cryptographic
primitives. An examples of this is that, due to the lack of AES in counter mode
in early OpenSSL versions, the Tor developers were forced to implement their
own version. Unfortunately, there was a bug in this implementation that caused
the counter to be reset after 16 bits. This clearly threatened the security of the
system[17].

8 Discussion

In the field of low-latency anonymous communications, the main research fo-
cus seems to be on mechanisms that establish anonymity or improve perfor-
mance. Many publications deal only with the general mechanisms for establish-
ing anonymity by using idealized underlying protocols, and omit a clear and
detailed cryptographic protocol description. However, most mechanisms are not
implemented and thus this lack of detail is a minor problem. As soon as a pro-
tocol is implemented, however, it is crucial to publish and analyse the protocols
that are composed or invented by the authors.

Tor is a good example of the right way to achieve this. The developers de-
scribed and analysed the cryptographic protocols in a early stage of the project.
Possible changes to the cryptographic protocols are published before they are
implemented in Tor. In [18] the authors propose a more efficient way to establish
circuits, however to the best of our knowledge this is not implemented yet, but
is in discussion to be introduced in a later version.

In general, it is almost always a good idea to use standard cryptographic
protocols for a product. However, building an anonymity network solely on stan-
dardized protocols, while possible, introduces a number of constraints[19]. In the
case of high-latency anonymity networks, with regard to the protocols and mech-
anisms proposed so far, it seems almost unavoidable to compose cryptographic
primitives and invent cryptographic protocols for novel, specific purposes. How-
ever, it seems that this area enjoys a stronger focus on proving the correctness
of protocols compared to the field of low-latency networks.

Our analysis shows that referring to a technical report for cryptographic
protocols is risky. We claim that a technical report is mostly read by develop-
ers, who are not necessarily cryptographic protocol experts. As a consequence,
weaknesses in the protocols are more likely to be overlooked.

11 http://www.i2p2.de



9 Conclusion

In this paper we have analysed the cryptographic protocols of AN.ON and dis-
covered three flaws of differing severity. The first flaw is caused by the fact that
the freshness of the session key was not checked by the mix. This flaw leads to a
situation where an external attacker is able to perform a replay attack against
AN.ON. However, when the replay detection techniques that are currently un-
der development are integrated, the internal as well as the external attacker will
no longer able to replay a session. Nevertheless, the flaw in the authentication
protocol must be addressed.

A second, more severe, error was found in the encryption scheme of AN.ON.
An internal attacker controlling the first mix in a cascade of length two is able to
de-anonymize users with high probability. The error was introduced by the reuse
of keys with the same initialization vector. As of November 15, 2009, this error
is fixed in version 00.08.84 by a slight protocol change. Due to compatibility
reasons with older clients, some mix operators have still not updated, but plan
to do so soon.

The third flaw discovered is, at a first glance, more theoretical than practical.
It does, however, have practical relevance due to the OpenSSL flaw in Debian.
The missing check for a message to belong to the current session enables an
attacker to impersonate the last mix in a cascade. However, this can only be
done if the attacker has compromised a private encryption key of the mix that
was signed by the last mix in an older session.

The flaws we discovered represent errors that, unfortunately, still occur quite
often. This again shows the importance of using standardized cryptographic
protocols. As discussed in Section 8 it is not always possible to use a standard
cryptographic protocol due to special requirements. In this case, a composition
of cryptographic protocols and primitives becomes necessary. This does not nec-
essarily lead to a secure system, as various examples and attacks in the past
have shown[20, 21]. Therefore, a proof or detailed analysis should be provided,
as it has been given by Tor or by Sphinx[22].

References

1. Freedman, M.J., Morris, R.: Tarzan: a peer-to-peer anonymizing network layer.
In Atluri, V., ed.: ACM Conference on Computer and Communications Security,
ACM (2002) 193–206

2. Rennhard, M., Plattner, B.: Introducing MorphMix: Peer-to-Peer based Anony-
mous Internet Usage with Collusion Detection. In: Proceedings of the Workshop on
Privacy in the Electronic Society (WPES 2002), Washington, DC, USA (November
2002)

3. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: USENIX Security Symposium, USENIX (2004) 303–320

4. Berthold, O., Federrath, H., Köpsell, S.: Web MIXes: A system for anonymous
and unobservable Internet access. In: Designing Privacy Enhancing Technologies.
Volume 2009/2001 of Lecture Notes in Computer Science., Springer (2001) 115–129



5. Pfitzmann, A., Hansen, M.: Anonymity, unlinkability, undetectability, unobserv-
ability, pseudonymity, and identity management - a consolidated proposal for ter-
minology (February 2008) v0.31.

6. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 4(2) (February 1981) 84–88

7. Kesdogan, D., Agrawal, D., Pham, V., Rautenbach, D.: Fundamental limits on
the anonymity provided by the mix technique. In: SP ’06: Proceedings of the
2006 IEEE Symposium on Security and Privacy, Washington, DC, USA, IEEE
Computer Society (2006) 86–99

8. Berthold, S., Böhme, R., Köpsell, S.: Data retention and anonymity services –
introducing a new class of realistic adversary models. In: The Future of Identity in
the Information Society. Volume 298/2009 of IFIP Advances in Information and
Communication Technology. (2009) 92–106

9. Köpsell, S.: AnonDienst - Design und Implementierung. Technical report, TU
Dresden University (2004)

10. Köpsell, S.: Vergleich der Verfahren zur Verhinderung von Replay-angriffen der
Anonymisierungsdienste AN.ON und Tor. In Dittmann, J., ed.: Sicherheit. Vol-
ume 77 of LNI., GI (2006) 183–187

11. Köpsell, S.: Private discussion with the developer (May 2009)
12. Common Vulnerability and Exposure: CVE-2008-0166. http://www.cve.mitre.org

(2008) Last visited: 15.12.2009.
13. ISO/IEC 11770-3:2008: Information technology – Security techniques – Key man-

agement – Part 3: Mechanisms using asymmetric techniques. ISO, Geneva, Switzer-
land

14. Westermann, B.: Security analysis of AN.ON’s payment scheme. In Jøsang, A.,
Maseng, T., Knapskog, S.J., eds.: NordSec 2009. Volume 5838/2009 of Lecture
Notes in Computer Science., Springer (October 2009) 255 – 270

15. Meadows, C.: The NRL protocol analyzer: An overview. The Journal of Logic
Programming 26(2) (1996) 113–131

16. Goldberg, I.: On the security of the Tor authentication protocol. In Danezis, G.,
Golle, P., eds.: Privacy Enhancing Technologies. Volume 4258 of Lecture Notes in
Computer Science., Springer (2006) 316–331

17. Dingledine, R.: Security and Anonymity Vulnerabilities in Tor: Past, Present, and
Future. Talk at DefCon 16 (August 2008)

18. Øverlier, L., Syverson, P.: Improving efficiency and simplicity of Tor circuit es-
tablishment and hidden services. In Borisov, N., Golle, P., eds.: Proceedings of
the Seventh Workshop on Privacy Enhancing Technologies (PET 2007), Ottawa,
Canada, Springer (June 2007)

19. Panchenko, A., Westermann, B., Pimenidis, L., Andersson, C.: Shalon: Lightweight
anonymization based on open standards. In: Proceedings of 18th Internatonal
Conference on Computer Communications and Networks, San Francisco, CA, USA
(Aug 2009)

20. Simmons, G.J.: Cryptanalysis and protocol failures. Communications of the ACM
37(11) (1994) 56–65

21. Gligoroski, D., Andova, S., Knapskog, S.J.: On the importance of the key separa-
tion principle for different modes of operation. In Chen, L., Mu, Y., Susilo, W.,
eds.: ISPEC. Volume 4991 of Lecture Notes in Computer Science., Springer (2008)
404–418

22. Danezis, G., Goldberg, I.: Sphinx: A compact and provably secure mix format.
In: IEEE Symposium on Security and Privacy, IEEE Computer Society (2009)
269–282


