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Abstract: Website Fingerprinting (WF) allows a pas-
sive network adversary to learn the websites that a client
visits by analyzing traffic patterns that are unique to
each website. It has been recently shown that these
attacks are particularly effective against .onion sites,
anonymous web servers hosted within the Tor network.
Given the sensitive nature of the content of these ser-
vices, the implications of WF on the Tor network are
alarming. Prior work has only considered defenses at the
client-side arguing that web servers lack of incentives to
adopt countermeasures. Furthermore, most of these de-
fenses have been designed to operate on the stream of
network packets, making practical deployment difficult.
In this paper, we propose two application-level defenses
including the first server-side defense against WF, as
.onion services have incentives to support it. The other
defense is a lightweight client-side defense implemented
as a browser add-on, improving ease of deployment over
previous approaches. In our evaluations, the server-side
defense is able to reduce WF accuracy on Tor .onion
sites from 69.6% to 10% and the client-side defense re-
duces accuracy from 64% to 31.5%.
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1 Introduction

Website Fingerprinting (WF) attacks allow a pas-
sive local adversary to infer which webpage a client is
viewing by identifying patterns in network traffic that
are unique to the webpage. These attacks are possi-
ble even if the client is browsing through anonymity
networks such as Tor and the communication is en-
crypted [12]. Tor routes a client’s traffic through vol-
unteer relays before connecting to the communication’s
destination, so that local eavesdroppers cannot link
both sender and receiver of the communication [8]. How-
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ever, the WF attack, if successful, breaks the unlinka-
bility property that Tor aims to provide to its users.

Moreover, a 2015 study has shown that .onion sites
can be distinguished from regular sites with more than
90% accuracy [16]. This substantially narrows down the
classification space in Tor and suggests the attack is
potentially more effective at identifying .onion sites
than regular pages. Onion services are websites with
the .onion domain hosted over Tor, allowing a client to
visit a website without requiring it to publicly announce
its IP address. These sites tend to host sensitive content
and may be more interesting for an adversary, turning
the WF attack into a major threat for connecting users.
In this paper, we propose the first set of defenses specif-
ically designed and evaluated for Tor .onion sites.

WF defenses are often theorized at the network
level, and try to disrupt statistical patterns via inserting
dummy messages in to the packet stream [2, 4, 9]. Some
defenses try to alter the network traffic of a webpage to
mimic that of another webpage that is not interesting
to the attacker [32]. However, a defense at the network
level may require substantial changes of Tor or even the
TCP stack, which would make its deployment unrealis-
tic. Furthermore, there is no need to hide patterns at the
network layer because few webpage-identifying features,
if any, are introduced by low layers of the stack (e.g.,
TCP, IP). In this work, we consider application-layer
defenses, arguing that this approach is more natural for
WF defenses and facilitates their development.

Existing WF defenses have been engineered to pro-
tect the link between the client and the entry to the
Tor network, assuming this is the only part of the net-
work observable by the adversary. We propose both WF
defenses at the client- and server-side. A server-side de-
fense is more usable as it does not require any action
from the user. More and more, certain types of web-
sites, such as human rights advocacy websites, have the
motivation to provide WF defenses as a service to its
user base, who may be of particular interest to an ad-
versary. For this reason, we believe that, in contrast to
normal websites, .onion site operators not only have
the incentive to provide defenses against WF attacks,
but can also achieve a competitive advantage with re-
spect to other .onion sites by doing so.
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As a real life motivating example, we were con-
tacted by SecureDrop [27], an organization that pro-
vides onion services for the anonymous communication
between journalists and whistleblowers. They are con-
cerned that sources wishing to use their service can be
de-anonymized through WF. As a consequence, they are
interested in using a server-side WF defense. We have
included a SecureDrop website in all the datasets used
for the evaluation of defenses.

We introduce two variants of a server-side defense
operating at the application layer, which we call Appli-
cation Layer Padding Concerns Adversaries (ALPaCA).
We evaluate it via a live implementation on the Tor net-
work. We first crawl over a significant fraction of the
total Tor .onion site space, retrieving not only the net-
work level traffic information – as is standard in WF
research – but also the index.html page and HTTP
requests and responses. We then analyze the size distri-
bution for each content type, e.g. PNG, HTML, CSS.
Using this information, ALPaCA alters the index.html
of a page to conform to an “average” .onion site page.
ALPaCA runs periodically, changing the page finger-
print on every user request.

Due to the expected slow adoption of server-
side WF defenses, client-side defenses must still be
used. We therefore implement a simple client-side WF
defense, dubbed Lightweight application-Layer Mas-
querading Add-on (LLaMA), that works at the applica-
tion layer by adding extra delays to the HTTP requests.
These delays alter the order of the requests in a similar
way to randomized pipelining (RP) [23], a WF counter-
measure implemented in the Tor browser that has been
shown to fail in several evaluations [5, 14, 31]. Besides
delaying HTTP requests, our defense sends redundant
requests to the server. We show most of the protection
provided by this defense stems from the extra requests
and not from the randomization of legitimate requests.

Our contributions are, as a result of a real life de-
mand, the first implementation of a server-side WF
defense and a simple yet effective lightweight client-
side defense. With these two approaches we explore the
space of application-layer defenses specifically designed
to counter WF in .onion sites. In addition, we have
collected the largest – to the best of our knowledge
– dataset of sizes and types of content hosted by Tor
.onion sites. We provide an evaluation of the overhead
and efficacy of our defenses and compare it to some of
the most practicable existing WF defenses.

The source code and datasets of both ALPaCA and
LLaMA have been made publicly available on GitHub1.
The original code is also available on an .onion site2,
which is protected using our defense.

2 Threat Model

As depicted in Figure 1, we consider an adversary
who has access to the communication between the client
and the entry point to the Tor network, known as entry
guard. A wide range of actors could have access to such
communications, ranging from malicious or corrupted
relay operators, who can target all clients connecting to
the guards they control; to ASes, ISPs and local net-
work administrators, who can eavesdrop on Tor clients
located within their infrastructure.

−

Guard

Tor network

Client
x.onion

y.onion

z.onion

Adversary

Fig. 1. A client visits an .onion site over Tor. The attacker
eavesdrops the encrypted link between the Tor client and the
entry guard to the Tor network. Between the client and the des-
tination onion service there is a six-hop Tor circuit that we have
omitted to simplify the figure.

The adversary eavesdrops the communication to ob-
tain a trace or sample instance of the encrypted network
packets. He can observe and record these packets, but
he cannot decrypt them. Furthermore, we will assume
a passive adversary: he cannot remove or modify the
packets, nor drop or add new packets to the stream.

The objective of the adversary is to infer the web-
sites that were visited by the client from the traffic sam-
ples. The adversary can build a template for a number
of websites with his own visits and then match the traf-
fic generated by the client. It has been shown that, for a
small set of websites, such an attacker can achieve high
success rates achieving over 90% accuracy [5].

1 http://github.com/camelids/
2 http://3tmaadslguc72xc2.onion

http://github.com/camelids/
http://3tmaadslguc72xc2.onion
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These attacks have however been criticized for mak-
ing a number of unrealistic assumptions that favor the
adversary [14]. For instance, they assume webpages are
static, although some pages have frequent content up-
dates; the client only visits pages that the attacker has
trained on, also known as the closed-world assumption;
and the attacker is able to perfectly parse the fraction of
the continuous stream of traffic corresponding to a spe-
cific page download, assuming there is a gap between
one visit and the next one.

In 2015, Kwon et al. showed that an attacker falling
within this threat model can effectively distinguish visits
to .onion sites from regular websites [16]. They also
revisited the assumptions for which prior work on WF
had been criticized [14] and found that many of these
assumptions hold when considering only .onion sites.
In contrast to the open Web, the world of .onion sites
is small and comparable to a closed world, they are also
more static than regular websites and their streams are
isolated by domain [16]. As in virtually all prior work
on WF, they still assumed the client visits only home
pages, ignoring other pages in the website such as inner
pages and logged-in or personalized pages that are not
available to the attacker. In our evaluation, we follow
them and only collect data for the home page of the
.onion sites we have crawled.

We assume an adversary is only interested in finger-
printing .onion sites, and already has a classifier to tell
.onion traffic apart from the bulk of client traffic. We
focus on defenses that protect against the WF attack
in the “onion world” because it is a more threatening
setting than the one studied in most prior WF work
on Tor; visits to .onion sites tend to be more sensitive
than to pages whose IP address is visible to clients. Luo
et al. argue that a WF defense must be implemented
at the client-side because web servers have no incentive
to offer such a service [19]. However, we believe .onion
site operators are aware of the privacy concerns that
Tor clients have and would make the necessary (minor)
modifications in the server to implement our defense.

For the design of ALPaCA, we will assume there is
no dynamic content. This includes content generated at
the client-side (e.g., AJAX) as well as the server-side
(e.g., a PHP script polling a database). This assump-
tion simplifies the design of the server-side defense: AL-
PaCA requires the size of the web resources being loaded
and it is hard to estimate the size of dynamic content a
priori.

To assume that no JavaScript will run in the
browser is not as unrealistic as it may seem given the
high prevalence of JavaScript in the modern Web. The

Tor Browser’s security slider allows users to select differ-
ent levels of security, disabling partially or totally Java-
Script. Furthermore, SecureDrop pages already ask their
clients to disable JavaScript to prevent attacks such as
cross-site scripting. It is reasonable to think that clients
who protect themselves against WF will first disable
JavaScript to prevent these other attacks.

3 Related Work

WF is typically modeled as a supervised learning
problem. The attacker collects traffic traces for a large
sample of websites that aims to identify and builds a
classifier that outputs a label, with a certain level of
confidence. Since the first WF classifiers were proposed
in the late nineties [7], the attacks have been developed
with improved classification models to defeat a wide va-
riety of privacy enhancing technologies such as encrypt-
ing web proxies [13, 28], SSH tunnels[17], VPNs, and
even anonymity systems such as Tor and JAP [12].

3.1 Attacks

The latest attacks against Tor achieve more than 90%
accuracy in a closed-world of websites, where the at-
tacker is assumed to have samples for all the websites a
target user may visit [5, 11, 20, 30, 31]. This assumption
is unrealistically advantageous for the attacker [14] and
a recent study has shown that the attack does not scale
to large open-worlds [20]. However, the .onion space is
significantly smaller than the Web and may be feasi-
ble for an adversary to train on a substantial fraction
of all .onion websites. Furthermore, the closed-world
evaluation provides a lower bound for the efficacy of the
defense. For a complete evaluation of the performance
of our defenses, in this paper we will provide results for
both open and closed-world scenarios.

We have selected the most relevant attacks in the
literature to evaluate our defenses:

k-NN [30]: Wang et al. proposed a feature set of more
than 3,000 traffic features and defined an adaptive dis-
tance that gives more weight to those features that pro-
vide more information. To classify a new instance, the
attack takes the label of the k Nearest Neighbors (k-
NN) and only makes a guess if all the neighbors agree,
minimizing the number of false positives.
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CUMUL [20]: The features of this attack are based
on the cumulative sums of packet sizes. The authors
interpolated a fixed number of points from this cumu-
lative sum to build the feature vectors that they use to
feed a Support Vector Machine (SVM).

k-FP [11]: Hayes and Danezis used Random Forests
(RF) to transform, based on the leafs of the trees, an
initial feature set to another feature set that encodes the
similarity of an instance with respect to its neighbors.
Then, they also used a k-NN for final classification.

3.2 Defenses

Most WF defenses in the literature are based on link-
padding. The traffic morphing approach attempts to
transform the traffic of a page to resemble that of an-
other page [18, 21, 32], or to generalize groups of traffic
traces in to anonymity sets [3, 30]. The main downside of
this type of defenses is that they require a large database
of traffic traces that would be costly to maintain [14].

Link-padding aims to conceal patterns in web traffic
by adding varying amounts of dummy messages and de-
lays in flows. Link-padding has been used for traffic mor-
phing to cause confusion in the classifier by disguising
the target page fingerprint as that of another page [32].
However, as Dyer et al. note [9], traffic morphing tech-
niques produce high bandwidth overheads as some pack-
ets must be buffered for a long period. The strategy we
follow in ALPaCA is different from traffic morphing in
that page contents are not disguised as other pages’,
but rather the content is modified to become less fin-
gerprintable. The intuition behind ALPaCA is to make
each resource look like an “average” resource, according
to the distribution of resources in the world of pages.
This approach reduces the overheads with respect to
morphing, as resizing an object to an average size will
tend to require less amount of padding than to an object
of a specific page. We have experimented with morph-
ing the contents in a page to make it look like another
page. This can be seen as the application-level counter-
part of traffic morphing and the results can be found in
Appendix A.

In 2012, Dyer et al. presented BuFLO [9], a defense
based on constant-rate link-padding. Although BuFLO
is a proof-of-concept defense and has high bandwidth
overheads, other defenses have been developed from the
original BuFLO design. Tamaraw [4] and CS-BuFLO [2]
optimize BuFLO’s bandwidth and latency overheads to
make its deployment feasible. Both of these defenses
address the issue of padding the page’s tail. BuFLO

padded all pages up to a certain maximum number
of bytes producing the high bandwidth overheads. CS-
BuFLO and Tamaraw proposed a strategy to pad pages
to multiples of a certain parameter, which groups pages
in anonymity sets by size and significantly reduces the
bandwidth overhead over BuFLO. We follow a similar
strategy for one of the modes of ALPaCA.

Recently, a lightweight defense based on Adaptive
Padding has also been proposed to counter WF [15]. In
order to offer low latency overheads, this defense only
pads time gaps in traffic that are statistically unlikely
to happen. To empirically determine the likelihood of a
gap they sampled a large number of pages over Tor and
built a distribution of inter-arrival times used to sample
the delays for the dummy messages.

Our main concern with these designs is that padding
is applied at the network layer. There is no need to apply
the defense at the network layer because layers below
HTTP do not carry identifying information about the
webpage. One could argue that latency and bandwidth
identify the web server. However, these features vary
depending on network conditions and are shared by all
pages hosted in the same server or behind the same
CDN. Moreover, the implementation of such defenses
may require modifications in the Tor protocol and even
the TCP stack, as they generate Tor cells that are sent
over Tor’s TLS connections.

Application layer defenses act directly on the ob-
jects that are fingerprinted at the network layer. The
padding is also added directly to these objects. As op-
posed to network-layer defenses that must model legit-
imate traffic to generate padding, application-layer de-
fenses inject the padding inside the encrypted payload
and is, consequently, already indistinguishable from le-
gitimate traffic at the network layer. In addition, de-
fenses at the application layer do not require modifica-
tions in the source code of the Tor protocol, which make
them more suitable for deployment.

In this paper we present and explore two novel ap-
proaches for application layer defenses at both client
and server-side. In the rest of this section we describe
the state of the art on application-layer defenses.

3.2.1 Server-side

To the best of our knowledge, there is only a prototype
of a server-side defense that was drafted by Chen et al.
and it was designed for a slightly different although re-
lated problem [6]. They studied WF in the context of
SSL web applications, where the attacker is not trying
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to fingerprint websites, but specific pages within one sin-
gle website. Their main contribution was to show that
a local passive adversary can identify fine-grained user
interactions within the website. The authors devise a
defense that requires modifications at both client and
server sides, which allows padding to be added to indi-
vidual HTTP requests and responses.

3.2.2 Client-side

There are only two application-layer defenses proposed
in the WF literature: HTTPOS [19] and Randomized
Pipelining (RP) [23]. Luo et al. proposed HTTPOS as
a client-side defense arguing that server-side or hybrid
defenses would see little adoption in the wild due to
lack of incentives [19]. In that study, the authors pin-
point a number of high-level techniques that alter the
traffic features exploited by WF attacks. For instance,
they modify the HTTP headers and inject fake HTTP
requests to modify the length of web object sizes.

RP is the only WF countermeasure that is currently
implemented in the Tor browser. It operates by batching
together a single clients requests in the HTTP pipeline
to randomize their order before being sent to the server.
Several studies have applied WF attacks on data col-
lected with a RP-enabled Tor Browser and all of them
have shown that the defense was not effective at de-
creasing the accuracy of the WF attack in the closed
world [5, 14, 31]. The reason why RP does not work is
not clear and has not been investigated in these evalu-
ations.

4 Defenses
WF attacks are possible because different webpages
serve different content. High level features such as the
number of requests the browser makes to download a
page, the order of these requests and the size of each
response, induce distinctive low level features observed
in the network traffic [9, 21]. For instance, the number of
requests sent by the browser corresponds to the number
of objects embedded in the page such as images, scripts,
stylesheets, and so on.

Most existing defenses propose to add spurious net-
work packets to the stream to hide these low-level fea-
tures [2, 4, 9], However, effectively concealing these fea-
tures at network level poses technical challenges, as the
operation of underlying protocols, i.e. TLS, TCP, IP,

obfuscates the relation between low and high level fea-
tures. For this reason, we believe adding the padding
to the actual contents of the page is a more natural
strategy to hide traffic features than sending dummy
packets: if the defense successfully conceals high-level
features, the low-level features will follow.

In this section, we describe in detail the strategies
that we propose at the application layer at both server
(ALPaCA) and client side (LLaMA) to mitigate WF
attacks.

4.1 ALPaCA

ALPaCA is a server-side defense that pads the contents
of a webpage and creates new content with the objective
of concealing distinctive features at the network level.
We demonstrate that this strategy is not only effective,
but also practical to deploy. We have implemented and
evaluated ALPaCA as a script that periodically runs on
a server hosting an .onion site.

We first show that it is possible to pad the most
popular types of webpage objects (e.g., images, HTML)
to a desired size, without altering how they look to a
user. We then propose two variants of server-side de-
fenses, referred to as P-ALPaCA and D-ALPaCA. At a
high level, the defenses choose, for a page to morph, a
suitable list of sizes T , that we call target. A target spec-
ifies the number and size of the objects of the morphed
page; P-ALPaCA and D-ALPaCA differ in how they se-
lect such a target. Then, the objects of the original page
are padded to match the sizes defined in T . If T con-
tains more elements than the page’s objects, then new
objects (“padding objects”) are created and referenced
from the morphed HTML page (Algorithm 1). Figure 2
gives a high level overview of this process.

4.1.1 Padding an object to a target size

This section describes how we can pad most types of ob-
jects. It is important to note that an adversary looking
at encrypted packets cannot: i) distinguish the type of
objects that are being downloaded, ii) infer how much
padding was added to such objects or whether they
were padded at all. By padding an object directly on
the server, we can control how large it will look like
at the network level. While this control is not complete
(because of compression in the HTTP protocol), experi-
ments show that this discrepancy does not largely affect
on our defenses.
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Table 1. Padding the most frequent objects in .onion sites to a
desired size. “N.O.” stands for “not observed”. We assume Java-
Script is disabled, although it is possible to morph JS files as
shown.

Content type Morphing Frequency

PNG, ICO, JPG,
GIF, BMP

Append random bytes to the file. 51%

HTML Insert random data within a
comment “<!–”, “–>”.

13%

CSS Insert random data within a
comment “/*” “*/”.

12%

JS Insert random data within a
comment “/*” “*/”.

13%

MP3 Append random bytes to the file. N.O.
AVI Append random bytes to the file. N.O.

Table 1 shows the types of objects that we can pad
up to a desired size, and their frequency within the
.onion site world. To pad text objects (e.g., HTML and
CCS) we can add the desired amount of random data
into a comment. To pad binary objects (e.g., images), it
is normally sufficient to append random data to the end
of the file; in fact, the file structure allows programs to
recognize the end of the file even after this operation.

We verified that binary files would not be corrupted
after appending random bytes to them as follows. We
used ImageMagick’s identify program3 for verifying
the validity of PNG, ICO, JPEG, GIF, and BMP files
after morphing. The program only raised a warning
“length and filesize do not match” for the BMP file;
the image was, nevertheless, unaffected, as it could be
opened without any errors. We used mp3val4 to check
MP3 files; the program returned a warning “Garbage at
the end of the file”, but the file was not corrupted, and
it could be played. We used ffmpeg5 to verify AVI files;
the program did not return any errors or warnings.

It is thus possible to morph the most common object
types. We suspect that many other types of object can
be morphed analogously, by appending random bytes
or by inserting data in comments or unused sections of
the type structure. We remark, however, that in exper-
iments we did not remove content we could not morph
from webpages.

3 http://www.imagemagick.org/
4 http://mp3val.sourceforge.net/
5 https://ffmpeg.org/

4.1.2 Morphing a page to a target T

We introduce Algorithm 1, which morphs the contents
of a page to match the sizes defined by a target T . The
target is selected differently by the two versions of AL-
PaCA, as presented later, and it defines the size of the
objects that the morphed page should have.

The algorithm keeps two lists: M , containing the
morphed objects, and P , which keeps track of the sizes
in T that have not been used for moprhing an object;
both lists M and P are initially empty. The algorithm
sequentially considers the objects of the original page
from the smallest to the largest; for object o, it seeks
the smallest size t ∈ T which o can be padded (i.e., for
which size(o) ≤ t). Once it has found such a t, it re-
moves all the elements of T smaller than t, and pads o
to size t; the elements removed from T at this stage (ex-
cept t) are put into P . After all the original objects have
been morphed, the sizes remaining in T are appended to
P . New “padding objects” (objects containing random
bytes) are generated according to the sizes in P . We
make sure that padding objects will be downloaded by
a browser, but will not be shown, by inserting a refer-
ence to them in the HTML page as if they were hidden
images6. Finally, the HTML page itself is padded to a
target size by the defense.

4.1.3 P-ALPaCA

P-ALPaCA (Probabilistic-ALPaCA) generates a target
by randomly sampling from a distribution that repre-
sents real-world .onion sites. Specifically, it has access
to three probability distributions Dn, Dh and Ds, de-
fined respectively on the number of objects a page has,
the size of the HTML page and the size of each of its
objects. The defense samples a target T using these dis-
tributions, and then morphs the original page as shown
in Algorithm 1.

We estimated Dn, Dh and Ds using Kernel Density
Estimation (KDE) from 5, 295 unique .onion websites
we crawled. Details about crawling and analysis of these
websites are in section 5. In Appendix B we show the

6 To add an invisible object called “rnd.png” to an HTML page
we insert <img src="rnd.png" style="visibility:hidden">’.
The browser will consider this a PNG file and it will download
it, but it will not attempt to show it. The file, thus, needs not to
respect the PNG format, and it can just contain random bytes.

http://www.imagemagick.org/
http://mp3val.sourceforge.net/
https://ffmpeg.org/
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Algorithm 1 Pad a list of objects to a target
Input: O: list of original objects
T : list of target sizes

Output: M : list of morphed objects

M ← [ ]
P ← [ ]
. Morph the original objects.
while |M | < |O| do

o← arg min
o∈O

size(o)

. Remove the target sizes smaller than size(o).
while min(T ) < size(o) do

Remove min(T ) from T

Append min(T ) to P
end while
if T is empty then

. Cannot morph O to T
fail

end if
. Note: the current min(T ) is larger than size(o)
t← min(T )
m← o padded to size t
Append m to M

end while
. Add padding objects.
Merge P and T into P
for p in P do

m← New padding object of size p
Append m to M

end for

resulting distributions Dn, Dh and Ds, and provide de-
tails on how we used KDE to estimate them.

The defense first samples the number of objects n for
the morphed page according toDn. Then, it samples the
size of the morphed HTML from Dh, and n sizes from
Ds which constitute a target T . Finally, it attempts to
morph the original page to T (Algorithm 1); if morphing
fails, the procedure is repeated. The algorithm is shown
in Algorithm 2.

Because sampling from the distributions can (with
low probability) produce very large targets T , we in-
troduced a parameter max_bandwidth to P-ALPaCA.
Before morphing, the defense checks that the total
page size is smaller than or equal to this parameter:∑

t∈T t ≤ max_bandwidth. If not, the sampling proce-
dure is repeated.

A simple alternative to sampling from a distribution
that represents the present state of the .onion world,
is to sample the number and size of padding objects

uniformly at random. We expect that this alternative
approach would also set a maximum bandwidth param-
eter, which would serve as the upper bound of the size of
the morphed page. One could imagine that a naive im-
plementation of this alternative approach which sets a
high maximum would cause extremely high bandwidth
overheads. However, reducing this maximum parame-
ter would constrain the morphed page to look like a
small subsection of the onion world, removing altogether
the possibility that the page is morphed to resemble a
large .onion site. Our approach allows a large maxi-
mum bandwidth parameter to bet set while ensuring
bandwidth overheads will be low. With our approach,
the probability that a small page, say A.onion, is mor-
phed to the size of a large .onion site, say B.onion, di-
rectly corresponds to the ratio of the number of .onion
sites within the .onion world that are of an equal size
to B.onion. Meaning a small .onion site can have the
entire .onion world as an anonymity set while ensuring
a low bandwidth overhead.

Algorithm 2 P-ALPaCA
Input: O: list of original objects
Dn: distribution over the number of objects
Dh: distribution over the size of HTML pages
Ds: distribution over the size of objects
html_size: size of the original HTML page
max_bandwidth: maximum page size

. We use x←$ D to indicate that x is sampled from
distribution D
morphed← False

while not morphed do
T ← [ ]
h←$ Dh

if h < html_size then
continue

end if
n←$ Dn

for i in 1..n do
s←$ Ds

Append s to T
end for
if sum(T ) < max_bandwidth then

Try morphing O to target T (Algorithm 1)
If successful, morphed← True

end if
end while
Pad the HTML page to size h
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Fig. 2. Graphical representation of the server side defenses. Server side defenses P-ALPaCA and D-ALPaCA first select a target for the
original web page. Then, they pad the contents of the original page as defined by the target (Algorithm 1), and generate new padding
objects if needed. The original and morphed page will look identical to a user.

4.1.4 D-ALPaCA

We propose a second server-side defense, D-ALPaCA
(Deterministic-ALPaCA), which decides deterministi-
cally by how much a page’s objects should be padded.
The defense is inspired by Tamaraw [4], which pads the
number of packets in a network trace to a multiple of
a padding parameter L. D-ALPaCA has the advantage
of introducing less overheads than P-ALPaCA, but ex-
perimental results suggest this defense is slightly less
effective against a WF adversary.

D-ALPaCA (Algorithm 3) accepts as input three
parameters: λ, σ and max_s, where max_s should be a
multiple of σ. It pads the number of objects of a page to
the next multiple of λ, and the size of each object to the
next multiple of σ. Then, if the target number of objects
is larger than the original number of objects, it creates
padding objects of size sampled uniformly at random
from {σ, 2σ, ...,max_s}. Experiments in section 6 eval-
uate how different sets of parameters influence security
and overheads.

4.1.5 Practicality of the defenses

Both P-ALPaCA and D-ALPaCA are practical to use
in real-world applications. In fact, they only require a
script to morph the contents of a page periodically. This
can be done by setting up a cron job running the de-
fense’s code, which we release.

Since it is preferable to morph a page after each
client’s visit, and it may be difficult for the server oper-
ator to decide how frequently they should run the cron
job, we propose a more sophisticated (and flexible) al-
ternative. The defense should preemptively morph the
web page many times, and place the morphed pages

Algorithm 3 D-ALPaCA
Input: O: list of original objects
σ: size parameter
λ: number of objects parameter
html_size: size of the original HTML page
max_s: maximum size of a padding object (should
be a multiple of σ)

. We use x ←$ S to indicate that x is sampled uni-
formly at random from a set S
T ← [ ]
h← next multiple of σ greater or equal to html_size
for o in O do

s← next multiple of σ greater or equal to size(o)
Append s to T

end for
n← next multiple of λ greater or equal to size(O)
while size(T ) < n do

s←$ {σ, 2σ, ...,max_s}
Append s to T

end while
Morph O to target T (Algorithm 1)
Pad the HTML page to size h

within distinct directories on the server. Then, the
server should be configured to redirect every new re-
quest to a different directory. Once the content of a di-
rectory has been loaded, the directory is removed, and
a new one can be created.

4.1.6 Third-party content

A limitation of ALPaCA is that it can only pad re-
sources hosted in the web server, thus content linked
from third parties cannot be protected. In the evaluation
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of the defense, we have intentionally omitted all third-
party content because only two out of the 100 pages in
our dataset had resources from third parties.

To understand the impact of this assumption on a
larger scale, we have analyzed the prevalence of third-
party resources in a crawl of 25K .onion sites: only 20%
of these sites create requests to third-party domains.
Furthermore, for half the pages with third-party con-
tent, the third-party requests account for less than 40%
of total requests observed within a webpage. However,
we found a handful of sites that had more than 90%
of their content hosted in third parties. They seem to
act as proxies to existing websites. With such a high
percentage of unprotected content, the defense is most
likely to fail at providing protection against website fin-
gerprinting.

Since the average cost in terms of disk space is 5MB,
a possible solution for sites with a large proportion of
third-party content would be to cache the third-party
resources in the server running the defense. We strongly
discourage this approach as if not implemented properly,
the .onion site, attempting to keep these resources up-
dated, may become vulnerable to timing correlations at-
tacks by the third parties serving the content. In fact, we
recommend .onion site operators minimize the amount
of third-party content they embed to their pages and
only cache static content that does not require periodic
updates.

4.2 LLaMA

LLaMA is inspired by Randomized Pipelining (RP) [23].
RP modifies the implementation of HTTP pipelining in
Firefox to randomize the order of the HTTP requests
queued in the pipeline. However, RP has been shown to
fail at thwarting WF attacks in several evaluations [5,
14, 31].

LLaMA is implemented as an add-on for the Tor
browser that follows a similar strategy to RP: it alters
the order in which HTTP requests are sent. The main
advantage of a WF defense as a browser add-on is ease
of deployment: it does not require modifications to the
Tor source code. Thus, a user can install the add-on
to enable the protection offered by the defense inde-
pendently or, if the Tor Project decides to, it could be
shipped with the Tor Browser Bundle.

RP exposes a debug flag that logs extra information
about its use of the HTTP pipeline [22]. A dataset col-
lected with this flag enabled, visiting the same webpages
that the aforementioned evaluations did, provided evi-

dence of a suboptimal usage of the HTTP pipeline by
RP [24]. Either the design of those pages or the low
adoption of HTTP pipelining on the servers of these
pages or CDNs in between may account for the low
performance of RP [1]. Since our defense does not de-
pend on HTTP pipelining, it allows us to test whether
these hypotheses hold or it is actually the randomization
strategy which is flawed.

Delaying requests. In order to randomize the order
of the HTTP requests, the add-on intercepts all requests
generated during a visit to a website and adds a differ-
ent random delay to each one (see Figure 3). We use the
statistics extracted from subsection 5.2 to set the dis-
tribution of delays for the requests. We take the median
page load time in our crawl and set a uniform distribu-
tion from zero to half the median load time. As a result,
on average, each request will be delayed within a win-
dow of half the page load time. In the worst case, this
approach will introduce 50% latency overhead if the last
request is delayed by the maximum time in the distri-
bution.

Extra requests. As shown in Figure 3, every time a
request is sent or a response is received, the extension
can be configured to send an extra request. It tosses a
coin to decide whether to make an additional HTTP
request or not. These fake HTTP requests are sent to
a web server that serves custom-sized resources: a pa-
rameter in the URL indicates the size of the resource
that will be sent in the response body. This allows us to
fake random responses from the client-side. Tor isolates
streams in different circuits per domain, since such fake
requests are made to a different domain they will be sent
through a different circuit. This should not be a problem
because the attacker cannot distinguish them from le-
gitimate third-party requests. However, as we discuss in
the following section, third-party content in .onion sites
has low prevalence. In addition, this approach requires
a trusted server that can be queried from the add-ons.
To avoid these issues, the extension implements an al-
ternative method to generate extra responses: it keeps
a hash table with domains as keys and lists of request
URLs sent to that domain during a browser session as
values. To generate a new request, it uniformly sam-
ples a URL from the list corresponding to the current
first-party domain and sends a request to that URL.

To change the size of legitimate requests we would
require cooperation of the server. We acknowledge that
previous defenses have proposed this approach [6], but
our focus for this defense is to not require any change
at the server-side.
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Fig. 3. Graphical representation of the LLaMA’s operation. δ is
the delay added to C2. C′

1, in bold, requests the same resource as
C1.

5 Methodology

In this section we describe the methodology that we
followed to collect the data and evaluate the defenses.
This data was also used to create the probability distri-
bution used by P-ALPaCA.

5.1 Data collection

For the collection of the dataset we used the tor-
-browser-crawler7, a web crawler that provides a
driver for the Tor Browser, allowing the automation of
web page visits in conditions similar to those of regular
Tor users. We added support for the Tor Browser Bun-
dle 5.5.5, the latest version at the time of our crawls
(March 2016) and extended the crawler to intercept all
HTTP requests and responses for future inspection. The
crawler logs the size and the URL for each HTTP re-
quest and response. The crawler also allows to mod-
ify browser preferences. We used this feature to disable
JavaScript and RP when needed.

We crawled a list of .onion sites obtained from
Ahmia8, the most popular search engine for onion ser-
vices. Ahmia maintains a blacklist of illegal .onion sites
and thus are excluded from our crawls. The crawl con-
sisted of 25, 000 .onion instances, after removing time-
outs and failed loads, we captured 18, 261 instances of
an .onion site load from 5, 295 unique addresses. This
dataset serves as both the basis for which we conduct
WF attack experiments with our defense in place, as
a source of information when inferring the distribution

7 https://github.com/webfp/tor-browser-crawler
8 https://ahmia.fi

of objects that the server-side defense should conform
to, and as a source of load time statistics for which the
client-side defense decides when to inject additional re-
quests.

5.2 Data analysis

From the 18, 261 instances, a total of 177, 376 HTTP
responses and 7, 095 HTTP requests were captured. The
average amount of uploaded data per .onion site was
256B, while the median amount of uploaded data per
.onion site was 158B. The average amount of down-
loaded data per .onion site was 608KB, while the me-
dian amount of downloaded data per .onion site was
45KB. The average size of one response was 55KB; the
average size of a request was 87B. Clearly the amount
of downloaded data surpasses the amount of uploaded
data as clients are simply issuing a HTTP request for
objects within the server.

The average number of requests to an .onion site
was 3, while the average number of responses was 11.
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Fig. 4. CDF of the HTTP response size in the 25K crawl (in log
scale).

The average size of an .onion site then is a lit-
tle over 608KB. In 2015, the average standard website
was just over 2MB, and the average number of objects
was over 100 [25, 29], much larger than the average size
and number of objects of an .onion site. Clearly there
is a distinct difference between standard websites and
.onion sites; standard websites are much larger and
contain a greater number of objects within the HTML
index page, we note however that the space of all stan-
dard websites is orders of magnitude greater than the

https://github.com/webfp/tor-browser-crawler
https://ahmia.fi


Website Fingerprinting Defenses at the Application Layer 196

0 150 300
0

0.5

1

Bytes

D
en

si
ty

Fig. 5. CDF of the HTTP request size in the 25K crawl.

space of all .onion sites and so contains much greater
variance in both size and number of objects.

From Figure 5 we see that nearly all HTTP requests
were less than 100 bytes, combining this with the knowl-
edge that there are on average just three HTTP requests
to download the .onion site, we can infer it is most
common to download the entire site with just one or
two requests after the initial HTTP GET request. From
Figure 4, 99% of HTTP responses are less than 1MB in
length, and nearly 70% are less than 10KB.
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Fig. 6. Boxplot of the HTTP request and response sizes for 25K
.onion sites.

From Figure 6 we see that the majority of requests
are between 70 − 100B, with relatively few outliers.
There is a large skew between the majority of responses
of size less than a few KB’s and a comparatively (to the
number of request outliers) large number of response
outliers that are orders of magnitude larger in size than
the average response size.

6 Evaluation

To assess the effectiveness of our defenses against
WF attacks, we have crawled the same set of pages with
and without the defenses in place. Comparing the ac-
curacy of state-of-the-art attacks on both datasets pro-
vides an estimate of the protection offered by the de-
fenses.

6.1 P-ALPaCA & D-ALPaCA Evaluation

We evaluate the server-side defenses when a server
does not wish to transform its network traffic to look
like another .onion site but wishes to morph their traf-
fic so it resembles an “average” .onion site. We use
results from subsection 5.2 to extract information such
as the average number of objects and the average size
of these objects across all .onion sites. A participating
server can then use such information to modify their
index.html page, resulting in an .onion site resem-
bling, at the network layer, many different .onion sites
rather than a specific targeted site.

The object distributions statistics may change over
time and require periodic updates. However, to deter-
mine whether they change and how often is out of the
scope of this paper and leave it for future research. Such
an update mechanism could be served by a trusted en-
tity in the Tor network (e.g., a directory authority) that
supplies .onion sites with this information.

In addition to transforming the network traffic of an
.onion site to resemble many different “average” .onion
sites rather than a targeted site, this method allows the
server to control the bandwidth overheads at a more fine
grained level, since the server can decide the amount and
size of extra objects placed in the index.html page.

Table 2. P-ALPaCA & D-ALPaCA latency and bandwidth over-
heads.

Latency Volume

% Avg. (s) % Avg. (KB)

Undefended − 3.99 − 175

P-ALPaCA 52.6 6.09 86.2 326

D-ALPaCA (2, 500, 5000) 66.3 6.63 3.66 182

D-ALPaCA (2, 5000, 5000) 56.1 6.22 9.84 193

D-ALPaCA (5, 2500, 5000) 61.7 6.44 15.1 202

D-ALPaCA (10, 5000, 5000) 41.7 5.65 44 254
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The server also has control over how often their site
is morphed. The frequency of morphing depends on the
estimation of how quickly an adversary can mount an
attack. If an adversary, can train on network traffic from
the server and monitor during a period where the site
remains unchanged, the defense will not be of any use.
However, the time to train and launch an attack on
a number of .onion sites will likely be in the order of
hours not minutes9, as long as a server morphs the site in
a shorter period than this, the training data the attacker
gathers will be of little use.

To confirm this assertion, we collected 40 network
traffic loads, which we call an instance, for each site of
100 .onion sites. We chose 100 .onion sites that re-
sembled the average size of an .onion site10, in terms
of total page size and number of objects. We also col-
lected 40 P-ALPaCA morphed instances for each of the
.onion sites, such that each instance is the result of a
new morphing process11 . We then check whether an
adversary, training on different morphed versions of an
.onion site, can still correctly determine the .onion site
of origin.

More specifically, for each of the 100 .onion sites,
we collect 40 instances. Resulting in 4000 overall traces.
We then apply our server-side defense and re-visit the
newly defended sites, resulting in another 4000 traces.
We then apply, separately, WF attacks to both unde-
fended and defended .onion sites, training on 60% of
traces and testing on the remaining 40%. We consider
the defense successful if the WF attack accuracy on the
defended .onion sites is dramatically lower than attack
accuracy on the undefended .onion sites.

To explore the parameter space, we also evaluated
D-ALPaCA, under four different parameter choices. We
collected 20 instances for the same 100 .onion sites
and compared attack accuracy against both the un-
defended and P-ALPaCA defended .onion sites. The
parameter choices were: λ - the defended page will
have a multiple of λ objects, σ - each of the de-
fended page’s objects will have a size which is multi-

9 For example, we used a total of 100 .onion sites in experi-
ments, visiting each .onion sites 40 times. We trained on 60% of
data. The average page load time was around 4 seconds. There-
fore an attacker, using one machine for crawling and gathering
training data, would be able to initiate an attack after 9600 sec-
onds. However, we note an attacker can parallelize this process
for faster attacks.
10 Via section 5.
11 As proposed in subsection 4.1, the .onion site is differently
morphed upon every client visit.

ple of σ, max_s - when generating new padding ob-
jects, sample uniformly within the set [σ, 2*σ, 3*σ, ...,
max_s]. Specifically, we chose the following parameter
values for (λ, σ,max_s): (2, 500, 5000), (2, 5000, 5000),
(5, 2500, 5000), (10, 5000, 5000).

User Experience: in Table 2, we see that average
latencies are approximately 40-60% greater in the pro-
tected traces than in the unprotected ones. In seconds,
the extra time that the user will spend loading the pages
is between two and three seconds. We also measured
the times to load the original resources in the protected
traces with respect to loading all content, since serv-
ing extra padding resources once all the original con-
tent is sent does not impact on user experience. We call
the time between the first request to the last legitimate
request UX-time. However, the average difference be-
tween UX-time and the time to load all resources in a
protected page is less than 200ms. We notice that the
randomization of RP often sends original requests at the
end of the transmission which explains the mild differ-
ence between UX-time and total page load time.

Table 3. Closed world classification for .onion sites morphed
via P-ALPaCA and D-ALPaCA, with other defenses added for
comparison. CUMUL depends on packet lengths and so some
defenses that only operate on packet time information cannot be
applied.

k-NN k-FP CUMUL
(%) (%) (%)

Undefended 45.6 69.6 55.6

P-ALPaCA 0.2 9.5 15.6

D-ALPaCA (2, 500, 5000) 9.5 22.7 27.0

D-ALPaCA (2, 5000, 5000) 12.5 34.4 40.0

D-ALPaCA (5, 2500, 5000) 5.8 22.3 30

D-ALPaCA (10, 5000, 5000) 7.2 22.9 33.0

Decoy [21] 4.9 11.2 X

Tamaraw [4] 6.8 14.0 X

BuFLO [9] 5.3 13.3 X

Closed World classification: we performed a
closed world WF attack on P-ALPaCA defended, D-
ALPaCA defended and undefended .onion sites. If
our server-side defenses are successful, defended .onion
sites should, at the network level, look similar to one
another and result in a low classification accuracy. We
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Table 4. Open world classification for .onion sites morphed P-
ALPaCA and D-ALPaCA.

k-NN k-FP CUMUL-k-FP
(%) (%) (%)

TPR FPR TPR FPR TPR FPR

Undefended 37.0 1.0 62.1 0.8 49.7 5.4

P-ALPaCA 0.4 0.2 3.6 0.2 1.1 1.3

D-ALPaCA (2, 500, 5000) 4.5 0.2 12.0 0.4 21.4 1.4

D-ALPaCA (2, 5000, 5000) 7.5 0.4 12.6 0.4 28.8 1.2

D-ALPaCA (5, 2500, 5000) 6.0 0.3 12.7 0.3 18.7 1.3

D-ALPaCA (10, 5000, 5000) 3.4 0.3 13.3 0.3 27.3 1.0

use CUMUL [20], k-FP [11] k-NN [30] for evaluation12.
The number of neighbours used for classification is fixed
at two.

Table 3 shows the closed-world classification results
of undefended .onion sites against .onion sites with
each instance uniquely defended using P-ALPaCA or
D-ALPaCA. WF attacks are ineffective under both de-
fenses, and in fact P-ALPaCA improves upon Tama-
raw and BuFLO. D-ALPaCA does slightly worse than
the P-ALPaCA in terms of defending .onion sites, but
as can be seen from Table 2, has real advantages in
terms of limiting bandwidth overheads. For example,
D-ALPaCA with parameters (2, 500, 5000), reduced k-
FP accuracy from 69.6% to 22.7%, compared to the P-
ALPaCA which reduced attack accuracy to 10%. But,
D-ALPaCA (2, 500, 5000) required 23.6 times less band-
width than P-ALPaCA to achieve these results. A server
operator wishing to provide a defense to its clients
while limiting the increase in bandwidth may then con-
sider this a worthwhile trade-off and choose to use D-
ALPaCA over P-ALPaCA.

Open World classification: in addition to closed
world experiments, we evaluated the server-side defenses
in the open world setting, where we include network
traffic instances of .onion sites that are not of inter-
est to the attacker. We observe how the classification
accuracy is affected in this setting, which is intended
to reflect a more realistic attack. We use 5, 259 unique
.onion sites, from subsection 5.2, as background traf-
fic instances13 and set the number of neighbours used

12 We use Tobias Pulls’ implementation of the k-NN website
fingerprinting attack [26].
13 For k-FP, we train on 1,000 of the 5, 259 background traces
and for each .onion site we train on 50-75% of instances.
Whereas k-NN uses Leave-one-out cross-validation on the en-
tire dataset.

for classification at two. Note that CUMUL only does
binary classification in the open world, classifying as
either a background instance or a foreground instance
of interest, whereas k-FP and k-NN attempt to classify
an instance to the correct .onion site if it is flagged
as a non-background instance. In order to compare the
results of the attacks in the open-world, we have used
the feature vectors of CUMUL while applying the k-FP
classification process. To make sure that the classifica-
tion model does not affect the accuracy of the attack, we
evaluated the CUMUL features with k-FP in a closed-
world and achieved a similar accuracy to SVM.

As we can see from Table 4 there is a dramatic de-
crease in attack accuracy when both P-ALPaCA and
D-ALPaCA are used, showing that if a server morphs
their site at a higher rate than the adversary can gather
training data, the site will be almost perfectly concealed.

D-ALPaCA parameter choices: Table 3 and Ta-
ble 4 show there is no notable difference in attack
accuracy when changing parameters. However, as ex-
pected, smaller parameter choices led to smaller band-
width overheads.

6.2 LLaMA Evaluation

We have crawled the same list of .onion sites as in
the evaluation of ALPaCA, under four different condi-
tions:

JS enabled: we collected our data with no defense
installed and JavaScript enabled, the default setting in
the Tor Browser.

JS disabled: we repeated the same crawl as with JS
enabled but disabling JavaScript in the Tor Browser.
We keep JS disabled for the rest of our crawls.

RP with delays: we collected data with the defense
only delaying requests, altering the order of the requests
as described in section 4.

Extra requests: we crawled the same data with the
defense adding delays and extra requests as described
in the previous section.

We note that we have disabled RP in the Tor
Browser for all the crawls above by disabling the browser
preference network.http.pipelining.

In Table 5, we show the results for the three classi-
fiers in the closed world of 100 onion sites. We do not
observe much difference in accuracy between JavaScript
enabled and disabled. This shows that our assumption
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of no dynamic content holds for the list of onion sites
used in our evaluation.

Table 5. Closed world classification for .onion sites under differ-
ent countermeasures.

k-NN k-FP CUMUL
(%) (%) (%)

JS enabled 64.0 55.8 52.4

JS disabled 60.8 53.4 52.7

RP with delays 46.8 47.9 49.6

Extra requests 31.5 36.0 34.8

When the defense only adds delays to requests, the
accuracy of the classifiers decreases 10% in the k-NN
classifier and has limited effect on k-FP and CUMUL.
The mild impact on the accuracy of the classifier may
imply that the hypothesis that RP does not work be-
cause servers do not support HTTP pipelining does not
hold, suggesting that the request randomization strat-
egy is flawed, as previous evaluations have argued [5, 31].

We also evaluated the scenario in which the counter-
measure, besides adding delays, repeats previous HTTP
requests. We observe a significant decrease in accuracy
to almost half the accuracy obtained in the unprotected
case for the k-NN classifier.

In Table 6, we show the overheads of LLaMA for its
two different modes. We see that overheads are around
10%. Even though the protection provided by the de-
fense is considerably lower than the server-side defense
or other defenses in the literature, its simplicity and the
small overhead that it introduces makes it a good can-
didate for a WF countermeasure.

Table 6. Latency and bandwidth overheads of the client-side
defense in the closed world.

Latency Volume

% Avg. (s) % Avg. (KB)

JS disabled − 5.01 − 126

RP with delays 8.4 5.42 X X

Extra requests 9.8 5.49 7.14 135

7 Discussion and Future Work

Both the ALPaCA and LLaMA have performed at
least as well as state-of-the-art defenses, showing that
application layer WF defenses do indeed protect against
attacks. Next we discuss potential avenues for future
research.

Ease of Deployment. We argue that application
layer defenses are simpler to implement than previously
proposed approaches as they require no modifications
to existing protocols or participation from a relay in
the circuit. The only expensive part of ALPaCA comes
in the form of the gathering of statistics for the proba-
bilistic based morphing approach. However, we suggest
this cost can be amortized over all participating servers
by allowing a centralized entity to collect this informa-
tion, such as is done by directory authorities now to
collect Tor relay descriptors. Future research could de-
termine how often these statistics must be updated. Im-
plementation of the client-side defense is simple, as we
developed it as a browser add-on. This could be made
available to Tor clients either by direct integration in to
the Tor browser bundle, or through an add-on store.

Rate of Adoption. Initially, we expect relatively few
.onion sites to implement server-side defenses. Over
time if a significant number of .onion sites adopt AL-
PaCA, it is possible that a large fraction of sites will
morph their page to resemble one another. In turn, this
will create stable anonymity sets of .onion sites that
have the same network traffic patterns. Finding the rate
and size of these anonymity sets is left for future work.

Clearly, smaller .onion sites are easier to protect
than larger ones, as it is impossible to morph a larger
site to resemble network traffic patterns of a smaller site.
Thus, we expect larger .onion sites to be more difficult
to protect over time. However, as subsection 5.2 show,
the majority of .onion sites are small and so should be
relatively simple to defend against WF attacks.

Latency and Bandwidth Overheads. All WF de-
fenses come at the expense of added latency and band-
width. Our defenses allow the exact overheads to be
tuned by the participating client or server. We saw from
subsection 6.1 that P-ALPaCA adds, on average, 52.6%
extra waiting time and 86.2% additional bandwidth.
We note, that compared to previous works, these over-
heads are relatively small, and that due to the nature
of .onion sites, even the morphed pages are small in
size compared to standard web pages. LLaMA improves
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on striking a balance between overhead limitation and
protection against WF attacks. By issuing additional
HTTP requests, WF attack accuracy is halved, while
only adding 9.8% in waiting time and 7.14% in band-
width. We also saw comparably small overheads in our
D-ALPaCA defense which significantly reduced WF at-
tack accuracy at the expense of an additional 3.66% of
bandwidth.

Natural WF Defenses. We note that compared to
related works, the attack accuracy on .onion sites seems
alarmingly low. Wang et al. [30] achieved accuracies of
over 90% when fingerprinting the top 100 Alexa web-
sites, whereas our experiments on 100 .onion sites re-
sulted in an accuracy of only 45.6% using the same clas-
sifier. We have validated the results of Wang et al. on the
top 100 Alexa websites, removing the possibility of a bug
or some irregularity in our own crawler. We conclude
that this reduction in accuracy is an artifact of the size
and type of the majority of .onion sites. The average
size of a .onion site is substantially smaller than that
of a standard web page; resulting in less information
being leaked to a classification process, allowing for the
increase in chance of misclassifications. We also found
that a large number of .onion sites are log-in pages to
various forums, that are based on standard designs and
so bear a resemblance to one another. The small size and
design of .onion sites provide a natural defense against
WF. By restricting the amount of information available
to a classification process, and conforming to standard
website designs, despite the small world size of .onion
sites we conclude that successful website fingerprinting
attacks are considerably more difficult than on standard
websites.

HTTP/2. HTTP/2 is the upcoming new version of the
HTTP protocol and is already supported by some of the
domains that receive most traffic volume in the Web [1].
HTTP/1.1 tried to provide parallelism of HTTP mes-
sages with HTTP pipelining. However, the deployment
of HTTP pipelining has not been ideal, as many inter-
mediaries (e.g., CDNs) do not implement it correctly [1].
HTTP/2 supports parallelism of HTTP conversations
natively and overcomes one of the main limitations of
HTTP/1.1. From our experiments with request random-
ization performed with LLaMA, our intuition is that
randomization of HTTP/2 will not provide better re-
sults than RP. HTTP/2 also allows to add padding in
HTTP messages to mitigate cryptographic attacks [10].
We devise the use of HTTP/2 padding as a primitive
for application-layer WF defenses.

8 Conclusion

We proposed two WF defenses for .onion sites, a
server-side defense and a client-side defense, that oper-
ate at the application layer. The choice of working at
this layer has the following benefits: i) it gives fine con-
trol over the content of webpages, which is arguably the
reason why WF attacks are possible, and ii) it makes
the defenses easy to implement.

The server-side defenses morph the content of a
webpage before it is loaded by a client. The resulting
webpage looks exactly as the original in terms of its vi-
sual content, but it behaves as a completely different
page at the network level, where the WF adversary sits.
Intuitively, since the adversary will observe a different
webpage for each load, they will not be able to perform
the attack. Experiments on .onion sites confirm this
intuition, and show that this defense effectively reduces
the accuracy of an adversary.

We have designed and evaluated a lightweight
client-side defense at the application layer. The evalua-
tion shows that this defense reduces the accuracy of the
attack in the onion world significantly and, even though
it offers lower protection than the server-side defenses,
it provides a high security versus overhead ratio. Fur-
thermore, its simplicity and its implementation as an
add-on for the Tor Browser favor its deployment in the
live Tor network.
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A Onion service target
experiments

In addition to morphing a page via P-ALPaCA and
D-ALPaCA, we evaluate the efficacy of our server-side
defense on a number of .onion sites via morphing to
a target .onion site. We dispense with applying a new
morphing process for each capture of an .onion site
load. Instead, we morph the .onion site once and cap-
ture 40 instances of this morphed site. We show that
even if a server morphs their network traffic once, if it is
morphed towards a targeted .onion site, this is enough
to thwart WF attacks.

A.1 SecureDrop

To protect its users, SecureDrop may want to morph
the network traffic pattern of its page load to look like
that of an .onion site which would not raise suspicion
on a visit. We collected 40 instances of network traf-
fic when visiting SecureDrop; we then chose 40 target
.onion sites which our server-side defense would morph
SecureDrop’s traffic to look like.

We considered a powerful adversary, who knows all
sites that the defense would like to morph traffic to
look like. For each target site, the adversary could train
on all the undefended SecureDrop network traffic and
the network traffic of the target .onion site, and they
must classify an unknown traffic instance as either Se-
cureDrop or the target .onion site. In our experiment,
all new traffic instances were the morphed SecureDrop
page; under a perfect defense all should have been clas-
sified as the target site

Using k-FP with 1,000 trees [11], the average binary
classification accuracy over the 40 different .onion sites
was 0.372 ± 0.416. Overall, our server-side defense was
successful in obscuring which site a client was visiting,
though we saw a large variation: some onion sites per-
fectly concealed the true label while others failed.

The average communication cost (incoming and
outgoing size of packets) of the SecureDrop page was 15
KB, and it loaded on average in 4.62 seconds. The av-
erage communication cost of the morphed page was 373
KB and it loaded in 6.70 seconds. The size of the mor-
phed page entirely depends on the target page we chose
to morph the SecureDrop page towards, if a smaller tar-
get page had been chosen this would result in a smaller
bandwidth overhead. However, the average bandwidth
overhead is still smaller than that of a standard website.

A.2 Facebook

To generalize our defense beyond SecureDrop we
chose 100 .onion sites that may also wish to protect vis-
iting clients from WF attacks, by morphing their traffic
to that of the Facebook .onion site14. We collected 40
traffic instances for each .onion site. All WF attacks
were applied in the same manner as in subsection 6.1.

Binary classification: the average binary classifica-
tion accuracy over the 100 .onion sites was 0.098±0.253.
Even when the adversary knows undefended and target
site, the attack’s accuracy is below 10%.

Closed World classification: we also compared a
closed world attack on the 100 undefended .onion sites
and the same attack after morphing those sites to look
like Facebook .onion site. If our server side defense is
successful the 100 morphed .onion sites should, at the
network level, look like the Facebook .onion site, re-
sulting in a low classification accuracy.

Table 8, shows as expected, attack accuracy de-
creases when onion sites are morphed to resemble Face-
book’s network traffic patterns.

Table 7. Facebook experiment latency and bandwidth overheads.

Latency Volume

% Avg. (s) % Avg. (KB)

Undefended − 3.99 − 175

Defended 27.3 5.08 80 315

Table 8. Closed world classification for .onion sites morphed to
Facebook’s .onion site.

k-NN k-FP CUMUL
(%) (%) (%)

Undefended 45.6 69.6 55.6

Defended 9.4 55.6 53.6

Open World classification: in addition to closed
world experiments, we evaluated the server-side defense
in the open world setting, where we included instances

14 https://facebookcorewwwi.onion

https://facebookcorewwwi.onion
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of .onion sites that were not of interest to the attacker.
We used 5, 259 unique .onion sites, from subsection 5.2,
as background traffic instances. Table 9 shows, as ex-
pected, attack’s accuracy decreases when sites are mor-
phed to resemble Facebook’s network traffic patterns.

Table 9. Open world classification for .onion sites morphed to
Facebook’s .onion site.

k-NN k-FP CUMUL-k-FP
(%) (%) (%)

TPR FPR TPR FPR TPR FPR

Undefended 30.8 2.6 59.3 5.2 53.2 5.7

Defended 7.8 0.9 44.9 1.8 44.4 2.0

Table 7 shows the average time to load a page only
increases by 1.09s when morphing a page to the Face-
book .onion site. We also see that the bandwidth over-
head is, compared to previous works, quite tolerable.
The total cost of communication rises by only 140KB.

B KDE distributions
We used Kernel Density Estimation (KDE) to estimate
the distributions of number of objects (Figure 7), size
of html pages (Figure 8) and size of objects (Figure 9).
KDE is a non-parametric method for estimating a prob-
ability distribution given a data sample, which provides
smoother estimates than histograms. KDE requires to
specify a kernel (Gaussian, in our case) and a band-
width. The bandwidth impacts on the smoothness of
the estimate: a larger bandwidth tends to provide bet-
ter smoothness, but less fidelity to the original data.
To determine the bandwidth for each of our distribu-
tions, we first performed Grid Search Cross Validation
using scikit-learn library15, to obtain a rough idea of
the bandwidth ranges. Then, we manually trimmed the
bandwidth to achieve what visually seemed to reflect
well the variance of data, but also provided smooth dis-
tributions. For our purposes, it was important to have
smooth estimates to guarantee a good quality in sam-
pling (e.g., to avoid spikes). We used a bandwidth of 2
for the distribution over objects, and of 2000 for both
the HTML and object sizes distributions.

15 http://scikit-learn.org/
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