
Scalable Onion Routing with Torsk

Jon McLachlan
University of Minnesota
Minneapolis, MN 55455
mcla0181@umn.edu

Andrew Tran
Carnegie Mellon University

Pittsburgh, PA 15213
qtran@andrew.cmu.edu

Nicholas Hopper
University of Minnesota
Minneapolis, MN 55455
hopper@cs.umn.edu

Yongdae Kim
University of Minnesota
Minneapolis, MN 55455
kyd@cs.umn.edu

ABSTRACT
We introduce Torsk, a structured peer-to-peer low-latency anonymity
protocol. Torsk is designed as an interoperable replacement for the
relay selection and directory service of the popular Tor anonymity
network, that decreases the bandwidth cost of relay selection and
maintenance from quadratic to quasilinear while introducing no
new attacks on the anonymity provided by Tor, and no additional
delay to connections made via Tor. The resulting bandwidth sav-
ings make a modest-sized Torsk network significantly cheaper to
operate, and allows low-bandwidth clients to join the network.

Unlike previous proposals for P2P anonymity schemes, Torsk
does not require all users to relay traffic for others. Torsk utilizes a
combination of two P2P lookup mechanisms with complementary
strengths in order to avoid attacks on the confidentiality and in-
tegrity of lookups. We show by analysis that previously known at-
tacks on P2P anonymity schemes do not apply to Torsk, and report
on experiments conducted with a 336-node wide-area deployment
of Torsk, demonstrating its efficiency and feasibility.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; C.2.0 [Computer-Communication Networks]: General—
Security and Protection

General Terms
Algorithms, Security

Keywords
Anonymous Communication, Peer-to-Peer Networks

1. INTRODUCTION
Anonymity on the Internet, the ability to conceal the identity of

one or both parties to a communication, safeguards both freedom
of speech and privacy. Constructing a system that provides anony-
mous communication in the face of attacks is a challenging secu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09, November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

rity problem. One source of difficulty in building anonymity ser-
vices is the essential fact that having a large number of users is a
necessary, though not sufficient, condition for anonymity. Thus de-
sign choices that impact “secondary characteristics” such as perfor-
mance, availability, reliability, and so on, also impact the security of
a deployed scheme through their effect on user participation. One
major line of research has thus focused on providing low-latency
anonymity schemes that can support many desirable applications
over a common interface. These schemes typically achieve end-
user anonymity by passing messages through a series of relays, per-
forming cryptographic processing at each hop, before forwarding
connections to arbitrary Internet locations on behalf of the initiator.

Two related design variables within this general framework are
the organization and selection of relays. Completely centralized
schemes [2, 4, 7], where all traffic flows over a small, constant
number of routes, offer trivial relay discovery, but have severe lim-
itations in terms of the number of users they can support. At the
other end of the spectrum, completely decentralized P2P schemes
[15, 17, 24, 28] are potentially more scalable since every client also
acts as a relay. However, the dynamic nature of peer participation,
combined with a variety of attacks based on nodes having imperfect
knowledge of the set of relays [8, 9, 36, 5], complicates discovery.
An additional problem for such schemes is the fact that many nodes
may be unable or unwilling to participate as relays.

As of 2009, Tor is the most widely-used low-latency anonymity
scheme, with approximately 100,000 simultaneous users [19], and
it represents a compromise between these approaches: Tor main-
tains a client-server architecture, with roughly 2000 nodes that re-
lay traffic for all clients. Tor is an open system with centralized
node discovery: any node can join as a relay or client, while a
small set of trusted directory servers maintains a signed, authorita-
tive list of active relays. This architecture has several advantages.
The client-server architecture increases reliability: since nodes vol-
unteer to act as relays, only relatively reliable nodes tend to do
so. At the same time, participation is not harmed, since nodes that
are unable or unwilling to reliably relay traffic can still participate
as clients. The open nature of the scheme allows more nodes to
volunteer and scale the available bandwidth as more clients join,
while also diffusing the trust required in any single node. Fur-
thermore, the centralized directory service makes the “selection”
problem easy, since there is a global authoritative list of all relays.
Tor’s Quadratic Cost. While Tor’s design offers several benefits,
it also has drawbacks compared to the potential benefits of pure
P2P designs. The most prominent drawback is scalability: although
treating clients and relays separately yields some improvement, Tor
still has bandwidth costs that scale quadratically with the number of
users. In particular, every client must periodically download a list

Figure 1: Exit traffic, Discovery traffic (version 3 and without
“descriptors”), and Torsk relay selection and circuit building
traffic delivered, calculated by simulation, vs number of clients

of all relays: if there are n clients and r relays then the bandwidth
expenditure for discovery scales as O(nr) whereas the bandwidth
available for downloads scales as O(r).

Figure 1 illustrates the limitations of this approach. As of July
2009, the estimated number of simultaneous Tor clients was roughly
100,000 [19]. The number of simultaneously available relays was
roughly 1500 out of 2000, and the average bandwidth advertised
by “exit nodes” that deliver data from the rest of the Internet to the
Tor network was 137 MB/s. Each client downloads a 120KB “net-
work status document” every 3 hours, and 1.25MB of router “de-
scriptors” spread over 18 hours, for an aggregate bandwidth cost
of roughly 1.1MB/s. However, if the number and bandwidth of
routers scales linearly with the number of simultaneous users, in-
creasing the number of clients by a factor of c increases the band-
width available by c but the “directory” bandwidth by a factor of c2.
Thus, the two bandwidths become equal at roughly 1.2M clients; if
Tor grows to the same size as popular P2P services such as Pirate
Bay [1] (12M simultaneous) or Skype [37] (15M simultaneous), re-
lays spend nearly an order of magnitude more bandwidth relaying
descriptors to clients than relaying connections.1

Introducing Torsk. In this paper, we introduce Torsk, a new de-
sign for a low-latency anonymous networking scheme. Torsk im-
proves the scalability of Tor, while retaining the benefits of its
client-server architecture, and introduces no new attacks. In par-
ticular, the total bandwidth spent on relay selection is O(n log r),
enabling Torsk networks to scale practically to much larger sizes.
While the bandwidth spent by Torsk relays at the current network
size is similar to that spent by Tor relays, the cost to clients is con-
siderably smaller, and a modest increase in size dramatically in-
creases the overhead of Tor compared to Torsk, as shown in Fig-
ure 1. Moreover, Torsk is incrementally deployable: relays running
a single process can simultaneously serve Torsk and Tor clients.

To accomplish this, we distribute most of the Tor directory ser-
vice over a distributed hash table, or DHT. DHTs have been sug-
gested as a solution to the selection problem before [40, 17, 24, 21],
but we note that it is nontrivial to build a secure random relay selec-
tion scheme from even a secure DHT, due to a variety of possible
attacks [25, 8, 9, 22]. Thus part of our solution is to implement a

1We note that the Tor project is in the process of implementing a
“microdescriptor” service that will reduce or eliminate the cost of
downloading descriptors. This changes the constant in O(nr) but
not the quadratic behavior, as shown in Figure 1.

DHT that is secure in the sense that lookups are guaranteed to cor-
rectly identify the node responsible for a key, even with adversarial
interference. For this task, we adapt the cryptographic “neighbor-
hood certification” tools from the Myrmic DHT algorithm [38] to
the Kademlia DHT, which has been deployed in several systems
with over a million simultaneous users. Myrmic guarantees secu-
rity against an adversary that controls a constant fraction of the
DHT, and requires a trusted authority, which we implement via the
directory authority.

Every Tor relay joins this DHT, and we modify Tor circuit con-
struction so that nodes pick “next hops” by finding the Tor relay
closest to a randomly-chosen key. The Myrmic “root verification”
algorithms allow a client to verify that a relay is the correct result
without joining the network. Because of this, the client can use a
partial tunnel to randomly select next hops. In order to preserve
anonymity, we introduce a second mechanism whereby a Tor relay
asks another, secret relay (its “buddy”) to resolve a key in a way
that, combined with cover lookup traffic, provably ensures the pri-
vacy of the selection procedure. We implement these procedures
as an extension to Tor using the “control port” interface. Thus re-
lays and clients can join the Torsk network without changing Tor
binaries, allowing for incremental deployment. We argue that any
attack against the anonymity provided by Torsk can be applied to
Tor with nearly the same probability of success.

In terms of performance, the main implication is that extending
circuits becomes more time-consuming. Each circuit extension re-
quires a DHT query, two additional round-trips through a (partial)
Tor circuit, and sends about 2KB of additional data through the par-
tial circuit (a single “neighborhood certificate” of about 1KB and
a router “descriptor” of about 1KB). In most cases this cost can
be avoided by proactive circuit-building; however, startup time and
hidden service performance will be noticeably impacted.

Eliminating the authoritative list of relays has several additional
benefits. Since clients no longer need to obtain the network status
list plus most of the current router descriptors (around 500KB cur-
rently) in order to startup, lower bandwidth clients can participate
more easily in Torsk. Blocking access to the directory is also no
longer feasible, except by blocking the much larger Kad network.

Outline. Section 2 sketches the details of the Tor, Kademlia, and
Myrmic protocols necessary for understanding Torsk. Section 3
lays out the design and security goals of our system. We then dis-
cuss the design in more detail in section 4, and give a brief security
analysis in Section 5. Section 6 reports on simulations and perfor-
mance measurements of our implementation of Torsk. We discuss
related work in Section 7 and conclude with Section 8.

2. BACKGROUND
2.1 Tor

Tor is a low-latency and bandwidth-efficient anonymous relay
service for TCP streams. Its deployment and continued growth
have provided a valuable testbed for research ideas in anonymity
and traffic analysis, in addition to demonstrating the demand for
anonymity. The central service provided by Tor is an encrypted
circuit, over which all communication during a given session takes
place. Anonymity is achieved by establishing a circuit through
three nodes: an entry node, an intermediary (middleman), and an
exit node. In principal, the entry node knows the identity of the
client contacting it, in the form of its IP address, but not the identi-
ties of the servers the client connects to; the middleman node knows
only the identities of the entry and exit nodes; and the exit node,
which provides a gateway between the Tor network and the Inter-
net, knows the server(s) a circuit connects to but not the client or

entry node. In this manner, no single Tor node knows the identities
of both communicating parties associated with a given circuit.

The construction and use of circuits involves three types of nodes:
clients (referred to in the Tor documentation as “Onion Proxies”, or
OPs), relays (“Onion Routers” or ORs), and the Directory Servers
(DS). Circuits are established iteratively by the client, who begins
each session by downloading the list L of all Tor relays, in the form
of “descriptors” that specify the long-term public key, IP address,
exit policy, and other details of a relay, from the Directory Service.
In the first iteration, the client selects a Tor relay R1 from L, and
performs an authenticated2 Diffie-Hellman key exchange with R1

to establish an encrypted connection. At each subsequent iteration
i ∈ {2, . . . , N}, the client randomly chooses another relay, Ri,
from L, and sends Ri−1 an encrypted key exchange message to be
relayed to Ri, extending the relay chain to Ri. Tor uses a default
value of N = 3. Thus R1 is the “entry node”, R2 is the “middle-
man node” , and the final relay, RN , is the “exit node” and serves
as the interface between the circuit and any TCP-based Internet ser-
vices the client might wish to contact.

We note that clients reuse each circuit for multiple TCP streams,
and proactively build new circuits so that when older circuits are
retired – after 10 minutes – the new circuits can be used immedi-
ately. Thus circuits are not built on-demand, and in most cases the
multi-second latency incurred to build a circuit does not impact the
latency of connections made via Tor.

Relays participate in circuits by responding to requests and for-
warding encrypted cells as described above. In addition, a relay
periodically tests its reachability by building a tunnel in which it
serves as a relay. The results of this status testing, along with a
new, complete “descriptor” are reported every 18 hours to the di-
rectory servers, which update the directory appropriately.

Directory servers do not participate directly in circuits but must
be periodically contacted either directly or through a “directory
cache” by every client and every relay. They periodically (every
hour) sign an updated “consensus network status” list giving the
status and hashed descriptors of all relays, which are downloaded
at regular intervals (on average, every three hours) by all clients.

2.2 Kademlia and Myrmic
Kademlia [20], or Kad is a distributed hash table (DHT) algo-

rithm that has been implemented and deployed in several systems
with millions of simultaneous users. As is the case with any DHT,
Kad implements a distributed binding service that stores a list of
“values” for each “key” in a virtual hash table. In Kad, every node
has a uniformly chosen, 128-bit ID; every data item (i.e., a [key,
value] binding) stored by the Kad network has a 128-bit key. All
bindings for key x are stored at nodes with IDs close to x, where
the distance between IDs k1 and k2 is the integer k1 ⊕ k2.

To efficiently route queries for a given key, every Kad node main-
tains a routing table withO(log(N)) entries whereN is the size of
the network. The i-th routing table entry is a list of up to k nodes
that share at least an i-bit prefix with the node ID of the owner. Kad
uses parallel, iterative lookup: When node Q queries key (or node
ID) x, it finds the α contacts from its routing table closest to x. Q
consults these contacts in parallel, which each return k of their con-
tacts close to x. Next, Q picks the α closest contacts from this set,
repeating this procedure until it finds root(x), the node closest to x.

A seemingly obvious approach to solving the relay selection prob-
lem would be to have Torsk relays form a DHT and allow clients to
select relays by picking a random key k and searching for root(k).
However, Kad lookup has several vulnerabilities that would allow
adversarial nodes to bias the outcome of this procedure.

2by the public key specified in R1’s descriptor

Myrmic [38] is a DHT routing protocol provably robust against
active attacks. A key feature distinguishing Myrmic from other
DHTs is a root verification protocol that allows anyone to verify
that the node responding to a query for key k is indeed the “cor-
rect” holder of the key. Myrmic has the same semantics as Chord
and in a network with no malicious nodes it has message cost and
latency that are provably at most twice the cost of Chord with recur-
sive routing. Wang et al. [38] demonstrate both experimentally and
analytically that good performance is maintained even when a large
fraction (for example, 30%) of nodes behave maliciously. However,
Myrmic lacks the wide deployment of Kad. Therefore, in Section 5,
we show how to overlay a Myrmic network within a Kad DHT to
provide an efficient yet provably robust DHT routing algorithm.

Myrmic requires a new online authority, called the Neighbor-
hood Authority (NA), which only participates in DHT network man-
agement by issuing Neighborhood Certificates (nCerts) to small
sets of nodes after DHT membership events such as joins and leaves.
The NA is not involved in any other aspect of DHT routing, and
in particular queries do not involve the NA. The NA has a pub-
lic/private key pair for signing certificates and it is assumed that its
certificate is publicly available. If the NA goes offline for some
period of time, there are two effects: new nodes will be unable to
join the network (but can still route queries through existing net-
work nodes), and the proportion of nodes that become “faulty” due
to churning out will increase.

Like Kad, Myrmic uses iterative routing in order to allow a querier
to monitor query progress and to find alternative routes in case its
query is mis-routed or dropped. Securing iterative DHT routing re-
quires mechanisms to verify that a query for key k makes progress
and terminates at the correct destination. Myrmic allows a querier
to verify that node n is currently responsible for key k using an
nCert issued by the NA, which attests to the set of nodes closest
to n (and thus the range of keys n is responsible for). As long as
nCerts can be revoked when membership changes, this prevents a
malicious node from claiming to be responsible for a key outside
its range or routing a query to an incorrect node. nCert revoca-
tion is handled by storing the most recent nCert for a node at its
neighbors, which are then listed in the node’s signed nCert. When
a nCert is invalidated by a change in membership, those neighbors
are informed. Hence as long as a malicious node has one honest
neighbor,3 it cannot use a revoked nCert since the querier contacts
every neighbor directly when searching for a more recent certifi-
cate. We stress that Myrmic’s membership protocols maintain per-
fect consistency between nodes’ nCerts by imposing the view of a
single party on the entire network.

3. REQUIREMENTS
Functional Requirements. The goal of Torsk is to improve the
scalability of Tor’s relay selection algorithm by eliminating the
authoritative list of relays. In contrast to most existing work on
P2P anonymity, we explicitly retain Tor’s central authority and its
client/relay distinction. This leads to the following design goals:
Reduced relay overhead. Relays should not be required to know
the full, current membership of the Torsk network, and overhead
for relay selection should grow slowly with the number of relays.
Low-cost bootstrapping. Clients should be able to bootstrap and
build circuits by knowing or finding a single Tor relay in the Torsk
network. This significantly reduces the bandwidth requirement for
startup, allowing Tor to be used over limited-bandwidth channels.

3Myrmic also includes protocols that allow the DHT to quickly
recover from the occasional event that all the nodes in a neighbor-
hood become faulty.

At the same time, additional delay in circuit construction and OR
discovery should be minimized.
Incremental Deployability. The protocol should be incrementally
deployable: relays should be able to participate in both networks
with no overhead while providing at least the same level of anonymity
as a standalone network.

Security Requirements. The security goal of Torsk is to maintain
the level of anonymity provided by Tor, while allowing improved
scalability. Thus we are concerned with the same essential threat
model as Tor: a “local” adversary that can control a small fraction
f (e.g. 10%) of ORs and possibly see the traffic at one end (but not
both) of a tunnel, but who cannot directly observe or interfere with
the traffic between honest nodes.

Thus our goal is that any attack against Torsk should correspond
to an attack with similar probability of success against a Tor net-
work of similar size. Since we do not alter Tor’s mechanisms for
packet forwarding, key exchange, or encryption, we focus on pos-
sible attacks caused by the decentralization of route selection. This
use of DHT-style routing, in Torsk as well as other schemes [21,
24, 17, 40], introduces the possibility of clever, new attacks that re-
quire only a small fraction of colluders. Here we outline the known
classes of generic attacks on such P2P schemes:

Route capture by misrouting. Malicious nodes may return only ma-
licious nodes as the result of lookups; by the design of the rout-
ing protocol, no previous node in the lookup will know a node
closer than the closest malicious node. DHT lookup mechanisms
not specifically designed for security [34, 29, 26, 20] are vulnerable
to this attack, first described by Castro et al. [6]. Several possible
countermeasures have been proposed, including “density tests” [6],
redundant routing [24], “root verification” [38], and byzantine fault-
tolerant simulation of nodes [14, 18]. These countermeasures make
tradeoffs between efficiency, trust, and adversarial capabilities, and
require careful evaluation when applied to anonymity.

Passive Logging. Every query in a DHT involvesO(logn) peers in
the DHT. In DHTs with iterative lookup, like Kad and Myrmic, the
node making the query communicates directly with each of these
nodes, and even when “recursive” lookups are employed some in-
formation about the source of a request is often leaked [25, 22],
which may be exacerbated by redundant lookup mechanisms. An
adversary that controls a constant fraction of nodes will thus partic-
ipate in an overwhelming fraction (1−1/nc) of all lookup requests.
Even if correctness of these lookups is enforced by the protocol, it
is natural to consider attacks based on correlating the set of keys
queried by nodes at various times. Thus, for example, it is obvi-
ously insecure for the client to query the DHT directly for all of the
relays in a circuit, since then a malicious exit node can use the time
relationship between the client’s query and a subsequent circuit to
infer the origin of a circuit. More subtly, if the client searches for
an entry node, and then the entry node searches for a middleman,
and the middleman searches for an exit node, the timing of these
events might still reveal the origin to a malicious exit node.

Selective Dropping. Even assuming the source-privacy and integrity
of lookups, an adversary might try to bias result of lookups by se-
lectively dropping query requests that are not directed towards ad-
versarial nodes. Even if only a constant fraction of requests are
dropped in this way, the resulting bias will be noticeable. Fur-
thermore, some mechanisms proposed to mitigate query dropping
actually result in decreased anonymity against selective dropping
attacks. For example, Borisov et al. [5] show that such an attack
can have devastating consequences for Salsa [24].

Route Fingerprinting. Danezis and Clayton [8, 9] show that if
each node selects its routes from a consistent subset of all nodes,
and these subsets are known to the adversary, then he can use this
knowledge to uniquely identify the source of a tunnel by any pair of
consecutive links on the tunnel. Since each node in a P2P scheme
has limited knowledge of the network and node discovery is poten-
tially observable a P2P scheme must avoid leaking this knowledge
in order to preserve anonymity.

4. DESIGN OF Torsk
As explained above, in Torsk, we replace the directory service

with OR lookups via Kad, using Myrmic to secure the lookup pro-
cess. With this change, clients no longer have any communication
with the directory service or caches. ORs, however, are required to
join the Kad network and must obtain nCerts from the NA, which
is implemented by the directory servers. Relays are then discovered
by ORs via Kad search during circuit construction. Several addi-
tional challenges must be addressed to meet our security require-
ments. We outline the details of the Torsk design in this Section,
and discuss its security and other considerations in Section 5.
Torsk nCerts. The nCert for node R has the format:

nCertR = Signskds
{nListR, rListR, tissue, texp, DescR}

nListR = {Inl(R), . . . , In1(R), IR},
rListR = {Ir1 , Ir2 , . . . , Ird},

IS = (nodeIDS , pkS , IPS)

where nj(R) denotes the j-th closest (by XOR distance) Torsk
node toR. An nCert is signed by the NA (the Directory Server) us-
ing a secure digital signature Signskds(·). The nCert also includes
its issue time, its expiration time, and R’s Tor descriptor, DescR.
Finally, nCertR contains two lists of Torsk nodes, nListR and
rListR, encoded as triples (nodeIDi, pki, IPi) which enable oth-
ers to make direct IP connections to the nodes. The nListR nodes
are the nodes with nodeIDs closest to R’s and allow us to verify
whether R is the root of a given key x as in Myrmic. The rListR
nodes are randomly chosen by the NA and facilitate the “buddy
selection” protocol described below.

Secure Kad Lookup with nCerts. Suppose that all ORs on the
Kad network have nCerts and they are uniformly distributed over
the Kad network.4 We improve the security of Kad lookup as fol-
lows. We first locally modify Kad’s iterative lookup process. In the
original Kad protocol, lookup is parallel. However, each round of
the parallel lookup uses only the best results, allowing an attacker
to perform a denial of service attack by returning many non-existent
nodes with IDs close to the target [39]. Torsk iterative lookup fixes
this problem by maintaining distinct “best result” lists for each of
the three parallel paths. Once the querier finds a Torsk node that is
close to its query, it can request the node’s nCert and use the nCert
to identify the root, R. The querier then verifies that R is the cor-
rect result by verifying the nCert digital signature and contacting
R’s neighbors to verify that the nCert is fresh. We also improve
Kad search performance by using “soft timeouts” as in Myrmic:
when the querier does not receive a reply from node R within a
short period (e.g. 120 msec, the median latency between US Plan-
etLab nodes), it sends a query to another node immediately rather
than waiting for Kad’s one-second “hard timeout.”

Joining the Torsk Network A new OR R joins the Torsk network
as follows. It first generates a Kad nodeID. It then performs the
secure Kad lookup described above on its own ID, which allows it
4Bootstrapping involves simultaneously issuing nCerts to a small
initial set of 4l+1 ORs, after which every OR can join the network
and obtain an nCert.

(1) (2) (3) (4)

Figure 3: Extending a circuit: (1) Initially, the OP has a partially constructed circuit. (2) The OP sends a tunnel request to the
ultimate OR to lookup x, a random Tor NodeID. The OR’s buddy includes x among its l Kad lookups at its next lookup time. (3)
One of the buddy’s lookups findsR, the node closest to x. (4) The OP verifies the NA’s signature on nCertR and extends the partially
constructed circuit to a random node from nListR.

Figure 2: Client bootstrapping process: (1) search for a
random Torsk NodeID R in Kad (2) buddy selection starting
from root(R) (3) Use buddy as Entry Guard.
to find the nCert of its closest neighbor,R′. R then sends its ID and
descriptor along with nCertR′ to the directory server, who verifies
the signature and freshness of nCertR′ , builds a new neighbor-
hood map includingR, chooses fresh rList nodes,5 and issues new
nCerts for all nodes affected; each fresh nCert is sent to every node
that appears in nCert.nList and nCert.rList. R also follows
the standard Kad bootstrapping protocol to join the Kad network.
Once an OR has joined the Torsk network it periodically pings its
neighbors; if it detects that a node has left it informs the Directory
Server, which repeats the joining process to issue new nCerts.

Buddy Selection Protocol The last missing piece before we intro-
duce our decentralized circuit construction is the buddy selection
protocol, which plays the important role of preventing passive cor-
relation attacks. Each OR maintains a list of “lookup buddies,”
which will be used to perform secure Kad lookup of random ORs
on behalf of clients. Upon joining the Torsk network, R begins
the following “random walk” process to select a buddy. Initially
it sets R0 = R and chooses a walk length ` as described in Sec-
tion 5.2. At each step i ∈ {0, . . . , `}, R asks Ri for a list Si
containing the nCerts of all incoming and outgoing rList entries
for Ri, as well as Ri’s nCert. If all of the nCerts have valid signa-
tures, and are consistent with the previous hop, thenRi+1 is chosen
uniformly from Si. The list Si is “consistent” with the previous
hop if either: (1) the node Ri was selected from rListRi−1 and
Si contains nCertRi−1 ; or (2) Si−1 contains an nCert for Ri with
Ri−1 ∈ rListRi and the nCertRi contained in Si is at least as
fresh. If at any time an invalid nCert (e.g. the signature does not
verify) is obtained or an inconsistent Si (that does not include the
previous hop) is found, the random walk starts over. Otherwise, the
output of the buddy selection protocol is the nCert of the node R`.
An OR repeats this process to find new buddies as needed.

5The rList nodes can be chosen via the buddy selection protocol,
or for efficiency, the directory server can cache the list of current
ORs, as in our current implementation.

Decentralized Circuit Construction. Once the ORs have boot-
strapped the Torsk network, clients can begin building circuits. We
note that we have provided two methods of finding a random Torsk
node, buddy selection and secure Kad lookup; each has slightly
different security properties. Kad lookups are “loud:” an adver-
sary that can run even a small constant fraction of the Kad nodes
will see a large fraction of lookup attempts; however, the results are
also verifiable to a third party. Random walks are private, in that
even nodes that are intermediate stops on the walk cannot distin-
guish the final node from a random one; however, the result of a
random walk is not verifiable to an external party.

For the first hop, shown in Figure 2, random walks are ideal:
the client can perform the walk herself and be convinced of the
randomness of her selection. This reveals the identity of the client
node, but in Tor the first hop always knows the identity of the client.
The client can use Kad lookup or caching to find an nCert for use
as a starting point in the random walk. As in Tor, Torsk clients can
cache a small number of nodes to use as entry guards, and avoid
this first lookup process in most cases.

To extend a circuit, there are two possible lookup methods and
several candidate nodes to perform the lookup. We can rule out
several possibilities: the possibility of passive monitoring means
that the client should not select next-hops by Kad lookup. Also,
the client should not select next-hops by random walk, because the
timing of the random-walk request and the circuit extension will
reveal the identity of the client. Having the current last hop select
a next-hop by random walk would allow route capture, since the
client can’t verify the randomness of the result, and having the cur-
rent last hop select a next-hop by Kad lookup leaks the sequence of
a circuit through the time correlation of lookups – for example, if
node R does a lookup for node S and then node S does a lookup
for T then R � S � T is a likely circuit.

Our solution, shown in Figure 3, uses a combination of both
search types along with cover traffic to avoid these weaknesses. To
discovery a next-hop OR for a circuit, the client generates a nodeID
for a random OR. This key, when searched for, should yield a ran-
domly selected OR. Instead of searching for this key herself, the
client passes it through the partially constructed Tor circuit to the
ultimate OR Ri. Ri then asks one of its buddies (discovered via
random walk) to perform a Kad lookup on k. The buddy returns
the resulting nCert to Ri. Ri returns the nCert to the client via the
established tunnel, and the client finally chooses Ri+1 uniformly
from nCertroot(k).nList. The OR then discards the buddy.

Buddy Lookups. ORs ask buddies to perform lookups in order to
hide the correspondence between the current end of a tunnel and
its next hop. However, the timing of lookups could also leak this
correspondence: if clientC does a lookup forR1, and this is imme-

diately followed by a lookup forR2, which is followed by a lookup
for R3, it is easy to infer the parties to the constructed tunnel. In
order to prevent this, Torsk nodes use constant-rate cover traffic to
conceal the correlation. Each node performs κ lookups for Torsk
kadIDs at a global constant period of τ seconds. When a node re-
ceives a “buddy lookup” request for key k, the key is queued and re-
leased at the next lookup with an available lookup slot; a minimum
of one slot plus any additional empty slots are filled by randomly
chosen Torsk Kad IDs. Since an uncorrupted buddy is essentially
uncorrelated to the OR requesting the key, and the requested keys
and cover keys are independently chosen from the same distribu-
tion, the resulting set of lookups contains no information about the
correspondence between routers and next-hops.

5. SECURITY ANALYSIS & DISCUSSION
5.1 Parameter Selection and Impact

In this section, we explore the secure and efficient selection and
impact of several important system parameters, assuming n clients
and r routers, of which a fraction f are compromised. We note
that selection of Myrmic-specific parameters such as the size of the
nList and lifetime of an nCert is addressed by the original Myrmic
paper [38]: setting nList size to log 1

f

`
log 1

δ
+ log log2 r

´
will

ensure that lookups fail with probability at most δ when f frac-
tion of routers are corrupted; and nCert lifetimes should exceed the
median router session time to minimize unnecessary updates.

Random Walk Parameters: Let d be the length of the rList field
in each nCert. We model the undirected graph that has an edge
between n1 and n2 if either node appears on the other’s rList as
a random graph of average degree 2d. We want to pick d and the
length ` of the random walk so that the distribution on the final
node R` of the walk is close to the uniform distribution. The rel-
evant bound we will use is the well-known fact that if the graph
G has normalized second eigenvalue λ(G), then the statistical dis-
tance between R` and the uniform distribution is at most λ`. Solv-
ing to make this distance smaller than ε

κr
will guarantee that the

joint distribution on buddies is ε statistically close to uniform.

d r λ̄ λmax σ

4 1000 0.6578 0.6656 0.0027
4 2000 0.6592 0.6641 0.0017
8 1000 0.4810 0.4894 0.0023
8 2000 0.4824 0.4859 0.0014
16 1000 0.3446 0.3492 0.0018
16 2000 0.3462 0.3496 0.0011

Table 1: Average (λ̄), max (λmax) and standard deviation (σ)
in, normalized second eigenvalues, 200 random rList graphs.

Thus it remains to find the appropriate values of d and `. It
is known that for almost all regular graphs of degree d, the nor-
malized second eigenvalue λ(G) is 2/

√
d [16], and Feige and Ofek [13]

have shown that for graphs with constant average degree d, there is
some constant c′ such that almost all such graphs have λ(G) ≤
c′/
√

d. Since the rList graph is similar but not identical to these
distributions with d = 2d, we performed a series of simulations us-
ing the exact distribution; the results are summarized in Table 1.
We found that the known bounds for regular graphs are a good
estimate for rList graphs; for instance using d = 8 with a net-
work of size 2000 resulted in an average second eigenvalue of
0.4824 and a maximum of 0.4905 compared to the expected up-
per bound of 1

2
in case of a degree-16 regular graph. Thus a good

choice by these criteria, for instance, would set d = 16, ` =
d 2

3
(log2 r + log2 κ+ log2

1
ε
)e.

There are two additional considerations. First, adversarial nodes
could try to alter the expansion properties of the rList graph by,
for instance, not reporting incoming links. However, an adversarial
node that drops a single incoming link will be caught with proba-
bility roughly 1/2d, the probability that the honest node followed
the given link to the adversary. Once such dropping is caught, the
honest node should remove the adversarial node from its view of
the rList graph; it has been shown that such “adversarial” node
faults have a very small effect on the expansion properties of a
graph [3], and we have verified experimentally that the expected
value of λ(G) after removing up to 10% of nodes has little change
- for instance in 10 such runs with r = 512, d = 8 the average
λ(G′) was 0.4965. Thus, such local dropping affects at most a
constant number of random walks per node.

The second consideration concerns the adversary’s ability to de-
duce how many steps R will walk after contacting an adversarial
node. If this number is small, the adversary will have a much higher
confidence in the identity ofR’s buddy. Our solution is to add a ge-
ometrically distributed “tail” with expected length ` to the random
walk, so that at any step the nodeR can be expected to walk another
` steps. The expected length of the walk is then 2` =

4 log2
rκ
ε

3
.

Cover Lookup parameters. Let Torsk nodes build circuits with
frequency φ (this frequency is 1/600 Hz in Tor). Then in order
to serve the demand of clients, the total rate of lookups by routers
must exceed the total rate by clients, e.g. κ−1

τ
r > nφ. Subject to

this constraint, the period τ between “cover lookups” by a Torsk
node represents a tradeoff between circuit construction latency and
bandwidth overhead – a shorter period means lower latency but
higher cover traffic – and the number κ of parallel lookups (which
must be at least two to ensure uniform cover traffic) trades off cover
traffic for the ability to deal with “bursty” circuit building in which
multiple ORs request a lookup during the same time period. For our
implementation we chose κ = 3 and τ = 20 seconds. The band-
width consumed by these lookups, O(r log r), matches the dom-
inating term in the overall bandwidth consumption of Torsk, but
independent cover traffic is a key element in our security argument.
An important open question is whether a different mechanism for
cover traffic can provide similar guarantees at lower cost.

5.2 Security Analysis
We discuss briefly how Torsk deals with the attacks from Sec-

tion 3, assuming fraction f of malicious ORs, and then give a brief
argument for security against other attacks on the anonymity of
Torsk lookups. One type of attack that we explicitly do not con-
sider is attacks based on resource consumption, for example “fill-
ing up” a router’s “buddy lookup queue” to increase the latency of
circuit construction. Such attacks are not considered for the basic
reason that similar attacks can be performed against Tor (e.g. re-
questing multiple circuit extensions through a router) and that if
such attacks become a problem, they can be mitigated using stan-
dard rate-limiting techniques.
Route capture by misrouting: Myrmic nCerts prevent an adver-
sary from incorrectly claiming to be the root of a key, with high
probability. However, in the rare case that a node chooses a random
Torsk ID k such that: (1) currently, root(k) is not malicious; (2)
however, root(k) recently joined the network and its nearest neigh-
bor N is malicious; and (3) the buddy, B, performing the lookup is
malicious, B can return the revoked but unexpired nCert showing
N as root(k). The probability of this event is f2ρ, where ρ is the
fraction of nodes in the network with revoked but unexpired nCerts,
a function of OR churn and nCert lifetime. To eliminate this bias,
the client picks a random node from nCertroot(k). In expectation,
this node will be malicious with probability f .

Passive Logging: An adversary that controls fraction f of the Kad
nodes, will see 1 − (1 − f)O(log k) of all Kad lookups. Thus if
f = Ω(1/ log k), the adversary will see a constant fraction of all
Kad lookups. As discussed in Section 4, the sources and timing
of these lookups could potentially leak information about a tunnel,
so Torsk specifically hides this information. To prevent the leak-
age of a tunnel’s current endpoint, Torsk performs lookups through
uncorrelated, single-use buddy nodes. To prevent the leakage of a
tunnel’s next endpoint, we use cover traffic to generate Ω(r) inde-
pendently distributed lookups.
Route Fingerprinting: Route fingerprinting and other epistemic
attacks [9] work based on an adversary’s ability to infer the small
set of nodes known to each client. Torsk is not directly vulnera-
ble to such attacks because this set is unknown to the adversary;
the combination of random walks, buddy lookups and cover traffic
make the adversary’s view of this distribution ε-close to uniform.
Selective Dropping: Since Myrmic guarantees that 99.99% of
lookups correctly identify the root of a key even with a constant
fraction of nodes behaving adversarially, selective dropping of DHT
queries is not a concern. However, the
introduction of buddies

Figure 4: Fraction of compromised
tunnels vs malicious nodes under
selective DOS attack.

into the lookup process
increases the risk of se-
lective aborting of cir-
cuits compared to Tor:
five nodes have the op-
portunity to drop a cir-
cuit rather than 3. In
particular, a buddy can
cause a lookup failure
either because the entry
node is not malicious,
or the nCert that will be
used to select an exit node
does not contain enough malicious nodes. Figure 4 shows a com-
parison, between Torsk and Tor, of the fraction of compromised
tunnels as a function of the fraction of malicious nodes. We note
that the effect of the attack is very slight for f ≤ 0.15. Finally,
we note that the attack can be mitigated by replicating all lookups
throughm independent buddies, so that dropping a lookup requires
collusion between the buddies; this change in the lookup distri-
bution requires a corresponding change in cover traffic. Figure 4
shows the case m = 2.

Other Attacks. The introduction of a formal model that covers all
attacks on low-latency anonymity schemes is beyond the scope of
this paper, but we argue informally that additional attacks against
Torsk that do not apply to Tor are unlikely. First, we note that be-
cause Myrmic converts arbitrary DHT misbehavior to query drop-
ping with low probability of success, any attacks that bias the se-
lection of relays can only have a small effect on the success prob-
ability compared with an attack on Tor. Second, we note that the
protocols for buddy selection and cover traffic provably produce
lookup transcripts that are statistically close to uniform. Thus any
attack that uses this information to attack the anonymity provided
by Torsk will work with nearly the same probability (plus or minus
the statistical distance to uniform) against Tor, when provided with
simulated lookup and random walk requests drawn independently
from the uniform distribution. The remaining aspects of the Torsk
and Tor protocols are identical.

5.3 Practical Considerations
Exit Policies and Load Balancing. As described so far, our design
forces clients to choose circuit participants from the uniform distri-

bution. However, two important components of the success of Tor
are its ability to allocate traffic proportionately to available band-
width and its ability to support exit policies stating to which ports
a node will route IP traffic. We briefly describe one mechanism to
address these issues.

By default, Tor clients selects a router with probability equal to
the fraction of total available bandwidth that the router provides (or
claims to provide). Recently Snader and Borisov [30] have pro-
posed an alternate design that selects routers according to their rel-
ative ranking. Torsk can naturally and flexibly support either policy
by assigning routers Kad IDs that encode this information. Specif-
ically, the Tor bandwidth allocation mechanism can be simulated
by assigning Kad IDs so that nodes with similar bandwidth have
similar prefixes. The density of a prefix and the weight assigned
to a prefix can then be adjusted so that the probability of picking a
node (its prefix weight divided by the number of nodes it shares the
prefix with) is proportional to its share of the bandwidth. Likewise,
the Snader-Borisov allocation method can be simulated by setting
the first kprefix ≤ (log2 r) bits of a router’s ID to the most signif-
icant bits of its relative rank and then choosing a rank according to
the appropriate probability distribution.

A similar approach can be used to deal with exit policies. On
April 20, 2009, there were 1412 active Tor routers in the “consen-
sus” network status. Of these, 769 did not support exit traffic, 169
supported “whitelists” allowing a small number of commonly used
ports and the remainder supported “blacklists” disallowing a small
number of ports. There were 12 port “ranges” supported by fewer
than 50% of the exit nodes. Thus a reasonable strategy would be to
assign distinct two-bit prefixes to non-exit nodes, “whitelist” nodes,
and “blacklist” nodes. Since Torsk builds circuits pro-actively each
client can always maintain a circuit ending at a router of each type.
Streams can be assigned to the most restrictive circuit supporting
the appropriate port, causing the client to proactively build the same
type of circuit at the next circuit-building interval. Finally, the
Torsk DHT can be used to store a list of routers supporting “ex-
ceptional” ports, and clients can maintain a “partial” circuit to be
extended to a third hop supporting such ports if needed.

Recent work [12, 23] has suggested that there are additional vari-
ables that may be important to the security and utility of path se-
lection, such as AS paths, Internet exchanges, and interhop latency.
We note, however, that currently there are no known methods of ef-
ficiently incorporating such considerations into Tor path selection6,
and leave the adaptability of Torsk to these concerns as future work.

Public vs Private DHT. An interesting consequence of using the
Kademlia DHT algorithm is that the Torsk DHT may be run inde-
pendently or embedded inside an existing Kad DHT. The advantage
of doing so is that there are several well-studied implementations,
and several Kad DHTs with millions of simultaneous users [35, 33,
32, 31], which can considerably raise the cost (in terms of band-
width) and difficulty of conducting passive eavesdropping attacks,
identifying Torsk routers, and identifying Tor connections through
IP profiling. The potential disadvantages of doing so include the
need to route DHT traffic for non-Torsk clients, and the potential
for the existing DHT to develop methods to detect and drop Torsk
requests. To demonstrate the feasibility of embedding Torsk in an
existing Kad DHT, our prototype was developed to interoperate
with the aMule/eDonkey DHT [10], which supports a file-sharing
network with 2 million concurrent users. One technical issue that
arises is making the small set of Torsk routers easy to find among

6Tor avoids using two nodes with the same /16 IP prefix, but this
approach is neither necessary nor sufficient to deal with AS or
Internet-exchange level adversaries

(a) (b) (c) (d)
Figure 5: Results of PlanetLab run with 336 nodes, with 40 constructing circuits. CDFs of (a) 16-hop random walk latency, 6400
measurements/node. (b) Kad search latency, 2200 per node. (c) Per-hop, and (d) Total circuit construction latency, 1.4k circuits
the larger DHT. Our implementation resolves this issue using spe-
cial Kad IDs, as described in the Appendix.

6. IMPLEMENTATION & EXPERIMENTS
As a proof-of-concept, we have implemented Torsk and deployed

it on a private PlanetLab-based network. We report the key features
of our implementation and its performance.
Architecture Overview. Our prototype, which spans approximately
3000 lines of new code, has four modules that run as separate pro-
cesses and communicate via IPC on each Torsk OR, as well as
the Neighborhood Authority, which runs on the Directory server.
These modules are Tor, Kad, Myrmic, and the Controller, or “Main”
module. Here we briefly describe each module.
Main Module The multi-threaded Main module, written in Python,
implements the core circuit construction and random walk func-
tions and also manages the initialization, bootstrapping, and IPC
between all components. All protocol logic specific to Torsk is
contained in the Main module.
Kad and Myrmic. The Kad and Myrmic modules are responsible
for all DHT functions. The Kad module is based on the KadC and
aMule libraries, and implements the modified search process de-
scribed in Section 4. The Myrmic module is implemented in C and
features minor changes necessary to interact with Kad and Main;
its primary function is to validate nCert signatures and freshness.
Tor. The Tor module remains completely out of box, with only
minor changes to the default configurations in the Tor setup file
(allow for ControlPort, etc). Furthermore, since the Tor codebase
remains untouched, we are certain that no regression in Tor perfor-
mance, functionality, or security occurred during implementation.
The Main script controls circuit extension and node discovery.
Neighborhood Authority. The NA deviates from the out-of-the-
box Myrmic protocol to handle the changes in nCert format re-
quired by Torsk. It also implements the optimization described in
section 4, maintaining a list of the current Torsk membership and
periodically checking for liveness.

Experiments To test our performance, we deployed our Torsk im-
plementation on 336 PlanetLab nodes, using a private Tor network
but connected to the public Kad network. We ran the NA on a server
in our lab. Here we report on the performance of each component.
Random Walks. Each of the 336 nodes performed at least 100
random walks of length 16. Figure 5(a) presents their cumulative
distribution; average latency per hop was 0.2 sec.
Kad Search. Every Torsk node performed 2200 Kad lookups, in-
cluding bootstrapping messages, circuit building, and cover traffic,
according to the modified Kad lookup algorithm described in Sec-
tion 4. Figure 5(b) presents the overall performance of this protocol
from Main’s perspective. The average time to complete a lookup,
up through finding the root’s nCert, was 2.001 seconds.

Figure 6: Total KB after 72 hours of simulation.
Circuit Building. Extending a circuit requires the successful ex-
change of a series of messages: (1) DearUltimate messages from
the Client requesting the end of the circuit to lookup a key; (2)
DearBuddy messages from the endpoint to its buddy; (3) Kad Lookup
of the key; (4) (Tunneled) Descriptor Request of the node chosen
from the resulting nCert. Once the descriptor has been received, the
circuit can be extended by one hop. Thus the time to build a circuit
is dominated by the time to complete two DearUltimate requests.
These steps are shown in Figure 3, step 2.

In our run, 40 nodes constructed a total of 324 circuits of length
3. To simulate the existence of an entry guard, our circuit construc-
tion only involved lookups for the last two hops. Figures 5(c) and
(d) depict our overall circuit building performance in PlanetLab;
the average time overall was 39.914 seconds. The circuit building
overhead is further broken down into the overhead of individual
message types, including DearUltimate and DearBuddy, with av-
erage durations of 13.2453 and 10.949 seconds, respectively, and
finally the nCert verification time averaged 1.088 seconds. We note
that while the median circuit building time is significantly higher
than reported Tor circuit latencies, this has no effect on stream la-
tency in most cases due to proactive circuit construction.

Simulation Results. In order to evaluate the scalability of Torsk
we designed simulators for the relay selection and circuit-building
bandwidth of both Tor and Torsk. For comparison, we also sim-
ulated Tor without router descriptors. The various message sizes
were measured empirically. The simulations also include churn of
both clients and routers; the churn model for routers was derived
empirically from a 1000-hour survey of the Tor network, while the
churn model for clients was estimated using arrival rates measured
by [19] and session times measured by [11]. The resulting networks
had a client to router ratio of approximately 60 : 1. We simulated
both protocols at network sizes ranging from 500 to 15000 simul-
taneous routers. The results of these simulations are shown in the
Figures 6 and 7. The maximum observed rate of router churn with
15000 simultaneous routers (900K simultaneous users) was 2064

Scheme Disc BW Discovery Vulnerabilities
Tor O(nr) —
I2P O(n log r) route capture, passive logging
Salsa O(n log r) Selective DoS, passive logging
AP3 O(n logn) passive logging
Cashmere O(n logn) passive logging
Crowds O(n2) —
MorphMix O(n) route capture, fingerprinting
Tarzan O(n2) —

Table 2: Comparison of P2P Anonymity Schemes
joins and leaves per hour; the Myrmic implementation in [38] was
reported to handle over 100 joins and leaves per second.

In terms of band-

Figure 7: Membership churn events per
hour vs Torsk network size.

width, these results
show that for all
network sizes sim-
ulated, client band-
width in Torsk is
lower than in Tor
(where clients have
essentially the same
bandwidth as routers)
with or without de-
scriptor downloads.
Moreover, when
comparing router
bandwidth, we see
that Torsk and Tor have similar bandwidth levels at 500 routers, and
that Torsk outperforms Tor when there are 1000 routers. As men-
tioned previously, a constant fraction of the bandwidth cost in Tor is
due to the need to periodically download router descriptors; if this
cost is ignored, then Tor routers expend less bandwidth than Torsk
routers for networks of less than 1000 routers; the costs are com-
parable for networks of size 1000-2000 routers, and above 2000
routers the bandwidth costs exceed the costs for Torsk. Finally,
we note that these cutoff points are naturally sensitive to several
Tor parameters. In particular, circuit building is more expensive in
Torsk so increasingly frequent circuit construction will improve the
relative performance of Tor; likewise, the most expensive operation
in Tor is network status distribution, and increasing the frequency
of this operation would improve the relative performance of Torsk.

7. RELATED WORK
Table 2 compares several closely-related schemes to Torsk. Per-

haps the most directly related low-latency anonymity schemes to
Torsk are Salsa [24] and I2P [17]. Similar to Torsk, Salsa proposes
to build a low-latency anonymous network using Tor’s encryption
and forwarding routines, but replacing the centralized lookup mech-
anism by a decentralized scheme. Salsa nodes form a DHT struc-
ture very similar to Chord, and node discovery is accomplished
through a constant number of redundant, recursive lookups per-
formed by tunnel endpoints. However, Borisov et al. [5] show
that Salsa’s lookup scheme is highly vulnerable to selective DoS.
I2P uses its own layered encryption relay scheme that is similar
to Tor’s, and replaces the centralized directory server with a dis-
tributed directory stored on an independent Kad network. Unfor-
tunately, unmodified Kad is vulnerable to misrouting [39] and this
leads to relatively straightforward route capture attacks.

Several schemes have proposed the use of a recursive DHT query
as an aggregate “hop” along a circuit. In AP3 [21], the client picks
a random key and forwards a request through the O(logn) hops
to the root of that key; the recipient then flips a coin to decide
whether to service the request or forward it to another random key.
An adversary who controls a constant fraction of the network will

observe, and thus have the opportunity to drop or record, any re-
quest with high probability, leaving the scheme vulnerable to DoS.
Cashmere [40] works similarly, but forms “groups” of nodes near
a given ID and allows any node in the group to forward a message
to the next relay, in order to provide better protection against node
churn and adversarial dropping; we note that both schemes have
latency that increases logarithmically with the number of peers and
are vulnerable to passive logging attacks.

Several other P2P schemes use less structured lookups and rout-
ing, such as MorphMix [28], Tarzan [15], and Crowds [27]. Mor-
phMix peers can build circuits knowing as few as 2 other peers;
each hop in a tunnel is discovered by asking the current endpoint
to “suggest” a next hop, and a “witness” is used to detect attempts
at collusion. Tabriz and Borisov [36] demonstrate that as few as 14
peers can collude to deceive this mechanism and capture arbitrary
routes passing through an attacker node. Tarzan, on the other hand,
employs a gossip discovery protocol, in which nodes regularly gos-
sip about other nodes, with the goal of allowing each node to know
the membership of the entire network.7 Crowds clients connect,
via a mutually authenticated channel, to a server called a “blender,”
essentially a directory service, to download the complete list of par-
ticipating peers. Both of these schemes thus exhibit quadratic be-
havior similar to Tor. Finally, Danezis and Syverson [9] propose
partitioning into networks of fixed size; this requires a scalable par-
titioning mechanisms and reduces the anonymity set.

8. CONCLUSION
In this paper we introduced Torsk, a secure, scalable, and incre-

mentally deployable node discovery and circuit construction mech-
anism for Tor. The use of a DHT helps our scheme achieve scala-
bility, while a combination of root verification, buddies and cover
traffic ensure that no additional vulnerabilities are introduced. Sig-
nificantly reducing the client bandwidth requirements also provides
opportunities for bandwidth-restricted users to access Tor.

However, we note that several important practical issues remain
to be addressed. Torsk circuit-building exhibits high latency due
both to the delays imposed by cover traffic and to the additional
bandwidth (roughly 2KB) and rounds of communication necessary
to perform a DHT search and download router descriptors on de-
mand; while in most cases this latency can be hidden by proactively
constructing circuits there are some cases in which the user experi-
ence will be impacted. The most important of these cases include
hidden services and circuit failures due to unexpected OR churn.
A second concern for future work is the transition from a single
trusted NA to Tor’s 6-server threshold trust model.
Acknowledgments. We thank our shepherd, Roger Dingledine,
and several anonymous reviewers for their helpful comments on
earlier drafts of this paper. We thank Eric Chan-Tin, Eugene Vasser-
man, and Hun-Jeong Kang for their assistance with PlanetLab ex-
periments, and James Tyra for his assistance with the Kad mod-
ule. This research was supported by the NSF under grants CNS-
0546162, CNS-0716025, and CNS-0917154.

9. REFERENCES
[1] The pirate bay. http://thepiratebay.org/, November 10 2008.
[2] AN.ON: Anonymity online.
[3] BAGCHI, A.,

BHARGAVA, A., CHAUDHARY, A., EPPSTEIN, D., AND SCHEIDELER, C. The
effect of faults on network expansion. Theor. Comp. Sys. 39, 6 (2006), 903–928.

[4] BERTHOLD, O., FEDERRATH, H.,
AND KØPSELL, S. Web MIXes: A system for anonymous and unobservable

7As pointed out by Danezis and Clayton [8], a preliminary
implementation of Tarzan used a DHT for node discovery in a way
that enabled route fingerprinting attacks.

Internet access. In Designing Privacy Enhancing Technologies, volume
2009 of LNCS (July 2000), H. Federrath, Ed., Springer-Verlag, pp. 115–129.

[5] BORISOV, N., DANEZIS, G., MITTAL,
P., AND TABRIZ, P. Denial of service or denial of security? How attacks
on reliability can compromise anonymity. In CCS ’07: Proceedings of the 14th
ACM conference on Computer and Communications Security (October 2007).

[6] CASTRO, M., DRUSCHEL, P., GANESH, A., ROWSTRON, A., AND WALLACH,
D. Security for structured peer-to-peer overlay networks. In Proc. of the Fifth
Symposium on Operating System Design and Implementation (OSDI) (2002).

[7] CHAUM, D. L. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM 24, 2 (1981), 84–88.

[8] DANEZIS, G., AND
CLAYTON, R. Route fingerprinting in anonymous communications. In P2P
’06: Proceedings of the Sixth IEEE International Conference on Peer-to-Peer
Computing (Washington, DC, USA, 2006), IEEE Computer Society, pp. 69–72.

[9] DANEZIS, G., AND SYVERSON, P. Bridging and fingerprinting:
Epistemic attacks on route selection. In Proceedings of the Eighth International
Symposium on Privacy Enhancing Technologies (PETS 2008) (Leuven,
Belgium, July 2008), N. Borisov and I. Goldberg, Eds., Springer, pp. 133–150.

[10] eDonkey network. http://www.edonkey2000.com.
[11] ERMAN, D., ILIE, D., AND POPESCU, A. Bittorrent session characteristics

and models. In Proc. of HET-NETs 05 - 3rd International Working Conference
on Performance Modelling and Evaluation of Heterogeneous Networks (2005).

[12] FEAMSTER, N., AND DINGLEDINE, R. Location
diversity in anonymity networks. In Proceedings of the Workshop on Privacy
in the Electronic Society (WPES 2004) (Washington, DC, USA, October 2004).

[13] FEIGE, U., AND OFEK, E. Spectral techniques applied to sparse
random graphs. Random Structures and Algorithms 27, 2 (July 2005), 251–275.

[14] FIAT, A., SAIA,
J., AND YOUNG, M. Making chord robust to byzantine attacks. In ESA (2005).

[15] FREEDMAN, M. J.,
AND MORRIS, R. Tarzan: a peer-to-peer anonymizing network layer. In CCS
’02: Proceedings of the 9th ACM conference on Computer and communications
security (New York, NY, USA, 2002), ACM Press, pp. 193–206.

[16] FRIEDMAN, J.,
KAHN, J., AND SZEMERÉDI, E. On the second eigenvalue of random regular
graphs. In STOC ’89: Proceedings of the twenty-first annual ACM symposium
on Theory of computing (New York, NY, USA, 1989), ACM, pp. 587–598.

[17] I2P. Available from http://66.111.51.110/.
[18] KUBIATOWICZ, J., BINDEL, D., CHEN,

Y., CZERWINSKI, S., EATON, P., GEELS, D., GUMMADI, R., RHEA, S.,
WEATHERSPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B. OceanStore:
An Architecture for Global-Scale Persistent Storage. In ASPLOS (2000).

[19] LOESING, K. Measuring the tor network: Evaluation of client
requests to the directories. Tech. rep., Tor Project, June 2009. Available online:
https://git.torproject.org/checkout/metrics/master/
report/dirreq/directory-requests-2009-06-26.pdf.

[20] MAYMOUNKOV, P., AND MAZÍERES, D. Kademlia:
A peer-to-peer information system based on the xor metric. In IPTPS (2001).

[21] MISLOVE, A.,
OBEROI, G., POST, A., REIS, C., DRUSCHEL, P., AND WALLACH, D. AP3:
cooperative, decentralized anonymous communication. Proceedings of the
11th workshop on ACM SIGOPS European workshop: beyond the PC (2004).

[22] MITTAL, P., AND BORISOV, N. Information
leaks in structured peer-to-peer anonymous communication systems.
In CCS ’08: Proceedings of the 15th ACM conference on Computer and
Communications Security (New York, NY, USA, 2008), ACM, pp. 267–278.

[23] MURDOCH, S. J., AND ZIELIŃSKI,
P. Sampled traffic analysis by internet-exchange-level adversaries. In
Proceedings of the Seventh Workshop on Privacy Enhancing Technologies (PET
2007) (Ottawa, Canada, June 2007), N. Borisov and P. Golle, Eds., Springer.

[24] NAMBIAR, A., AND WRIGHT, M.
Salsa: a structured approach to large-scale anonymity. Proceedings of the 13th
ACM conference on Computer and communications security (2006), 17–26.

[25] O’DONNELL, C. W., AND VAIKUNTANATHAN,
V. Information leak in the chord lookup protocol. In P2P ’04: Proceedings
of the Fourth International Conference on Peer-to-Peer Computing (2004).

[26] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND
SHENKER, S. A Scalable Content-Addressable Network. In SIGCOMM (2001).

[27] REITER, M., AND RUBIN, A. Crowds: Anonymity for web transactions.
ACM Transactions on Information and System Security 1, 1 (June 1998).

[28] RENNHARD, M., AND PLATTNER, B. Introducing
MorphMix: peer-to-peer based anonymous Internet usage with collusion
detection. In WPES ’02: Proceedings of the 2002 ACM workshop on Privacy
in the Electronic Society (New York, NY, USA, 2002), ACM Press, pp. 91–102.

[29] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Middleware (2001).

[30] SNADER, R., AND BORISOV, N. A tune-up for Tor: Improving security
and performance in the Tor network. In Proceedings of the Network and

Distributed Security Symposium - NDSS ’08 (February 2008), Internet Society.
[31] STEINER, M., EFFELSBERG, W., EN NAJJARY, T., AND BIERSACK,

E. W. Load reduction in the KAD peer-to-peer system. In DBISP2P
2007, 5th International Workshop on Databases, Information Systems
and Peer-to-Peer Computing, September, 24, 2007, Vienna, Austria (Sep 2007).

[32] STEINER, M., EN NAJJARY, T., AND BIERSACK, E. W. Analyzing peer behav-
ior in KAD. Tech. Rep. EURECOM+2358, Institut Eurecom, France, Oct 2007.

[33] STEINER, M., EN-NAJJARY, T., AND BIERSACK, E. W. A global
view of kad. In IMC ’07: Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement (New York, NY, USA, 2007), ACM, pp. 117–122.

[34] STOICA, I., MORRIS,
R., KARGER, D., KAASHOEK, F., AND BALAKRISHNAN, H. Chord:
A peer-to-peer lookup service for internet applications. In SIGCOMM (2001).

[35] STUTZBACH, D., AND REJAIE,
R. Understanding churn in peer-to-peer networks. In IMC ’06: Proceedings
of the 6th ACM SIGCOMM conference on Internet measurement (2006).

[36] TABRIZ, P.,
AND BORISOV, N. Breaking the collusion detection mechanism of morphmix.
In Proceedings of the Sixth Workshop on Privacy Enhancing Technologies (PET
2006) (Cambridge, UK, June 2006), G. Danezis and P. Golle, Eds., Springer.

[37] VARIOUS. Skype. In Wikipedia, the Free Encyclopedia.
http://en.wikipedia.org/wiki/Skype, November 10 2008.

[38] WANG, P., OSIPKOV,
I., HOPPER, N., AND KIM, Y. Myrmic: Secure and robust dht routing.
Tech. Rep. 2006/20, University of Minnesota DTC Research Report, 2006.

[39] WANG, P., TYRA, J., MALCHOW, T., KIM, Y.,
HOPPER, N., KUNE, D. F., AND CHAN-TIN, E. Attacking the kad network.
In SecureComm: Proceedings of the 4th International Conference on Security
and Privacy in Communication Networks (September 2008), ACM Press.

[40] ZHUANG, L., ZHOU, F., ZHAO, B. Y., AND ROWSTRON,
A. Cashmere: resilient anonymous routing. In NSDI’05: Proceedings of the
2nd conference on Symposium on Networked Systems Design & Implementation
(Berkeley, CA, USA, 2005), USENIX Association, pp. 301–314.

APPENDIX
Since currently there are around one million (= 220) concurrent
Kad nodes and roughly 211 ORs, it would be difficult to find an OR
simply by searching for random nodeIDs. For this reason, in our
implementation Torsk nodeIDs have a specific format: nodeID =
r1||torskID1||r2||torskID2, where r1 and r2 are random strings,
and torskID1 and torskID2 are strings common to all Tor ORs.
Each string is used for different purposes: r1 is used to distribute
nodeIDs evenly over the Kad key space. torskID1 helps clients
lookup Tor OR’s, and r2 is used to distinguish specific Tor ORs.

In the context of Torsk node IDs, the success of the lookup is
dependent on two factors. The first factor is that we want the Torsk
nodes to be distributed over all prefixes of the form r1||torskID1

with high probability. For a fixed choice of r1, the probability that
none of the 2t Torsk nodes chooses that prefix is (1−1/2r1)2

t

, and
by the union bound the probability that there exists such a prefix is
at most 2r1 × (1− 1/2r1)2

t

≈ 2r1 × e−2t−r1 . From this equation
we can compute the length r1 required to reach a desired failure
probability δ; for example, with the current number of Tor routers
t ≈ 11, so if we want δ = 10−5 we find that r1 = 7 will suffice.

The second factor is that on average there should be at least as
many Torsk nodes matching the prefix r1‖torskID1 as there are
Kad nodes, so that Torsk nodes are easy to find. If there are 2k Kad
nodes, this translates to the requirement that k−(torskID1 +r1) ≤
t − r1. Using r1 = 7, and dke = 21, we find that torskID1 = 10
will suffice. With these settings, we expect a given prefix to have
16 Torsk nodes and 8-16 regular Kad nodes.

Finally, torskID2 is Torsk’s fixed Tor OR identifier, chosen to
make the probability of an accidental choice of a Torsk nodeID neg-
ligible – we use 64 bits; and r2 is random filler to pad out to the full
128 bits of a nodeID. The length of r2 is determined by the equation
r2 = 128−r1−torskID1−torskID2. Using our earlier settings for
the lengths of r1, torskID1 and torskID2, the length of r2 is 47 bits.

