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ABSTRACT
Traffic analysis is the practice of inferring sensitive information
from communication patterns, particularly packet timings and packet
sizes. Traffic analysis is increasingly becoming relevant to security
and privacy with the growing use of encryption and other evasion
techniques that render content-based analysis of network traffic
impossible. The literature has investigated traffic analysis for various
application scenarios, from tracking stepping stone cybercriminals
to compromising anonymity systems.

The major challenge to existing traffic analysis mechanisms is
scaling to today’s exploding volumes of network traffic, i.e., they
impose high storage, communications, and computation overheads.
In this paper, we aim at addressing this scalability issue by introduc-
ing a new direction for traffic analysis, which we call compressive
traffic analysis. The core idea of compressive traffic analysis is to
compress traffic features, and perform traffic analysis operations on
such compressed features instead of on raw traffic features (therefore,
improving the storage, communications, and computation overheads
of traffic analysis due to using smaller numbers of features). To
compress traffic features, compressive traffic analysis leverages lin-
ear projection algorithms from the emerging area of compressed
sensing; we show that these algorithms offer unique properties that
enable compressing traffic features (and therefore improve scalabil-
ity) while preserving the performance of traffic analysis compared
to traditional mechanisms.

We introduce the idea of compressive traffic analysis as a new
generic framework for scalable traffic analysis. We then apply com-
pressive traffic analysis to two widely studied classes of traffic anal-
ysis, namely, flow correlation and website fingerprinting. We show
that the compressive versions of state-of-the-art flow correlation and
website fingerprinting schemes —significantly—outperform their
non-compressive (traditional) alternatives, e.g., we show that the
compressive version of Wang et al. [76] runs about 13 times faster
while providing the same accuracy. We believe that our study is a
major step towards scaling traffic analysis.
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1 INTRODUCTION
Traffic analysis is the art of inferring sensitive information from com-
munication patterns, particularly packet timings and packet sizes.

Traffic analysis is becoming increasingly more relevant to security
and privacy with the surging use of encryption and other evasion tech-
niques that render content-based analysis of traffic infeasible. For
instance, stepping stone relays [72, 87] re-encrypt packet payloads
and modify packet headers to prevent matching of packets based on
content. Also, the flows comprising a Tor connection (e.g., between
various Tor relays) can not be correlated by content matching as
each of these flows are encrypted with a different key. As another
example, the use of VPNs conceals the contents of the underlying
network packets.

Researchers have investigated the use of traffic analysis in various
application scenarios to either defend or attack the security and
privacy of networked systems. On one hand, various traffic analysis
techniques have been designed to identify cybercriminals (such as
botmasters) who proxy their attack traffic through compromised
machines or public relays in order to conceal their identities [39,
65, 72, 87, 89]. On the other hand, researchers have demonstrated
various traffic analysis techniques that enable adversaries to demote
online privacy [3, 24, 42, 64, 78, 79, 91], e.g., by compromising
anonymity systems like Tor [28] and mix networks [25, 67, 68]
through flow correlation [64, 79] or website fingerprinting [12, 61,
76] attacks.

The major challenge to traffic analysis is scaling to today’s gi-
gantic volumes of network traffic. First, traffic analysis parties need
to store extremely large volumes of collected traffic characteristics.
For instance, the border routers of an ISP who intends to identify
stepping stone attacks [72, 87] need to collect and store traffic char-
acteristics of all of the flows that they intercept. Second, in many
applications, traffic analysis involves the transmission of the col-
lected traffic characteristics between multiple traffic analysis parties
in real-time. For instance, flow correlation attacks on Tor are con-
ducted by adversaries who communicate among themselves the
traffic features that they collect at different points in the Tor network
(e.g., on multiple compromised Tor relays). Finally, traffic analysis
systems need to run their correlation algorithms (e.g., statistical cor-
relation functions [42] or machine learning algorithms [51, 76]) on
the—extremely large—database of collected traffic characteristics,
imposing high computation overheads. In summary, existing traffic
analysis mechanisms suffer from enormous storage, communica-
tions, and computation overheads given the overwhelming scales
of network traffic.

The goal of this work is to improve the scalability of traffic
analysis. We introduce a new direction to traffic analysis, which
we call compressive traffic analysis. Our approach is inspired by
an emerging research area in signal processing, called compressed
sensing [9, 19, 22, 69, 73, 86], which aims at performing efficient
signal acquisition. The core idea of compressive traffic analysis is
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to use the linear projection algorithms used by compressed sens-
ing systems to compress the traffic features used in traffic analysis.
Traffic analysis operations are then performed on such compressed
traffic features—instead of on raw traffic features which is done
traditionally—therefore improving storage, communications, and
computation overheads, i.e., improve scalability. Note that we call
an algorithm A to be more scalable than B if either (1) when both
algorithms offer the same traffic analysis performance (e.g., same
fingerprinting accuracy), A has less storage, communications, and
computation overheads (e.g., it is faster by using fewer features
for fingerprinting), or (2) for the same storage, communications,
and computation overheads, A provides better traffic analysis perfor-
mance (e.g., higher fingerprinting accuracy). We will use these two
equivalent notions interchangeably throughout the paper.

Compressive traffic analysis is possible due to two unique prop-
erties of compressed sensing’s linear projection algorithms: (1) The
linear projection algorithms used in compressed sensing are de-
signed to work best on sparse data vectors [19, 46]. Fortunately,
traffic features used in traffic analysis (particularly, packet timings
and packet sizes) are sparse signals, making them a natural target
for such sensing algorithms. (2) Because of the restricted isometry
property (RIP) [31] of compressed sensing algorithms, traffic fea-
tures preserve their Euclidean distances after compression by linear
projection algorithms. This enables us to perform traffic analysis
on compressed (sparse) features, instead of raw features, without
demoting the performance of traffic analysis. Due to this property,
compressive traffic analysis does not need to reconstruct the com-
pressed traffic features, and can perform analysis directly on the
compressed traffic features (therefore, avoiding the bulky computa-
tion overhead of reconstruction).

We present the idea of compressive traffic analysis as a generic
new direction towards scaling various types of traffic analysis al-
gorithms. To demonstrate the applicability of compressive traffic
analysis, we investigate it for two widely-studied classes of traffic
analysis, namely, flow correlation [24, 42, 71] and website finger-
printing [48, 61, 77]. We design compressive algorithms for flow cor-
relation and website fingerprinting, and compare their performances
to their non-compressive (traditional) alternatives. Our extensive
experiments demonstrate the significant scalability improvements
of compressive traffic analysis over traditional traffic analysis. For
instance, through experiments on Tor [28] we show that our com-
pressive flow correlation offers a true positive correlation rate of
≈ 0.9, while its non-compressive alternative (which is Houmansadr
et al. [43]) only offers a ≈ 0.3 true positive rate—when both of the
algorithms offer the same false positive rate and have the same over-
heads. As another example, our compressive website fingerprinting
algorithm is—13 times faster—than its non-compressive alternative
(which is Wang et al. [76]) with the same fingerprinting accuracy.

To summarize, we make the following main contributions:
• We introduce and formulate the novel idea of compressive

traffic analysis, which aims at making traffic analysis more
scalable by leveraging recent advances in signal processing.

• We introduce compressive flow correlation by applying
compressive traffic analysis to traditional (state-of-the-art)
flow correlation schemes. Through extensive experimenta-
tion and simulations of network traffic on the Internet and

Tor network [28] we show that our compressive flow corre-
lation schemes significantly improve scalability compared
to their traditional, non-compressive alternatives.

• We introduce compressive website fingerprinting by apply-
ing compressive traffic analysis to major state-of-the-art
approaches for website fingerprinting (i.e., k-NN and SVM
based approaches). We demonstrate through comprehen-
sive simulations that our compressive website fingerprinting
systems significantly improve scalability compared to their
non-compressive alternatives.

The rest of this paper is organized as follows: In Section 2 we
overview traffic analysis. We introduce and formulate the idea of
compressive traffic analysis in Section 3. We introduce and design
compressive flow correlation systems in Section 4, and evaluate
them in Section 5 through experiments and simulations. We also
introduce and design compressive website fingerprinting systems in
Section 6 and evaluate their performance in Section 7. We conclude
the paper in Section 8.

2 BACKGROUND: TRAFFIC ANALYSIS
Traffic analysis is inferring sensitive information from communica-
tion characteristics1 particularly packet sizes, packet timings, and
their derivatives like packet rates and inter-packet delays. Traffic
analysis is particularly useful in scenarios where encryption and
other content evasion techniques such as content obfuscation do
not allow one to inspect the contents of communications. In the
following, we review popular types of traffic analysis and discuss
their applications.
Flow correlation Flow correlation is used to link network flows in
the presence of encryption and other content obfuscation mecha-
nisms. On one hand, flow correlation is used to link network flows in
order to identify and stop cybercriminals, e.g., stepping stone attack-
ers who relay their attack traffic through oblivious network proxies
to obfuscate their identities [72, 87, 89]. On the other hand, flow cor-
relation is known to be usable by adversaries to compromise privacy
in anonymity systems like Tor [28] and mix networks [25, 67, 68]
by linking egress and ingress flows [3, 24, 59, 65, 71, 78, 79, 91].

Flow correlation links network flows by evaluating traffic features
that do not significantly change by content obfuscation mechanisms.
Most flow correlation systems use packet timing characteristics [24,
30, 36, 71, 81, 89] (or derivative features like packet counts, packet
rates, and inter-packet delays), and a few use packet sizes [52]. For
instance, Wang et al. [81] cross-correlated the inter-packet delays
of network flows. He and Tong use packets counts [36] to correlate
network flows, and Paxson and Zhang [89] model packet arrivals as
a series of ON and OFF patterns, which they use to correlate network
flows.
Flow watermarking Network flow watermarking is an active
variant of the flow correlation mechanism introduced above. Sim-
ilar to flow correlation schemes, flow watermarking also aims at
linking network flows in application scenarios similar to those of
flow correlation, e.g., stepping stone detection [72]. In contrast to
flow correlation, flow watermarking systems perturb traffic features,
e.g., packet timings and sizes, before attempting to correlate them

1In this paper, we use the terms flow “characteristics”, “patterns”, and “features”
interchangeably.
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across network flows. Particularly, many flow watermarking sys-
tems [40, 42, 64, 79, 88] perturb timing characteristics by slightly
delaying network packets in a way to modulate an artificial pattern,
called the watermark. For instance, RAINBOW [42] manipulates the
inter-packet delays of packets in order to embed watermark signals.
Several proposals [64, 79, 88], known as interval-based watermarks,
delay packets if they arrive within specific, secret time intervals.
Website fingerprinting Website fingerprinting aims at detecting the
websites (or webpages) visited over encrypted channels like VPNs,
Tor, and other proxies [12, 33, 35, 37, 49, 55, 61, 76, 77]. The attack
is performed by a passive adversary who monitors the victim’s
encrypted network traffic, e.g., a malicious ISP or a surveillance
agency. The adversary compares the victim’s observed traffic pattern
against a set of prerecorded webpage traces, called fingerprints, to
identify the potential webpage being browsed. Website fingerprinting
is different from flow correlation and flow watermarking in that
the adversary only observes one end of the connection, i.e., the
target user’s flow, but not the traffic going to the destination website.
Website fingerprinting has particularly been widely studied in the
context of Tor communications [35, 48, 61, 77].

Similar to the other classes of traffic analysis discussed above,
website fingerprinting also uses traffic features that are not impacted
by encryption. Particularly, website fingerprinting mechanisms com-
monly use traffic features like packet timings, packet directions,
and packet sizes. Most website fingerprinting mechanisms leverage
machine learning algorithms to implement their fingerprinting at-
tacks [12, 33, 35, 37, 49, 51, 55, 61, 76, 77]. Particularly, state-of-the-
art website fingerprinting mechanisms use one of the two machine
learning algorithms of Support Vector Machines (SVM) [12, 61, 77]
and k-Nearest Neighbor (k-NN) [33, 35, 76].
Other types of traffic analysis Traffic analysis has also been ap-
plied to other application scenarios in order to disclose sensitive
information. Particularly, various types of side channel attacks are
built on traffic analysis. For instance, multiple studies use traffic
analysis to uncover not only the language spoken over encrypted
VoIP connections [84], but also the spoken phrases [83, 85]. Chen et
al. [20] demonstrate a traffic analysis-based side channel attack on
critical web services like online financial services. Geddes et al. [32],
Houmansadr et al. [41], and Wang et al [75] show that repressive
governments can identify and block encrypted circumvention traffic
through various types of traffic analysis attacks.

3 OVERVIEW OF THE CORE IDEAS
We start by introducing the idea of compressed sensing. We then
describe how we use linear projection algorithms from compressed
sensing to design compressive traffic analysis mechanisms.

3.1 Compressed Sensing
Compressed sensing is an emerging approach for signal acquisition
and compression that aims at efficient reconstruction of signals from
few linear projections [6, 9, 15–17, 19, 22, 29, 69, 73, 86]. Com-
pressed sensing is built on the principle that the ‘sparsity’ of a signal
can be exploited to recover it from far fewer samples than what
required by the Shannon-Nyquist sampling theorem [6, 22, 69, 86].

A sparse signal [6, 19] is one that contains many coefficients close
to or equal to zero in some domain of representation. For instance,

digital images have many zero or near-zero components when repre-
sented in the Wavelet domain [19]. Compressed sensing works by
sampling a sparse signal in a basis that can even be different from
the basis in which the signal is known to be sparse. For instance, an
image can be sampled in the spatial domain even though it is sparse
in the Wavelet domain, but not the spatial domain. The compressive
samples are weighted linear combination of components of a signal.
Suppose that XN×1 is a signal vector of size N . The compressive
measurement is derived as

YM×1 = ΦM×N × XN×1 (1)

where ΦM×N is the sampling or sensing basis matrix, and Y is the
compressed vector containing M elements. The ratio R = N /M is
the compression ratio, and the goal of compressed sensing is to make
this as large as possible, i.e., M << N .
Reconstruction. In compressed sensing, the reconstruction process
involves finding the signal vector given the compressive samples.
This amounts to finding the solution of an underdetermined linear
system. While in general no unique solution is possible, the sparsity
of the signal helps find a unique solution when certain conditions are
satisfied. One of the most famous reconstruction algorithm is basis
pursuit, that involves solving the following optimization problem [17,
31]:

X̂N×1 = min
fN×1∈RN

| | fN×1 | |1 s .t . ΦM×N × fN×1 = YM×1 (2)

where | | · | |1 is the L1 norm. In particular, this reconstruction is robust
to noise and recovers the sparse approximation of any signal as long
as M = O(K logN ), where K is the sparsity (number of nonzero
values) of the signal vector.

Note that we do not need to reconstruct data in compressive traffic
analysis, as discussed later.
Applications. Compressed sensing has recently been used in vari-
ous contexts, particularly, data compression [9], channel coding [17],
and data acquisition [73]. It has specially been used in image pro-
cessing, for instance for efficient photography [22, 69] and facial
recognition [86]. Compressed sensing has recently been applied to
some networking problems, particularly, network datasets [90] and
network traffic matrix estimation and completion [57]. To the best
of our knowledge, we are the first to apply compressed sensing to
network traffic analysis.

3.2 Introducing Compressive Traffic Analysis
In this paper, we apply the idea of compressed signal acquisition
by linear projection to the problem of traffic analysis of encrypted
network traffic (as introduced in Section 2). Specifically, we borrow
and adapt linear projection methods from compressed sensing to
make traditional traffic analysis mechanisms more scalable, e.g.,
faster and less resource-intensive. We refer to this advanced type of
traffic analysis as compressive traffic analysis. We particularly apply
compressive traffic analysis to two popular classes of traffic analysis,
flow correlation and website fingerprinting, and demonstrate their
scalability improvements.

3.2.1 How it works: In compressive traffic analysis, we lever-
age random and deterministic linear projection algorithms from
compressed sensing to compress the traffic features used for traffic
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Figure 1: Sparsity of inter-packet delays (histogram of 10,000
flows)

analysis, e.g., packet timings, inter-packet delays, and packet sizes.
Consider fN×1 to be a features vector, i.e., a vector containing N
traffic feature values such as N inter-packet delays. We derive the
compressed features vector, f CM×1, as:

f CM×1 = ΦM×N × fN×1 (3)

The compressed features vector f CM×1 contains M values where
M < N . We define the compression ratio metric as:

R = N /M (R > 1). (4)

In compressive traffic analysis, the traffic analysis operations
are performed on compressed traffic features, instead of raw fea-
tures, therefore reducing storage, communications, and computation
overheads. The goal of compressive traffic analysis is to achieve
reasonable traffic analysis performance (e.g., high flow correlation
rates) with a large compression ratio R. As will be shown later, in-
creasing this compression ratio improves the scalability advantages
of compressive traffic analysis.

Note that compressive traffic analysis only uses the linear projec-
tion algorithms of compressed sensing to compress traffic features,
however, it does not need to reconstruct the compressed traffic fea-
tures, which is discussed below.

3.2.2 Why it works: There are two reasons why compressive
traffic analysis improves scalability while preserving the perfor-
mance of traffic analysis:
1) Sparsity. Recall from Section 3.1 that compressed sensing per-
forms best on sparse signals. Fortunately, the traffic features com-
monly used in traffic analysis, namely packet timings and packet sizes
are sparse signals. Figure 1 shows the inter-packet delays of 10,000
network flows randomly selected from CAIDA 2016 traces [13], and
Figure 2 shows the histogram of packets sizes of 500 Tor connections.
Both figures confirm the sparsity of the packet timing and packet
size features, which is in agreement with previous studies [46, 53].
2) Restricted isometry property (RIP). Decompressing com-
pressed traffic features is not only computation-intensive (the basis
pursuit algorithm requires solving a linear programming), but also
adds noise to the recovered signals if the features vector is not
exactly sparse [16] (therefore negatively impacting performance).
Compressive traffic analysis, however, does not need to reconstruct
traffic features, and it performs traffic analysis operations directly
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Figure 2: Sparsity of packet sizes (histogram of 500 Tor connec-
tions)

on the compressed traffic features. This is possible only because
the linear projection algorithms used in compressed sensing are de-
signed to preserve the Euclidean distance between traffic features
after compression, and therefore traffic analysis can be performed on
the compressed features themselves with no need for reconstruction.
Preserving the Euclidean distance is thanks to the restricted isometry
property (RIP) [15], which is a sufficient condition for robust recov-
ery for any compressed sensing scheme. Based on this property, if
there are two sparse features vectors fN×1 and f ′N×1 with sparsity
K , the corresponding compressed traffic features vectors f CN×1 and
f ′CN×1 will satisfy the following property for some δ ∈ (0, 1):

1 − δ ≤
|| f CM×1 − f ′CN×1 | |

2
2

| | fN×1 − fN×1 | |
2
2
≤ 1 + δ (5)

where | | · | |2 is the L2 norm. For smaller δ , the compressed feature
will better preserve the Euclidean distance.

The RIP property enables us to perform traffic analysis directly
on the compressed traffic features (with no need for decompression)
without significant degradation in traffic analysis performance. Note
that one can perform traffic analysis on the reconstructed traffic
features as well, i.e., after decompressing. However, since the re-
construction process can be lossy, this will not only increase the
computation overhead due to running reconstruction algorithms
(which involve solving optimization problems), but also degrade the
accuracy of traffic analysis (we demonstrate this in Appendix A).

3.3 Candidate Linear Projection Algorithms
The compressive sensing literature has proposed various linear pro-
jection methods [1, 4, 7, 14, 18, 27, 50]. We particularly, investigate
the random projection method, and a deterministic projection meth-
ods based on error-correcting codes in constructing our compressive
traffic analysis algorithms.
Random Sensing: We investigate the use of the most pervasive
compressed sensing method, i.e., the random projection [19]. In
random sensing, the sampling matrix, ΦM×N , is generated randomly
with i.i.d. entries. Such random ΦM×N is then used as a universal
compression strategy.

We will discuss the generation of our sensing basis matrices in the
following sections. Comparing various types of random projection
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algorithms, we find that Gaussian random projection performs the
best, in which the elements of the basis matrix are generated based
on Gaussian distribution. Gaussian random matrices also satisfy the
RIP condition due to the Johnson-Lindenstrauss (JL) lemma [26],
which states that for any x ∈ Rd s.t. |x | ≤ 1, |x ′ | ≤ 1 and an m × d
i.i.d. Gaussian matrix Φ, we have Pr (|∥Φx ∥22 − 1| > δ ) < ϵ when
m = O(δ−2 log(1/ϵ) [5].
Deterministic Sensing: Random projection is a traditional way
of dimension reduction in Euclidean space. However, in various
communications applications it is preferred to use a deterministic
projection algorithm; this is primarily because in random projection
the sampling matrix needs to be shared between the encoder and
decoder parties (an M × N matrix), whereas in deterministic pro-
jection only the parameters of the deterministic matrix needs to be
shared (e.g., two integer numbers). This is not much of an advantage
in the application of compressive traffic analysis since the sensing
matrices do not need to be updated frequently. Another advantage
of deterministic sensing is the existence of greedy algorithms for
fast decompression; this also is not relevant in our application since
compressive traffic analysis does not recover the compressed fea-
tures. However, a third advantage of structured deterministic matrix
is that the matrix-vector multiplication in the sampling operation can
be done really fast in many cases (by exploiting, say Fast Fourier
transform algorithm [74]).

Various deterministic projections have been proposed in the liter-
ature [1, 14, 27, 45, 50, 58]. We particularly, use sampling matrices
generated from dual codes of Bose-Chaudhuri-Hocquenghem codes
(BCH) [8, 60]. For any two integers m > 2 and t > 2, a binary
dual-BCH code is a {0, 1}-matrix of size M × N where M = 2m − 1
and N = 2mt (this produces a family of matrices that are indexed
by m and t). To construct deterministic sampling matrices from a
dual-BCH matrix, we use a bipolar mapping: 0→ + 1√

M
; 1→ − 1√

M
,

to obtain Φ. Using the basic distance properties of dual-BCH code
[56], we can have the following lemma.

LEMMA 3.1. The inner product of any two different columns of
Φ constructed as above from dual-BCH codes is at most 2(t−1)

√
M

, and
the L2 norm of any column is 1.

Based on this lemma, the matrix Φ will satisfy the RIP property
for any two features vectors with sparsity K , with δ ≤ 2K (t−1)

√
M

(using
a result from [7]).

3.4 Related Approaches
Our proposed compressed traffic analysis approach can be consid-
ered as a technique for dimension reduction. One may consider other
approaches towards this. Particularly, one may consider using sketch-
ing algorithms to reduce the dimension (i.e., compress) of traffic
features. The only work we are aware of using sketching algorithms
is by Coskun et al. [23], where they use standard sketching schemes
like count-min to compress traffic features for the purpose of flow
correlation. Coskun et al. show that sketching improves the scalabil-
ity of flow correlation, but it comes at non-negligible degradation
in the performance of traffic analysis. Later in Section 5.5 we show
that our compressive flow correlation significantly outperforms the
sketching-based algorithm of Coskun et al. through experimentation.
We argue that the better performance of compressive traffic analysis

Figure 3: A flow correlation scenario. For instance, “correla-
tor 1” is an entry Tor relay and “correlator 2” is an exit Tor
relay.

is due to the fact that they highly preserve the Euclidean distance
between (sparse) traffic features, as discussed above in Section 3.2.2.

Other possible approaches to reduce the dimension of traffic
features include learning-based algorithms like Principal Compo-
nent Analysis (PCA) [47] and Independent Component Analysis
(ICA) [44] (note that we are not aware of any prior work applying
these mechanisms to scale traffic analysis). In addition to the fact
that such approaches impose higher computation overheads com-
pared to compressive traffic analysis (which is due to their learning
component), they are known [82] to perform worse on sparse sig-
nals compared to compressed sensing algorithms. We confirm this
through experimentation (Section 5.5).

4 COMPRESSIVE FLOW CORRELATION
Flow correlation is to link network flows by correlating traffic fea-
tures like packet timings and packet sizes. Flow correlation has
particularly been studied for the detection of stepping stone at-
tacks [72, 87, 89] and compromising anonymity systems [3, 24,
59, 65, 71, 78, 79, 91] like Tor and mix networks. For instance, an
adversary can use flow correlation to link the ingress and egress
flows of a Tor connection, and therefore de-anonymize that con-
nection. In Section 2, we overviewed major previous work on flow
correlation.

Figure 3 shows a typical scenario of flow correlation. A num-
ber of traffic analysis parties, which we call correlators, intercept
network traffic at different network locations. The number of corre-
lators depends on each application, but the figure shows a scenario
with two correlators without loss of generality. For instance, when
flow correlation is used to attack Tor, the correlators are malicious/-
compromised Tor relays, and in the stepping stone application, the
correlators are an enterprise network’s border routers. The correla-
tors will need to frequently exchange the traffic characteristics of
the network flows that they intercept among themselves to enable
real-time flow correltion. In Figure 3, such features are exchanged
by being frequently written to a database.
Scalability Challenge: A major limitation of existing flow cor-
relation mechanisms is scaling to today’s Internet. Consider the
application scenario shown in Figure 3, and suppose that each of the
correlators intercept S flows each containing N packets at any given
time.2 In this case, the order of communications is O(SN ), since the
correlators need to exchange the traffic features of the flows they
intercept (e.g., by storing them in the database). Also, the order of
storage is O(SN ) as each party will need to store the features of the
2In reality, different correlators may intercept various numbers of flows with varying
numbers of packets, but we use this setting for simplicity without loss of generality.
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Figure 4: The block diagram of our compressive flow correla-
tion system

intercepted flows for the purpose of flow correlation. Finally, the
order of computation is O(S2N ); this is because correlator 2 will
need to cross-correlate each of the S flows reported by correlator 1
with each of the S flows intercepted by herself, in order to find corre-
lations. Note that such complexities will increase linearly with the
number of traffic correlators, but we will limit our discussions to the
two-correlators scenario of Figure 3 to avoid confusion.

In this section, we apply the idea of compressive traffic analysis
to flow correlation techniques with the goal of reducing their over-
heads, as described above. We will demonstrate the advantages of
compressive flow correlation by designing compressive flow cor-
relation techniques and comparing them to their non-compressive
variants. We will particularly show that our compressive flow corre-
lation schemes are more scalable (as summarized in Table 1).

4.1 Overall Architecture
We design a compressive flow correlation algorithm that uses packet
timings. Specifically, our compressive flow correlation correlates the
inter-packet delays (IPDs) of network flows, similar to a number of
traditional flow correlation mechanisms [42, 43, 80, 81]. Many flow
correlation schemes use packet timings since obfuscating timing
characteristics of network flows is more challenging that other fea-
tures. For instance, Tor traffic is sent in fixed-size packets called Tor
cells to resist size-based flow correlation techniques. This is while
Tor does not offer any protection against timing attacks due to its
high overhead on Tor traffic [3].

Figure 4 shows the block diagram of our compressive flow cor-
relation algorithm. The correlators (e.g., those in Figure 3) use a
compression algorithm to compress the features of each of the flows
that they intercept. The compressed features vectors are exchanged
between the correlators, or are all stored in a centralized database
accessible to all of the correlators as shown in Figure 4. In order to
check if an intercepted flow is correlated to any of the previously
observed flows, a correlator will need to first compress that flow, and
then cross-correlate its compressed features vector against the com-
pressed features vectors of the previously intercepted flows stored in
the database.

Note that the number of entries in the compressed database is
linear with the number of intercepted flows, so it can be very large.
We therefore also design a fast data structure which increases the
speed of searching for correlated entries in the database.

In the following, we will discuss each of the components of
Figure 4 in detail.

4.2 IPDs Compression Algorithm
Consider a network flow of length N + 1 with packet timings {ti |i =
1, 2, ...,N + 1}, where i is the packet index. The IPDs vector of this
flow is given by τN×1 = {τi |i = 1, 2, ...,N }, where τi = ti+1 −
ti . As mentioned in Section 3.2, we suggest to build compressive
algorithms by compressing raw features vectors. Therefore, our
compressive algorithm compresses the IPD features vector τ as:

τCM×1 = ΦM×N × τN×1 (6)

where τCM×1 is the compressed IPDs vector, M < N , and ΦM×N
(simply Φ) is the sensing basis matrix.
Building the sensing basis matrix (Φ) The sensing basis matrix,
Φ, needs to be generated and shared between flow correlators before
starting the flow correlation process. The selection of the sensing
basis matrix is important to the performance of a compressed sensing
algorithm [66]. In Section 3.3 we introduced several candidate mech-
anisms for generating the sensing basis matrix. Later in Section 5.2
we will compare these different mechanisms, showing that Gaussian
random projection algorithm works the best.

4.3 Optimal Cross-Correlation Algorithm
We use hypothesis testing [63] to derive the optimal cross-correlation
algorithm for our compressive flow correlation system. The optimal
cross-correlation is one that provides the highest true positive rate
given a bounded false positive rate [63].

Suppose that a correlator has just intercepted a network flow, f1
with IPDs vector of τ1 and compressed IPDs vector of τC1 = Φ × τ1
(of size M × 1). The correlator is trying to check if f1 is correlated
with (i.e., linked to) a previously observed flow f2 whose compressed
IPDs vector, τC2 = Φ× τ2, is recorded in the database. Therefore, the
correlator will need to decide which of the following two hypotheses
holds:

• Correlated (H1): f1 and f2 are correlated, i.e., f1 is a noisy
version of f2. That is τ1,i = τ2,i + ∆i for i = 1, 2, ..., where
τ1,i and τ2,i are the ith IPDs of f1 and f2, respectively, and
∆i is network jitter on the ith IPD.

• Not Correlated (H0): f1 is not a noisy version of f2.

We have that: {
H0 : τC2 = Φ × (τ ∗ +∆)

H1 : τC2 = Φ × (τ1 + ∆)
(7)

where τ ∗ is the IPDs of an arbitrary flow not related to flow f1.
We model IPDs (τ1,i ’s and τ2,i ’s) as i.i.d. exponential distributions

with rate λ, as in previous work [43]. We also model network jitter,
∆i ’s, as i.i.d. Laplace distributions with mean zero and standard
deviation δ . This model has been used by previous work [42], but
we also confirm it through measuring network jitter between 20
Planetlab nodes [10] as shown in Figure 17 (in Appendix C).

Finally, we use the Neyman-Pearson Lemma [63] to derive the
optimal cross-correlation function as a maximum-likelihood ratio
test. That is: {

H1 LT > η

H0 LT ≤ η
(8)
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where η is the decision threshold and

LT =
P(Φ × (τ1 + δ ))

P(Φ × (τ ∗ +δ ))
(9)

Deriving the optimal LT function is very complex for arbitrary Φ
matrices as it involves the computation of multiple convolutions (i.e.,
integrations). In our simulations discussed later, we will implement
LT for specific Φ matrices.

4.4 Practical Cross-Correlation Algorithm
Despite being optimal in performance, the optimal cross-correlation
function of Section 4.3 has two main drawbacks. First, it involves
performing many PDF convolution operations (i.e., integrations),
depending on the size of Φ; this makes the correlation process very
slow. Second, the optimal algorithm is optimal only if the network
parameters such as a flow’s data rate and network jitter are estimated
precisely. Such parameters change over time, and are hard to predict
for a live connection.

We therefore design a non-optimal cross-correlation algorithm
that is several orders of magnitude faster than the optimal algo-
rithm, but only slightly underperforms the optimal algorithm. Our
non-optimal cross-correlation function uses cosine similarity [63] to
correlate compressed IPDs vectors. That is, for two vectors of com-
pressed IPDs, τC1 and τC2 (each of length M), the cross-correlation is
evaluated as:

C(τC1 ,τ
C
2 ) =

∑M
i=1 τ

C
1 (i)τ

C
2 (i)√∑M

i=1 τ
C
1 (i)

2
√∑M

i=1 τ
C
2 (i)

2
(10)

As demonstrated in the experiments (Figures 8 and 7), our cosine-
based cross-correlation algorithm is only slightly less accurate than
the optimal algorithm of Section 4.3, but is several orders of mag-
nitude faster. It is also not sensitive to flow rate and network jitter
parameters. Using Cosine similarity as our correlation function also
enables us to speed up the database search process, which is dis-
cussed in the following section.

4.4.1 Resisting Packet-Level Modifications. We devise a
novel algorithm to protect our correlation function from being de-
synchronized due to occasional packet-level modifications such as
packet drops, repacketization, and reordering. Due to space con-
straints we describe our mechanism in Appendix B along with ex-
periment results.

4.5 Fast Data Structure
In a flow correlation scenario, a correlator needs to correlate an
intercepted network flow against—all—of the previously observed
network flows stored in the IPDs database. For instance, an egress
Tor flow observed by a malicious Tor exit node needs to be cross-
correlated against all of the ingress flows observed by a malicious Tor
guard node. Note this is not specific to our compressive correlation
algorithms, and is a (bigger) constraint for traditional correlation
algorithms as well.

We design a fast data structure for storing compressed IPD fea-
tures based on the locality-sensitive hashing (LSH) [34] data struc-
tures. LSH is a particular hash function that, unlike traditional cryp-
tographic hash functions, produces similar hashes for similar inputs.
LSH offers a provable sub-linear query time and sub-quadratic space

Table 1: Complexity comparison of different flow correlation
algorithms (R > 1, ρ < 1)

Algorithm Commun. Storage Computation
Non-compressive optimal O(SN ) O(SN ) O(S2N )
Compressive optimal O(SN /R) O(SN /R) O(S2N /R)
Non-compressive Cosine O(SN ) O(SN ) O(S2N )
Compressive Cosine O(SN /R) O(SN /R) O(S2N /R)
Compressive Cosine+LSH O(SN /R) O(SN /R) O(S(1+ρ)N /R)

complexity, despite its very good performance [70]. LSH divides
the features spaces into a number of “hyperplanes,” where similar
instances will appear on the same hyperplane with high probability.
As illustrated in Figure 18 (Appendix C), LSH reduces search time
and complexity by only looking at the most probable hyperplane, as
opposed to the whole database.

We specifically use a recent LSH algorithm by Andoni et. al. [2],
which uses Euclidean distance on the sphere to measure the dis-
tance between entries. This makes Andoni et. al. [2]’s LSH a natural
option for our system since cosine similarity (our sub-optimal cross-
correlation function) on the plain coordinates is equivalent to the
Euclidean distance on the sphere. We therefore use this LSH algo-
rithm to fragment the space on the sphere to hyperplanes. As a result,
compressed IPD vectors with close cosine-similarity will end up on
the same hyperplanes with high probability.

In order to add a new flow to our database, we first compress that
flow, and then use LSH to find the hyperplane in the database with
the “closest” compressed IPDs vector to that flow (using LSH). We
then insert the flow’s compressed IPDs vector in that position. In
order to find a match in the database for a given flow we similarly
identify the position (hyperplane) in the database with the closest
compressed IPDs vectors, and only apply our cosine similarity cross-
correlation function on the items of that hyperplane.

The use of LSH significantly improves the speed of database
search. While the normal search in the database has a query time
complexity of O(S) (S is the number of flow entries) Andoni et
al.’s LSH reduces this to O(Sρ ), where ρ < 1 represents the search
accuracy.

4.6 Scalability Improvements
Table 1 compares the storage, computation, and communications
complexity of our compressive flow correlation algorithms with their
traditional, non-compressive alternatives.
Communications and storage complexities: Any compressive
algorithm will reduce the order of communications and storage from
O(SN ) to O(SN /R) (where R > 1), as they will exchange and store
the “compressed” flow features, as opposed to the raw features.
Computation complexity: Compressive algorithms also signif-
icantly reduce the computation complexity. Cross-correlation al-
gorithms scale linearly with the number of features. Therefore, a
compressive correlation algorithm reduces computation by a factor
of (R = N /M).

Note that a compressive system’s compression process may add
some computation overhead; in particular, our IPD compression
algorithm performs matrix multiplications, therefore imposing a
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computation complexity of O(NM) for a random Φ matrix (this
can further reduce for sparse matrices). Therefore, compressive
flow correlation changes computation overhead from O(S2N ) to
O(S2M + SMN ). However, since M is negligible compared to S (the
number of flows), we can approximate the computation complexity
of compressive algorithm as O(S2M), which has a factor of N /M
reduction compared to traditional flow correlation.

The use of LSH in our algorithm additionally reduces the com-
putation overhead to (S(1+ρ)M), where ρ < 1 represents search
accuracy as introduced earlier.

Note that even though the computation overhead of both of the op-
timal and cosine cross-correlation algorithms scale linearly with the
number of samples, the optimal correlation algorithm is by far slower
than the cosine similarity algorithm. This is due to it performing
multiple computation-intensive operations such as exponentiation,
and integration. This is also shown later in the experiments.

5 EXPERIMENTS: COMPRESSIVE FLOW
CORRELATION

5.1 Experimental Setup and Metrics
We use network flows from the CAIDA 2016 anonymized network
traces [13] (out of which we use 50,000 flows in our experiments).
For any network flow, we simulated the impact of network jitter by
modeling jitter as a zero-mean Laplace distribution. This model is
also used in previous studies of flow correlation, but we addition-
ally confirm it by measuring network jitter between 20 Planetlab
nodes [10], which is shown in Figure 17 (Appendix C). We also
simulated packet drops by dropping packets based on a Binomial
distribution.

We implemented our compressive flow correlation algorithms
in Python, and used Mathematica 11.0 to derive some of the math
formulas. We used the Communication System Toolbox of Matlab
to generate BCH codes.
Metrics We use two metrics for evaluating the performance of the
flow correlation algorithms. The True Positive (TP) rate shows the
ratio of correctly linking related network flows across all experi-
ments, i.e., when a network flow is decided to be correlated to a
noisy version of itself. On the other hand, the False Positive (FP)
rate shows the ratio of incorrect matches across all experiments, i.e.,
when the flow correlation function declares two non-related flows to
be correlated. Note that the value of detection threshold, η, trades
off FP and TP.

We show a flow correlation algorithm A is more scalable than
B by showing that one of the two equivalent conditions hold: (1)
when both algorithms offer the same flow correlation performance
(e.g., same TP/FP numbers), A has less storage, communications,
and computation overheads (e.g., it is faster by using fewer IPDs
for correlation), or (2) for the same storage, communications, and
computation overheads (i.e., same number of IPDs), A provides
better flow correlation performance (e.g., better TP/FP metrics).

5.2 Generating the Sensing Basis Matrix Φ
We investigate several major linear projection algorithms to com-
press traffic features. We generate the sensing basis matrix, Φ for
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Figure 5: Comparing compressive flow correlation with var-
ious projection algorithms with non-compressive correlation.
All compressive correlation algorithms outperform the non-
compressive correlation, and the random Gaussian projection
performs the best.

each of these algorithms, and compare their performances. Particu-
larly, Figure 5 compares the TP and FP performance of compressive
flow correlation for Random Gaussian projection, Random Bernoulli
projection, and BCH projection, along with non-compressive flow
correlation (for M = 10, N = 1000, and R = 100). As can be seen,
all three types of compressive correlation algorithms outperform
non-compressive (traditional) traffic analysis.
Random Gaussian projection performs the best: We also see
from Figure 5 that the random Gaussian projection outperforms all
the other projection mechanisms. This is because, as discussed in
Section 3.3, based on the Johnson-Lindenstrauss (JL) lemma [26]
Gaussian random sensing tightly preserves the Euclidean distance on
the compressed features. Therefore, for the rest of the experiments,
we use Gaussian random projection for compressing traffic features.
We particularly use Candes and Tao’s mechanism [17], where the
elements of the Φ matrix are i.i.d. Gaussian random variables with
mean zero and a constant standard deviation σ [17]. We choose σ =
0.01 as it optimizes the performance of flow correlation (Figure 19
of Appendix C shows the impact of σ ).
Impact of Compression Ratio: As intuitively expected, increasing
the compression ratio R improves scalability, but at the expense of
degrading the accuracy of flow correlations. Figure 20 (Appendix C)
shows the TP and FP metrics for different compression ratios.

5.3 Cosine Similarity vs. Optimal Detector
We compare our optimal (Section 4.3) and cosine similarity (Sec-
tion 4.4) compressive algorithms. Since the optimal correlation needs
to be tailored for each specific flow rate, we pick network flows from
our CAIDA dataset that are in a short range of flow rates, specifically
10 to 20 packets per second. Figure 8 compares optimal and cosine
similarity algorithms for various jitters (note that in our Planetlab
measurements, we find the average jitter SD (δ ) to be around 5ms,
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but we simulate our correlation algorithms for a wider range of δ ).
As can be seen, the optimal correlation only slightly outperforms the
non-optimal, cosine-similarity correlation function. This is while the
optimal correlation is significantly more computation-intensive, as
discussed earlier in Section 4.6. For instance, for S = 1000 the cosine
correlator is about two orders of magnitude faster (see Figures 6 and
7), which is in full agreement with Table 1. Additionally, unlike the
optimal detector, the cosine similarity algorithm is not sensitive to
network parameters like flow rates.

5.4 Comparing Runtime
We compare the runtime of different algorithms on a computer with
a 3.5 GHz Intel Xeon processor and 48GB of memory. Figure 6
compares the runtime of compressive and non-compressive optimal
correlation functions. As can be seen, the compressed alternative
is faster by an order of magnitude, while both algorithms have the
same accuracy (as shown later). Also, Figure 7 compares the runtime
of the compressed and non-compressed versions of the cosine-based
correlator. As can be seen, the Compressed version is two orders
of magnitude faster than its non-compressed version (for similar
correlation performance), and the gap increases with increasing the
number of flows.

5.5 Comparison to Other Approaches
Non-compressive flow correlation: We compare our compressive
correlation algorithms to Houmansadr et al. [43], which is the state-
of-the-art non-compressive alternative to our system. Figure 9 com-
pares our optimal compressive algorithm (with R = 10) to the opti-
mal non-compressive algorithm of Houmansadr et al. [43]. As can
be seen, our system performs the same while being significantly
faster as demonstrated in Figure 6 (discussed above) and shown in
Table 1. On the other hands, when both systems use the same number
of IPDs (and therefore have the same runtime), our compressive al-
gorithms performs significantly better flow correlation performance
(See Figure 10).
Sketching-based correlation: We compare our algorithm to the
sketching-based algorithm of Coskun et al. [23]. Figure 11 shows
that our algorithm significantly outperforms Coskun et al. [23]’s for
the same number of IPD samples.
Dimensionality reduction-based correlation algorithms: A po-
tential alternative to compressive traffic analysis is using learning
based algorithms to reduce the dimension of traffic features. While
we are not aware of any prior work applying these mechanisms to
scale traffic analysis, we implement a flow correlation algorithm that
uses Principal Component Analysis (PCA) [47] to compress traffic
features. Our algorithm works by first training PCA on the dataset
of traffic features, and then we reduce the dimension of dataset by
multiplying the its instances into the PCA matrix. As shown in Fig-
ure 12, our compressive flow correlation algorithm outperforms the
PCA-based algorithm. Note that the PCA-based algorithm is also
much slower due to its training phase.

5.6 Experiments on Real Tor Network
We implemented our compressive flow correlation tool, and experi-
mented with it on live, real Tor traffic by intercepting Tor connections.

In our experiments, we have two correlator entities that are intercept-
ing Tor traffic with the goal of de-anonymizing Tor connections.

In our experiments, we browse the top 500 websites from Alexa3

over Tor.4 We do not run any Tor relays, instead we use Tor’s existing
relays. In order to be able to intercept traffic going to a webpage
through Tor, we use an sniffing HTTP proxy and set up our Tor
connections to go through that proxy. We also capture Tor traffic on
our local client before going to a Tor guard relay.

Figure 13 compares the performance of our compressive flow cor-
relation algorithm (with rate 4) with its non-compressive alternative
when they both use the same number of IPDs features (therefore,
they have the same overhead). As can be seen, our compressive
algorithm significantly outperforms its non-compressive alternative.
Note that a system performs better if its lines of TP and FP metrics
have a larger gap. For instance, when both systems offer a FP of
0.1, our compressive algorithm offers a TP of ≈ 0.9, whereas the
non-compressive algorithm offers a TP of only ≈ 0.3.

6 COMPRESSIVE WEBSITE
FINGERPRINTING

Website fingerprinting is a class of traffic analysis that aims to
identify the websites (or webpages) visited over encrypted chan-
nels like VPN, Tor, and network proxies [12, 21, 38, 61, 76].
While there has been various proposals for website fingerprint-
ing [12, 33, 35, 37, 49, 55, 61, 76, 77], state-of-the-art website
fingerprinting mechanisms use one of the two machine learning algo-
rithms of Support Vector Machines (SVM) [12, 61, 77] or k-Nearest
Neighbor (k-NN) [33, 35, 76]. In this section, we present the idea
of compressive website fingerprinting by applying it on recent k-
NN and SVM-based fingerprinting schemes and demonstrating their
significant scalability improvements.

6.1 Overall Architecture
Compressive website fingerprinting differs from regular website
fingerprinting in that it trains and classifies using compressed traffic
features, as opposed to using raw traffic features as in the traditional
approach. Figure 14 shows the overall architecture of compressive
website fingerprinting. As can be seen, an N -long vector of flow
features, fN×1, is compressed to

f CM×1 = ΦM×N × fN×1 (11)

This results in the compressed features vector of length M < N ,
f CM×1, which is then used by the website fingerprinting system’s
machine learning algorithms for training and classification. What
enables us to apply compressive traffic analysis to website finger-
printing is the sparsity of traffic features like packet timings and
sizes, as well as the RIP property of linear projection algorithms that
preserves the Euclidean distance of features vectors after compres-
sion (as discussed in Section 3.2).

Similar to compressive flow correlation, we investigate the use of
various linear projection algorithms in generating the basis matrix,
Φ. We will discuss our choices later in the experiments section.

3http://www.alexa.com/topsites
4We plan to make our dataset available to other researchers.
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Figure 9: Comparing our optimal com-
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tem performs the same despite being sig-
nificantly faster (Table 1).
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Figure 14: General framework of compressive website finger-
printing

Table 2: Comparing compressive and traditional website finger-
printing mechanisms regarding storage and computation com-
plexities (note that R > 1 is the compression ratio).

Algorithm Storage Learning Phase Prediction Phase
SVM O(SN ) O(S2) ∼ O(S3) O(Nsv (N ) · N )
Compress. SVM O(SN /R) O(S2) ∼ O(S3) O(Nsv (N /R) · N /R)
k-NN O(SN ) N/A O(SN )
Compress. k-NN O(SN /R) N/A O(SN /R)

6.2 Improving Scalability
The state-of-the-art website fingerprinting attacks mainly use one of
the two machine learning algorithms of Support Vector Machines
(SVM) [12, 61, 77] or k-Nearest Neighbor (k-NN) [33, 35, 76]. Each
of these mechanisms are composed of a learning phase and a predic-
tion phase. For any webpage, they generate a features vector of size
N ; this N -long features vector is then used for training and predic-
tion. The size of the features vector, N , plays an important role in the
performance of a website fingerprinting mechanism: increasing N
improves the classification performance but makes the fingerprinting
process more expensive by increasing the computation and storage
overheads (it also increases the communications overhead propor-
tional to the storage overhead if the learning and classification nodes
are running at different network locations).

The goal of compressive website fingerprinting is to improve the
scalability of website fingerprinting by achieving similar classifica-
tion accuracy with a smaller N . Table 2 demonstrates the scalabil-
ity improvement for k-NN and SVM-based fingerprinting systems,
which is discussed in the following.

6.2.1 Scaling k-NN based schemes. Several recent website
fingerprinting schemes [33, 35, 76] uses the k-NN approach for
classification using custom weight learning. For instance, Wang et
al. [76] uses packet sizes, packet timings, and packet directions as
features for classification, and uses the L1 distance metric for finding
the nearest neighbors.

The predication time of a k-NN based fingerprinting system is
O(SN ), where S is the size of the dataset (number of webpages) and
N is the number of the features per webpage [11]. Our compressive
alternative of a k-NN fingerprinting system reduces the number of
features to M < N , therefore lowering the time of k-NN computa-
tions to O(SN /R), where R = N /M is the compression ratio (R > 1).
This is summarized in Table 2.

6.2.2 Scaling SVM-based schemes. Several recent propos-
als [12, 61, 77] the support vector machines (SVM) algorithm to

learn and classify websites. Support vector machines have a time
complexity between O(S2) and O(S3) [54] for the training phase (S
is the size of dataset). The SVM mechanisms also have a prediction
phase time complexity of O(Nsv (N ) · N ), where Nsv is the number
of support vectors and N is the number of features [54]. Note that
Nsv itself is a function of N , therefore the prediction time of SVM
is not linear in N . However, as also shown in our experiments, the
prediction time is monotonic with N (therefore it is improved due to
compression). This is summarized in Table 2.

7 EXPERIMENTS: COMPRESSIVE WEBSITE
FINGERPRINTING

7.1 Experimental Setup and Metrics
We demonstrate the scalability improvements of compressive web-
site fingerprinting for the two leading approaches for website finger-
printing, i.e., k-NN-based [33, 35, 76] and SVM-based [12, 61, 77]
website fingerprinting. We particularly pick the state-of-the-art sys-
tems from each group in our experiments, namely, Panchenko et
al. [61] to represent k-NN and Wang et al. [76] to represent the SVM-
based systems. We use the original codes and datasets from Wang et
al. [76] and Panchenko et al. [61] in our experiments. We implement
the compressive versions of these systems by modifying their codes
as described in Section 6.1 (e.g., by adding the compression stage).
Our experiments are run on a Linux machine with 48GB of memory
and a 3.5GHz Xeon(R) CPU.
Metrics We use website fingerprinting accuracy, as used in the
literature, to evaluate and compare the performance of website fin-
gerprinting systems. We show a fingerprinting algorithm A is more
scalable than B by showing that one of the two equivalent conditions
hold: (1) when both algorithms offer the same (or very close) web-
site fingerprinting accuracy, A has less storage, communications, and
computation overheads (e.g., it is faster by using fewer features), or
(2) for the same storage, communications, and computation over-
heads , A provides higher fingerprinting accuracy.

7.2 Generating the Sensing Basis Matrix Φ
We investigate several major linear projection algorithms for com-
pressive website fingerprinting. We generate the sensing basis matrix,
Φ for each of these algorithms, and compare their performances. We
find that the Gaussian and Bernoulli random projection algorithms
perform the best in improving the scale of website fingerprinting,
as will be presented in the following. Also, note that the parameters
of Φ impacts the performance. Particularly, Figure 21 (Appendix C)
shows the impact of Φ’s standard deviation, σ , on the accuracy of
our compressive version of Wang et al. [76] when Gaussian random
projection is used (we pick σ = 10−3).

7.3 Compressive k-NN
We compare the accuracy and run time of the state-of-the-art k-NN
system of Wang et al. [76] to its compressive alternative. We run
our experiments in an open world scenario with 100 monitored web-
sites with 90 instances each, and 5000 non-monitored websites. To
demonstrate scalability improvements, we compare the compressive
version of the algorithm with the original algorithm for the same
number of features (we always use the most significant features for
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Table 3: Comparing compressive and non-compressive (regular) k-NN-based fingerprinting performance.

Features R Gaussian Bernoulli Non-compressive Total Accuracy Effective
(N ) Compressive Compressive [76] runtime loss Speedup
3736 1 0.9076 0.9076 0.9076 ∼ 33m 0.0 ×1
934 4 0.8913 0.86 0.6920 ∼ 9m 0.0163 ×3
467 8 0.8703 0.85 0.6880 ∼ 4m 0.0373 ×6.75
233 16 0.8520 0.82 0.6800 ∼ 2m 0.0556 ×13.5

Table 4: Comparing compressive and non-compressive (regular) SVM-based fingerprinting performance.

Features R Gaussian Bernoulli Non-compressive Prediction Accuracy Speedup
(N ) Compressive Compressive [61] Time loss
104 1 0.824 0.8240 0.8240 ∼ 3s 0.0 ×1
26 4 0.8052 0.7923 0.7860 ∼ 1.5s 0.0188 ×2
13 8 0.7867 0.7775 0.7552 ∼ 1s 0.0373 ×3

the original system). Table 3 summarizes the results. As can be seen,
both Bernoulli and Gaussian compressive algorithms outperform the
original system, i.e., for the same number of features they result in
higher fingerprinting accuracy. For instance, when all algorithms
use 467 features, and therefore have the same storage/computation
complexity, our Gaussian compressive algorithm provides a 0.8703
accuracy compared to 0.6880 of the original, non-compressive algo-
rithm. Also, similar to our results on compressive flow correlation,
we see that Gaussian linear projection provides a better performance
compared to other compression mechanisms.

Table 3 also shows the speedup of our Gaussian compressive
over Wang et al. [76] when both algorithms offer the same accuracy.
For instance, with R = 16, for the same accuracy, our compressive
algorithm makes the fingerprinting process about 13 times faster.
Note that the speedup is a little bit less than 1/R (shown in Table 2)
which is due to the slight drop in accuracy due to compression (i.e.,
compression preserves the Euclidean distance, but not perfectly).

7.4 Compressive SVM
We also compare the accuracy and run time of the state-of-the-art
SVM-based system of of Panchenko et al. [61] to its compressive
alternative. We run our experiments in the closed world setting
with 100 websites, each with 40 instances. As before, to demon-
strate the scalability improvements, we compare the compressive
version of the algorithm with the original algorithm for the same
number of features (while using the most significant features for
the original system). Table 4 summarizes the results, showing that
both Bernoulli and Gaussian compressive algorithms outperform the
original system, i.e., for the same number of features they result in
higher fingerprinting accuracies. For instance, when they both use
26 features (and therefore have a similar storage/runtime overhead),
the Gaussian compressive algorithm provides a 0.8052 accuracy
compared to the 0.7860 accuracy of the original algorithm. Also, as
before the Gaussian linear projection provides a better performance
compared to other compression mechanisms.

We also see that increasing the compression ratio R results in a
larger speedup, while slightly reducing the fingerprinting accuracy.
For instance, a compression ratio of R = 8 speeds up the prediction
time three times for a negligible 0.03 accuracy reduction. Note that

as discussed in Section 6.2.2, the prediction time of SVM is not
linear with the number of features. However, as also shown here, the
prediction time is monotonic with the number of features, therefore
compression always improves the scalability.

The gain of compression is larger for k-NN-based fingerprinting
systems, as shown above, due to the linear relation of its complexity
with the number of features.

8 CONCLUSIONS
We introduced a new direction to traffic analysis, which we call com-
pressive traffic analysis. Our approach is inspired by the trending
research area of compressed sensing, and works by using compressed
traffic features, as opposed to raw features, for traffic analysis. We
discussed why and how compressive traffic analysis improves the
scalability of traffic analysis. We also demonstrated compressive
traffic analysis on flow correlation and website fingerprinting, two
widely-studied types of traffic analysis. Our evaluations show promis-
ing improvements over traditional algorithms.

We believe that compressive traffic analysis is a significant step
forward in designing traffic analysis algorithms that scale to the
exploding volumes of network communications. An interesting topic
for future work will be to investigate the application of compres-
sive traffic analysis to other kinds of traffic analysis, such as active
flow correlation mechanisms. Improving the performance of feature
compression is another topic for future work.
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A RECOVERING COMPRESSED FEATURES
As discussed in Section 3.2, compressive traffic analysis does not
need to recover compressed traffic features for correlation, and can

directly perform correlation on the compressed features. This is
thanks to the RIP property of the utilized linear projection algo-
rithms (as discussed in Section 3.2), which preserves the Euclidean
distance of traffic features vectors after compression. One can per-
form traffic analysis on the reconstructed traffic features as well, i.e.,
after decompressing. However, since the reconstruction process can
be lossy, this will not only increase the computation overhead due to
running reconstruction algorithms (which involve solving optimiza-
tion problems), but also degrade the accuracy of traffic analysis as
we confirm through experimentation.

We implement code to reconstruct compressed traffic features, i.e.,
by solving (2). We particularly, used the CVXOPT5 optimization
tools to solve the involved optimization problem and recover com-
pressed traffic features. Figure 15 compares the performance of our
cosine-based compressive algorithm with and without reconstructing
compressed features. As can be seen, constructing features before
correlation slightly drops the performance of correlation (due to the
noise in recovery) in addition to making the correlation process
much slower (due to so solving the optimization problem).
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Figure 15: Performance of compressive traffic analysis with and
without recovery.

B RESISTING PACKET-LEVEL
MODIFICATIONS

In addition to resisting network delays (e.g., jitter), a flow correlation
algorithm needs to be resistant to packet-level modifications such
as packet drops, repacketization, and reordering. While such modi-
fications can happen very occasionally, depending on the network
condition, even a single packet modification can de-synchronize a
flow correlation algorithm.

Previous IPD-based flow correlation schemes [42, 43] use a slid-
ing window-based mechanism to resist potential packet-level modifi-
cations. However, that algorithm significantly increases the computa-
tion complexity as it needs to match every IPD in an egress flow with
multiple IPDs in an ingress flow. We propose an alternative algorithm
to resist packet-level modifications with negligible overhead. Our

5http://cvxopt.org/
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algorithm can be used with any IPD-based cross-correlation function,
including our cross-correlation functions introduced before.

Our algorithm is summarized in Algorithm 1. It divides the time
interval into non-overlapping intervals of length L seconds. Suppose
that we receive a network flow with N IPDs (N + 1 packets). The
algorithm generates the vector of “raw” IPDs by picking only the
first NI IPDs from each of the L-long intervals. Therefore, if the flow
has more than NI IPDs in an interval the extra IPDs will be ignored,
and if an interval has less than NI IPDs the algorithm will put zero
for the non-existing IPDs. This makes the correlation resistant to
packet modifications: if a single packet is dropped or repacketized it
will only impact the IPDs in its own interval, but will not impact any
of the IPDs in other intervals.

It is still possible that a network packet moves from one interval
to its next interval due to network jitter. This will desynchronize
both of the intervals. To prevent this, we define guard subintervals of
length д < L at the end of each interval, and we exclude any packets
in those guard intervals. д should be chosen based on network jitter.
We model network jitter, ∆, as a Laplace distribution with mean
zero and standard deviation σ , as discussed earlier. Therefore, using
Chebyshev’s inequality:

P(|∆| ≥ д) ≤
σ 2

д2
(12)

Therefore, we can ensure that the probability of interval desyn-
chronization is less than ϵ by choosing д = σ/

√
ϵ . For instance, for

σ = 5msec and ϵ = 0.01, we have д = 50msec.

Algorithm 1 Algorithm to resist packet-level modifications

L←Interval Length
NI ←Interval max packets
д←Guard Value
I ←list of intervals
for each captured flow F do
TF ← Extract the Timing information of flow F
for each tFi in TF do

i = ⌊
t Fi
L ⌋

if |i ∗ L − tFi | < д and |(i + 1) ∗ L − tFi | < д then
Insert tFi to Ii

for each Ii do
Compute τFi from Ii
Resize τFi to NI , add zeros if needed or remove the end

Merge all τFi to get τF
Save τF

B.1 Experiment results
Figure 16 shows the performance of our algorithm designed to resist
packet level modifications (Algorithm 1) against dropping packets at
different rates. Note that in our Planetlab measurements, the average
packet drop rate is only 0.001, but we simulate higher rates of drops
to simulate active attackers.
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Figure 16: Impact of packet drops on performance (1000 pack-
ets, no network jitter)

C MISCELLANEOUS
Network jitter measurement: Figure 17 shows the measured distri-
bution of network jitter between 20 Planetlab nodes [10], confirming
the Laplace distribution model used in prior work [42].
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Figure 17: Measured jitter between Planetlab nodes, which is
fitted to a Laplace distribution.

Locality-sensitive hashing (LSH): Figure 18 illustrates how the LSH
works by dividing the features spaces into a number of “hyperplanes,”
where similar instances will appear on the same hyperplane with
high probability.
Impact of σ on flow correlation: Figure 19 shows the impact of σ
on the performance of flow correlation.
Impact of compression ratio on compressive correlation: As shown
in Figure 20, increasing the compression ratio R trades off the corre-
lation performance.
Impact of σ on compressive fingerprinting: Figure 21 shows the
impact of σ on the performance of website fingerprinting.
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Figure 18: An illustration of how LSH stores and looks up en-
tries
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Figure 19: Impact of Φ’s standard deviation (σ ) on correlation.
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Figure 20: Impact of compression ratio R on TP and FP metrics.
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Figure 21: Impact of Φ’s standard deviation (σ ) on the accuracy
of k-NN website fingerprinting algorithm.
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