
Crowds: Anonymity for Web Transactions

Michael K. Reiter

and

Aviel D. Rubin

AT&T Labs—Research

In this paper we introduce a system called Crowds for protecting users’ anonymity on the world-
wide-web. Crowds, named for the notion of “blending into a crowd”, operates by grouping users

into a large and geographically diverse group (crowd) that collectively issues requests on behalf of
its members. Web servers are unable to learn the true source of a request because it is equally likely

to have originated from any member of the crowd, and even collaborating crowd members cannot
distinguish the originator of a request from a member who is merely forwarding the request on

behalf of another. We describe the design, implementation, security, performance, and scalability

of our system. Our security analysis introduces degrees of anonymity as an important tool for
describing and proving anonymity properties.

Categories and SubjectDescriptors: C.2.0 [Computer-Communication Networks]: General—
security and protection; C.2.2 [Computer-Communication Networks]: Network Protocols—

applications; K.4.1 [Computers and Society]: Public Policy Issues—privacy; K.4.4 [Comput-

ers and Society]: Electronic Commerce—security

General Terms: Security

Additional Key Words and Phrases: anonymous communication, world-wide-web

1. INTRODUCTION

Every man should know that his conversations, his correspondence, and
his personal life are private. — Lyndon B. Johnson, president of the
United States, 1963–69

The lack of privacy for transactions on the world-wide-web, or the Internet in
general, is a well-documented fact [Brier 1997; Miller 1997]. While encrypting com-
munication to and from web servers (e.g., using SSL [Hickman and Elgamal 1995])
can hide the content of the transaction from an eavesdropper (e.g., an Internet
service provider, or a local system administrator), the eavesdropper can still learn
the IP addresses of the client and server computers, the length of the data being
exchanged, and the time and frequency of exchanges. Encryption also does little
to protect the privacy of the client from the server. A web server can record the
Internet addresses at which its clients reside, the servers that referred the clients to
it, and the times and frequencies of accesses by its clients. With additional effort,
this information can be combined with other data to invade the privacy of clients
even further. For example, by automatically fingering the client computer shortly
after an access and comparing the idle time for each user of the client computer
with the server access time, the server administrator can often deduce the exact
user with high likelihood. Some consequences of such privacy abuses are described
in [Miller 1997].

In this paper we introduce a new approach for increasing the privacy of web

2 ·

transactions and a system, called Crowds, that implements it. Our approach is
based on the idea of “blending into a crowd”, i.e., hiding one’s actions within the
actions of many others. To execute web transactions in our model, a user first joins
a “crowd” of other users. The user’s request to a web server is first passed to a
random member of the crowd. That member can either submit the request directly
to the end server or forward it to another randomly chosen member, and in the
latter case the next member chooses to submit or forward independently. When
the request is eventually submitted, it is submitted by a random member, thus
preventing the end server from identifying its true initiator. Even crowd members
cannot identify the initiator of the request, since the initiator is indistinguishable
from a member that simply forwards a request from another.

In studying the anonymity properties provided by this simple mechanism, we in-
troduce the notion of degrees of anonymity. We argue that the degree of anonymity
provided against an attacker can be viewed as a continuum, ranging from no
anonymity to complete anonymity and having several interesting points in between.
We informally define these intermediate points, and for our Crowds mechanism
described above, we refine these definitions and prove anonymity properties for
our system. We expect these definitions and proofs to yield insights into proving
anonymity properties for other approaches, as well.

An intriguing property of Crowds is that a member of a crowd may submit
requests initiated by other users. This has both negative and positive consequences.
On the negative side, the user may be incorrectly suspected of originating that
request. On the positive side, this property suggests that the mere availability
of Crowds offers the user some degree of deniability for her observed browsing
behavior, if it is possible that she was using Crowds. Moreover, if Crowds becomes
widely adopted, then the presumption that the computer from which a request is
received is the computer that originated the request will become decreasingly valid
(and thus decreasingly utilized).

The anonymity provided by Crowds is subject to some caveats. For example,
Crowds obviously cannot protect a user’s anonymity if the content of her web trans-
actions reveals her identity to the web server (e.g., if the user submits her name and
credit card number in a web form). More subtley, Crowds can be undermined by
executable web content that, if downloaded into the user’s browser, can open net-
work connections directly from the browser to web servers, thus bypassing Crowds
altogether and exposing the user to the end server. In today’s browsers, such ex-
ecutable content takes the form of Java applets and ActiveX controls. Therefore,
when using Crowds, it is recommended that Java and ActiveX be disabled in the
browser, which can typically be done via a simple preferences menu in the browser.

The rest of this paper is structured as follows. In Section 2, we more precisely
state the anonymity goals of our system and introduce the notion of degrees of
anonymity. This gives us sufficient groundwork to compare our approach to other
approaches to anonymity in Section 3. We describe the basic Crowds mechanism
in Section 4 and analyze its security in Section 5. We describe the performance
and scalability of our system in Sections 6 and 7, respectively. We discuss crowd
membership in Section 8, the system’s user interface in Section 9, and the obstacles
that firewalls present to wide scale adoption of Crowds in Section 10. We conclude
in Section 11.

· 3

exposed provably
exposed

absolute
privacy

beyond
suspicion

probable
innocence

possible
innocence

Fig. 1. Degrees of anonymity: Degrees range from absolute privacy, where the attacker cannot

perceive the presence of communication, to provably exposed, where the attacker can prove the
sender, receiver, or their relationship to others.

2. GOALS

2.1 Anonymity

As discussed in [Pfitzmann and Waidner 1987], there are three types of anony-
mous communication properties that can be provided: sender anonymity, receiver
anonymity, and unlinkability of sender and receiver. Sender anonymity means that
the identity of the party who sent a message is hidden, while its receiver (and the
message itself) might not be. Receiver anonymity similarly means that the identity
of the receiver is hidden. Unlinkability of sender and receiver means that though the
sender and receiver can each be identified as participating in some communication,
they cannot be identified as communicating with each other.

A second aspect of anonymous communication is the attackers against which
these properties are achieved. The attacker might be an eavesdropper that can
observe some or all messages sent and received, collaborations consisting of some
senders, receivers, and other parties, or variations of these [Pfitzmann and Waidner
1987].

To these two aspects of anonymous communication, we add a third: the degree
of anonymity. As shown in Figure 1, the degree of anonymity can be viewed as an
informal continuum. For simplicity, below we describe this continuum with respect
to sender anonymity, but it can naturally be extended to receiver anonymity and
unlinkability as well. On one end of the spectrum is absolute privacy: absolute
sender privacy against an attacker means that the attacker can in no way distinguish
the situations in which a potential sender actually sent communication and those
in which it did not. That is, sending a message results in no observable effects for
the attacker. On the other end of the spectrum is provably exposed: the identity
of a sender is provably exposed if the attacker cannot only identify the sender of a
message, but can also prove the identity of the sender to others.

For the purposes of this paper, the following three intermediate points of this
spectrum are of interest, listed from strongest to weakest.

—Beyond suspicion: A sender’s anonymity is beyond suspicion if though the
attacker can see evidence of a sent message, the sender appears no more likely to
be the originator of that message than any other potential sender in the system.

—Probable innocence: A sender is probably innocent if, from the attacker’s
point of view, the sender appears no more likely to be the originator than to not
be the originator. This is weaker than beyond suspicion in that the attacker may
have reason to expect that the sender is more likely to be responsible than any
other potential sender, but it still appears at least as likely that the sender is not

4 ·

responsible.

—Possible innocence: A sender is possibly innocent if, from the attacker’s point
of view, there is a nontrivial probability that the real sender is someone else.

It is possible to describe these intermediate points for receiver anonymity and
sender/receiver unlinkability, as well. When necessary, we define these interme-
diate points more precisely.

Which degree of anonymity suffices for a user obviously depends on the user and
her circumstances. Probable innocence sender anonymity should prevent many
types of attackers from acting on their suspicions (therefore avoiding many abuses,
e.g., cited in [Miller 1997]) due to the high probability that those suspicions are
incorrect. However, if the user wishes to avoid any suspicion whatsoever—including
even suspicions not sufficiently certain for the attacker to act upon—then she should
insist on beyond suspicion sender anonymity.

The default degree of anonymity on the web for most information and attackers
is exposed, as described in Section 1. All recent versions of Netscape Navigator and
Internet Explorer are configured to automatically identify the client computer to
web servers, by passing information including the IP address and the host platform
in request headers.

2.2 What Crowds achieves

As described in Section 1, our system consists of a dynamic collection of users,
called a crowd. These users initiate web requests to various web servers (and receive
replies from them), and thus the users are the “senders” and the servers are the
“receivers”. We consider the anonymity properties provided to an individual user
against three distinct types of attackers:

—A local eavesdropper is an attacker who can observe all (and only) communi-
cation to and from the user’s computer.

—Collaborating crowd members are other crowd members that can pool their
information and even deviate from the prescribed protocol.

—The end server is the web server to which the web transaction is directed.

The above descriptions are intended to capture the full capabilities of each at-
tacker. For example, collaborating members and the end server cannot eavesdrop
on communication between other members. Similarly, a local eavesdropper cannot
eavesdrop on messages other than those sent or received by the user’s computer.
A local eavesdropper is intended to model, e.g., an eavesdropper on the local area
network of the user, such as an administrator monitoring web usage at a local fire-
wall. However, if the same LAN also serves the end server, then the eavesdropper
is effectively global, and we provide no protections against it.

The security offered against each of these types of attackers is summarized in
Table 1 and justified in the remainder of the paper. As indicated by the omission of
an “unlinkability of sender and receiver” column from this table, our system serves
primarily to hide the sender or receiver from the attacker. In this table, n denotes
the number of members in the crowd (for the moment we treat this as static) and
pf > 1/2 denotes the probability of forwarding, i.e., when a crowd member receives
a request, the probability that it forwards the request to another member, rather

· 5

Table 1. Anonymity properties provided by Crowds

Attacker Sender anonymity Receiver anonymity

local eavesdropper exposed P (beyond suspicion) −→
n→∞

1

c collaborating members, probable innocence P (absolute privacy) −→
n→∞

1

n ≥
pf

pf−1/2
(c + 1) P (absolute privacy) −→

n→∞
1

end server beyond suspicion N/A

than submitting it to the end server. (pf is explained more fully in Section 4.) The
boldface claims in the table—i.e., probable innocence sender anonymity against
collaborating members and beyond suspicion sender anonymity against the end
server—are guarantees. The probability of beyond suspicion receiver anonymity
against a local eavesdropper, on the other hand, only increases to one asymptotically
as the crowd size increases to infinity. Put another way, if the local eavesdropper is
sufficiently lucky, then it observes events that expose the receiver of a web request,
and otherwise the receiver is beyond suspicion. However, the probability that it
views these events decreases as a function of the size of the crowd. Similarly, a
sender’s assurance of absolute privacy against collaborating members also holds
asymptotically with probability one as crowd size grows to infinity (for a constant
number of collaborators). Thus, if the collaborators are unlucky, users achieve
absolute privacy. We provide a more careful treatment of these notions in Section 5.

Of course, against an attacker that is comprised of two or more of the attackers
described above, our system yields degrees of sender and receiver anonymity that
are the minimum among those provided against the attackers present. For example,
if a local eavesdropper and the end server to which the user’s request is destined
collaborate in an attack, then our techniques achieve neither sender anonymity nor
receiver anonymity. Another caveat is that all of the claims of sender and receiver
anonymity in this section, and their justifications in the remainder of this paper,
require that neither message contents themselves nor a priori knowledge of sender
behavior give clues to the sender’s or receiver’s identity.

2.3 What Crowds does not achieve

Crowds makes no effort to defend against denial-of-service attacks by rogue crowd
members. A crowd member could, e.g., accept messages from other crowd mem-
bers and refuse to pass them along. In our system, such denial-of-service can result
from malicious behavior, but typically does not result if (the process representing)
a crowd member fails benignly or leaves the crowd. As a result, these attacks
are detectable. More difficult to detect are active attacks where crowd members
substitute wrong information in response to web requests that they receive from
other crowd members. Such attacks are inherent in any system that uses interme-
diaries to forward unprotected information, but fortunately they cannot be utilized
to compromise anonymity directly.

3. RELATED WORK

There are two basic approaches previously proposed for achieving anonymous web
transactions. The first approach is to interpose an additional party (a proxy) be-

6 ·

tween the sender and receiver to hide the sender’s identity from the receiver. Exam-
ples of such proxies include the Anonymizer (http://www.anonymizer.com/) and
the Lucent Personalized Web Assistant [Gabber et al. 1997] (http://lpwa.com).
Crowds provides protection against a wider range of attackers than proxies do.
In particular, proxy-based systems are entirely vulnerable to a passive attacker in
control of the proxy, since the attacker can monitor and record the senders and
receivers of all communication. Our system presents no single point at which a
passive attack can cripple all users’ anonymity. In addition, a proxy is typically
a single point of failure; i.e., if the proxy fails, then anonymous browsing cannot
continue. In Crowds, no single failure discontinues all ongoing web transactions.

A second approach to achieving anonymous web transactions is to use a mix
[Chaum 1981]. A mix is actually an enhanced proxy that, in addition to hiding
the sender from the receiver, also takes measures to provide sender and receiver
unlinkability against a global eavesdropper. It does so by collecting messages of
equal length from senders, cryptographically altering them (typically by decrypt-
ing them with its private key), and forwarding the messages to their recipients in a
different order. These techniques make it difficult for an eavesdropper to determine
which output messages correspond to which input messages. A natural extension
is to interpose a sequence of mixes between the sender and receiver [Chaum 1981].
A sequence of mixes can tolerate colluding mixes, as any single correctly-behaving
mix server in the sequence prevents an eavesdropper from linking the sender and
receiver. Mixes have been implemented to support many types of communication,
for example electronic mail (e.g., [Gulcu and Tsudik 1996]), ISDN service [Pfitz-
mann et al. 1991], and general synchronous communication (including web brows-
ing) [Syverson et al. 1997].

The properties offered by Crowds is different from those offered by mixes. As
described above, Crowds provide (probable innocence) sender anonymity against
collaborating crowd members. In contrast, in the closest analog to this attack in
typical mix systems—i.e., a group of collaborating mix servers—mixes do not pro-
vide sender anonymity but do ensure sender and receiver unlinkability [Pfitzmann
and Waidner 1987]. Another difference is that mixes provide sender and receiver
unlinkability against a global eavesdropper. Crowds does not provide anonymity
against global eavesdroppers. However, our intention is for a crowd to span mul-
tiple administrative domains, where the existence of a global eavesdropper is un-
likely. Another difference is that mixes typically rely on public key encryption,
the algebraic properties of which have been exploited to break some implementa-
tions [Pfitzmann and Pfitzmann 1990].

Crowds’ unique properties admit very efficient implementations in comparison to
mixes. With mixes, the length of a message routed through a mix network grows
proportionally to the number of mixes through which it is routed, and the mix net-
work must pad messages to fixed lengths and generate decoy messages to foil traffic
analysis. Moreover, in a typical mix implementation, routing a message through
a sequence of n mixes incurs a cost of n public key encryptions and n private key
decryptions on the critical path of the message, which are comparatively expensive
operations. Thus, since the unlinkability provided by mixes is tolerant of up to n−1
mixes colluding, increasing n improves anonymity but hurts performance. Privacy
in Crowds can similarly be enhanced by increasing the average number of times a

· 7

request is forwarded among members before being submitted to the end server, but
this should impact performance less because there are no public/private key oper-
ations, no inflation of message transmission lengths (beyond a small, constant-size
header), and no decoy messages needed.

Another performance advantage of Crowds is that since each user actively partic-
ipates in the function of the crowd, the throughput of a crowd grows as a function
of the number of users. In fact, we show in Section 7 that a crowd can scale al-
most limitlessly (in theory), in the sense that the load on each user’s computer is
expected to remain roughly constant as new users join the crowd. With a fixed
network of mixes, the load of each server increases proportionally to the number of
users, with a resulting linear decrease in throughput.

4. CROWD OVERVIEW

As discussed previously, a crowd can be thought of as a collection of users. A user
is represented in a crowd by a process on her computer called a jondo (pronounced
“John Doe” and meant to convey the image of a faceless participant). The user (or
a local administrator) starts the jondo on the user’s computer. When the jondo is
started, it contacts a server called the blender to request admittance to the crowd.
If admitted, the blender reports to this jondo the current membership of the crowd
and information that enables this jondo to participate in the crowd. We defer
further discussion of the blender and crowd membership maintenance to Section 8.

The user selects this jondo as her web proxy by specifying its host name and
port number in her web browser as the proxy for all services. Thus, any request
coming from the browser is sent directly to the jondo.1 Upon receiving the first user
request from the browser, the jondo initiates the establishment of a random path of
jondos that carries its users’ transactions to and from their intended web servers.
More precisely, the jondo picks a jondo from the crowd (possibly itself) at random,
and forwards the request to it. When this jondo receives the request, it flips a
biased coin to determine whether or not to forward the request to another jondo;
the coin indicates to forward with probability pf . If the result is to forward, then
the jondo selects a random jondo and forwards the request to it, and otherwise the
jondo submits the request to the end server for which the request was destined. So,
each request travels from the user’s browser, through some number of jondos, and
finally to the end server. A possible set of such paths is shown in Figure 2. In this
figure, the paths are 1 → 5 → server; 2 → 6 → 2 → server; 3 → 1 → 6 → server;
4 → 4 → server; 5 → 4 → 6 → server; and 6 → 3 → server. Subsequent requests
initiated at the same jondo follow the same path (except perhaps going to a different
end server), and server replies traverse the same path as the requests, only in reverse.

A pseudocode description of a jondo is presented in Figure 3. This figure describes
a thread of execution that is executed per received request. This description uses
client-server terminology, where one jondo is a client of its successor on the path.

1The services that must be proxied include Gopher, FTP, HTTP and SSL. Otherwise, e.g., FTP

requests triggered by downloading a web page would not go through the crowd, and would thus
reveal the user’s IP address to the end server. Java and ActiveX should be disabled in the browser

as well, because a Java applet or ActiveX control embedded in a retrieved web page could connect
back to its server directly and reveal the user’s IP address to that server.

8 ·

Crowd Web Servers

2

3

4

2

6

1

3

6

4

5

5

1

Fig. 2. Paths in a crowd (the initiator and web server of each path are labeled the same)

For each path, indicated by a path id, the value next[path id] is the next jondo on
the path. To assign next jondos for paths, each jondo maintains a set Jondos of
jondos that it believes to be active (itself included). When it chooses to direct the
path to another jondo, it selects the next jondo uniformly at random from this set
(lines 6, 16, and 26); i.e., “←R S” denotes selection from the set S uniformly at
random. Subsequent sections shed greater light on the operation of a jondo and
the pseudocode description of Figure 3.

For technical reasons, it is convenient for the jondo at each position in a path to
hold a different path identifier for the path. That is, if a jondo receives a request
marked with path id from its predecessor in a path, then it replaces path id with a
different path identifier stored in translate[path id] before forwarding the request to
its successor (if a jondo). This enables a jondo that occupies multiple positions on a
path to act independently in each position: if the path id remained the same along
the path, then the jondo would behave identically each time it received a message
on the path, resulting in an infinite loop. Path identifiers should be unique; in our
present implementation, new path id() (lines 5 and 15) returns a random 128-bit
value.

Omitted from the description in Figure 3 is that fact that all communication
between any two jondos is encrypted using a key known only to the two of them.
Encryption keys are established as jondos join the crowd, as is discussed in Section 8.

5. SECURITY ANALYSIS

In this section we consider the question of what information an attacker can learn
about the senders and receivers of web transactions, given the mechanisms we de-
scribed in Section 4. The types of attackers we consider were described in Section 2.
Our analysis begins with the two attackers for which analysis is more straightfor-

· 9

(1) client,request ← receive request()
(2) if (client = browser)
(3) sanitize(request) /* strip cookies and identifying headers */
(4) if (my path id = ⊥) /* if my path id is not initialized ... */
(5) my path id ← new path id()
(6) next[my path id] ←R Jondos

(7) forward request(my path id)
(8) else /* client is a jondo */
(9) path id ← remove path id(request) /* remove “incoming” path id */
(10) if (translate[path id] = ⊥) /* “incoming” path id is new */
(11) coin ← coin flip(pf) /* tails with probability pf */
(12) if (coin = heads)
(13) translate[path id] ← ‘submit’
(14) else
(15) translate[path id] ← new path id() /* set “outgoing” path id */
(16) next[translate[path id]] ←R Jondos /* select next jondo at random */
(17) if (translate[path id] = ‘submit’)
(18) submit request()
(19) else
(20) forward request(translate[path id])

(21) subroutine forward request(out path id)
(22) send out path id||request to next[out path id]
(23) reply ← await reply(∞) /* wait for reply or recognizable jondo failure */
(24) if (reply = ‘jondo failed’) /* jondo failed */
(25) Jondos ← Jondos \ {next[out path id]} /* remove the jondo */
(26) next[out path id] ←R Jondos /* assign a new random jondo for this path */
(27) forward request(out path id) /* try again */
(28) else /* received reply from jondo */
(29) send reply to client

(30) subroutine submit request ()
(31) send request to destination(request) /* send to destination web server */
(32) reply ← await reply(timeout) /* wait for reply, timeout, or server failure */
(33) send reply to client /* send reply or error message to client */

Fig. 3. Pseudocode description of a jondo

ward, namely a local eavesdropper and the end server. This is followed by an
analysis of crowd security versus collaborating jondos.

5.1 Local eavesdropper

Recall that a local eavesdropper is an attacker that can observe all (and only)
communication emanating from an individual user’s computer. When this user
initiates a request, the fact that she did so is exposed to the local eavesdropper,
since we make no effort to hide correlations between inputs to and outputs from
the initiating computer. That is, the local eavesdropper observes that a request
output by the user’s computer did not result from a corresponding input. Thus, we
offer no sender anonymity against a local eavesdropper.

The mechanisms we described do, however, typically prevent a local eavesdropper
from learning the intended receiver of a request, because every message forwarded
on a path, except for the final request to the end server, is encrypted. Thus, while
the eavesdropper is able to view any message emanating from the user’s computer,
it only views a message submitted to the end server (or equivalently a plaintext
message containing the end server’s address) if the user’s jondo ultimately submits
the user’s request itself. Since the probability that the user’s jondo ultimately sub-
mits the request is 1/n where n is the size of the crowd when the path was created,
the probability that the eavesdropper learns the identity of the receiver decreases

10 ·

as a function of crowd size. Moreover, when the user’s jondo does not ultimately
submit the request, the local eavesdropper sees only the encrypted address of the
end server, which we suggest yields receiver anonymity that is (informally) beyond
suspicion. Thus, P (beyond suspicion) −→

n→∞
1 for receiver anonymity.

5.2 End servers

We now consider the security of our system against an attack by the end server only.
Because the web server is the receiver, obviously receiver anonymity is not possible
against this attacker. However, the anonymity for the path initiator is quite strong.
In particular, since the path initiator first forwards to another jondo when creating
its path (see Section 4), the end server is equally likely to receive the initiator’s
requests from any crowd member. That is, from the end server’s perspective, all
crowd members are equally likely to have initiated the request, and so the actual
initiator’s sender anonymity is beyond suspicion. It is interesting to note that this
result, as opposed to that for collaborating jondos below, does not depend on pf

(the probability of forwarding; see Section 4). Indeed, increasing expected path
length offers no additional assurance of anonymity against an end server.

5.3 Collaborating jondos

Consider a set of collaborating (corrupted) jondos in the crowd. A single malicious
jondo is simply a special case of this attacker, and our analysis applies to this case as
well. Because each jondo can observe plaintext traffic on a path routed through it,
any such traffic, including the address of the end server, is exposed to this attacker.
The question we consider here is if the attacker can determine who initiated the
path.

To be precise, consider any path that is initiated by a non-collaborating member
and on which a collaborator occupies a position. The goal of the collaborators is
to determine the member that initiated the path. Assuming that the contents of
the communication do not suggest an initiator, the collaborators have no reason
to suspect any member other than the one from which they immediately received
it, i.e., the member immediately preceding the first collaborator on the path. All
other noncollaborating members are each equally likely to be the initiator, but
are also obviously less likely to be the initiator than the collaborators’ immediate
predecessor. We now analyze how confident the collaborators can be that their
immediate predecessor is in fact the path initiator.

Let Hk, k ≥ 1, denote the event that the first collaborator on the path occupies
the kth position on the path, where the initiator itself occupies the 0th position
(and possibly others), and define Hk+ = Hk ∨Hk+1 ∨Hk+2 ∨ . . . Let I denote the
event that the first collaborator on the path is immediately preceded on the path
by the path initiator. Note that H1⇒ I, but the converse is not true, because the
initiating jondo might appear on the path multiple times. Given this notation, the
collaborators now hope to determine P (I|H1+), i.e., given that a collaborator is on
the path, what is the probability that the path initiator is the first collaborator’s
immediate predecessor? Refining our intuition from Section 2, we say that the path
initiator has probable innocence if this probability is at most 1/2.

Definition 5.1. The path initiator has probable innocence (with respect to sender

· 11

anonymity) if P (I|H1+) ≤ 1/2.

In order to yield probable innocence for the path initiator, certain conditions
must be met in our system. In particular, let pf > 1/2 be the probability of
forwarding in the system (see Section 4), let c denote the number of collaborators
in the crowd, and let n denote the total number of crowd members when the path
is formed. The theorem below gives a sufficient condition on pf , c, and n to ensure
probable innocence for the path initiator.

Theorem 5.2. If n ≥
pf

pf−1/2
(c + 1), then the path initiator has probable inno-

cence against c collaborators.

Proof. We want to show that P (I|H1+) ≤ 1/2 if n ≥
pf

pf−1/2(c + 1). First note

that

P (Hi) =

(

pf (n− c)

n

)i−1
(c

n

)

This is due to the fact that in order for the first collaborator to occupy the ith
position on the path, the path must first wander to i−1 noncollaborators (each time
with probability n−c

n), each of which chooses to forward the path with probability
pf , and then to a collaborator (with probability c

n). The next two facts follow
immediately from this.

P (H2+) =
c

n

∞
∑

k=1

(

pf (n− c)

n

)k

=
(c

n

)

(

pf (n−c)
n

1−
pf (n−c)

n

)

=
pfc(n − c)

n2 − pfn(n− c)

P (H1+) =
c

n

∞
∑

k=0

(

pf (n− c)

n

)k

=
(c

n

)

(

1

1−
pf (n−c)

n

)

=
c

n− pf (n− c)

Other probabilities we need are P (H1) = c
n , P (I|H1) = 1, and P (I|H2+) = 1

n−c .
The last of these follows from the observation that if the first collaborator on the
path occupies only the second or higher position, then it is immediately preceded
on the path by any noncollaborating member with equal likelihood. Now, P (I) can
be captured as

P (I) = P (H1)P (I|H1) + P (H2+)P (I|H2+) =
c(n − npf + cpf + pf)

n2 − pfn(n− c)
.

Then, since I ⇒ H1+ we get

P (I|H1+) =
P (I ∧H1+)

P (H1+)
=

P (I)

P (H1+)
=

n− pf (n − c− 1)

n

So, if n ≥
pf

pf−1/2
(c + 1), then P (I|H1+) ≤ 1

2
.

As a result of Theorem 5.2, if pf = 3
4
, then probable innocence is guaranteed as

long as n ≥ 3(c + 1). More generally, Theorem 5.2 implies a tradeoff between the
length of paths (i.e., performance) and ability to tolerate collaborators. That is, by
making the probability of forwarding high, the fraction of collaborators that can be
tolerated approaches half of the crowd. On the other hand, making the probability

12 ·

of forwarding close to one-half decreases the fraction of collaborators that can be
tolerated.

The value of P (H1+) derived in the proof of Theorem 5.2 shows that P (H1+)→ 0
as n→∞ if c, pf are held constant. Assuming that collaborators cannot observe a
path on which they occupy no positions, it follows that P (absolute privacy) −→

n→∞
1

for sender anonymity and receiver anonymity. The rate of this growth, however,
can be slow if pf is large.

5.3.1 Timing attacks. So far the analysis of security against collaborating jondos
has not taken timing attacks into account. The possibility of timing attacks in
our system results from the structure of HTML, the language in which web pages
are written. An HTML page can include a URL (e.g., the address of an image)
that, when the page is retrieved, causes the user’s browser to automatically issue
another request.2 It is the immediate nature of these requests that poses the great-
est opportunity for timing attacks by collaborating jondos. Specifically, the first
collaborating jondo on a path, upon returning a web page on that path containing
a URL that will be automatically retrieved, can time the duration until it receives
the request for that URL. If the duration is sufficiently short, then this could reveal
that the collaborator’s immediate predecessor is the initiator of the request.

In our present implementation, we eliminate such timing attacks as follows. When
a jondo receives an HTML reply to a request that it either received directly from a
user’s browser or submitted directly to an end server—i.e., the jondo is either the
user’s (i.e., the path initiator) or the last jondo on the path—it parses the HTML
page to identify all URLs that the user’s browser will automatically request as a
result of receiving this reply. The last jondo on the path requests these URLs and
sends them back along the same path on which the original request was received.
The user’s jondo, upon receiving requests for these URLs from the user’s browser,
does not forward these requests on the path, but rather simply waits for the URLs’
contents to arrive on the path and then feeds them to the browser. In this way,
other jondos on the path never see the requests that are generated by the browser,
and thus cannot glean timing information from them. Note that misbehavior by
the last jondo on the path (or any intermediate jondo) can result only in a denial of
service, and not in a successful timing attack. In particular, if an attacking jondo
inserts an embedded URL into the returning page, the user’s jondo will identify it
and expect the URL contents to arrive, but will not forward the request for the
URL that the user’s browser initiates.

This mechanism prevents jondos other than the user’s from observing requests
automatically generated due to the retrieval of a page. Therefore, all requests ob-
servable by attacking jondos are generated by explicit user action. It is conceivable
that a user’s response to a page (e.g., clicking on a contained URL), if sufficiently
rapid, could reveal to the jondo in the first position on the path that its predecessor
is the initiator of the path, in a way similar to how an automatic request might.
However, the user’s response would need to be extremely fast—typically within a

2These URLs are contained in, for example, the src attributes of <embed>, <frame>, <iframe>,

, <input type=image>, and <script> tags, the background attributes of <body>, <table>,
<tr> and <td> tags, the content attributes of <meta> tags, and others.

· 13

fraction of a second of viewing the page—to risk revealing this information. We
expect that such response times are uncharacteristic of human browsing, and can
be made even less so by educating users of this risk. If, however, this presumption
turns out to be incorrect, the user’s jondo could insert a random delay per user-
generated request, thereby decreasing the chances of revealing this information to
virtually zero.

The primary drawback of our present approach to defending against timing at-
tacks is that it is not easily compatible with some web technologies. For example,
web pages that contain executable scripts, e.g., written in JavaScript, can make it
difficult for a jondo to identify in advance the URLs that a browser will automat-
ically request as a result of interpreting those pages. One way to address this is
for the user’s jondo to delay requests received from the browser immediately after
feeding the browser a page containing JavaScript. A more foolproof defense, which
we recommend, is for the user to disable JavaScript in the browser when brows-
ing via Crowds; this can be done easily via a preference menu in most browsers.
Another technology that presents some difficulties is SSL, a protocol by which web
pages can be encrypted during transport. To enable both the user’s jondo and
the last jondo on the path to parse SSL-retrieved pages, the SSL connection to
the web server must be made by the last jondo on the path. In this case, HTTP
communication is not protected from jondos on the path, but is protected from
other eavesdroppers because all communication between jondos is encrypted. At
the time of this writing, however, SSL is not supported by Crowds.

5.3.2 Static paths. Early in the design of Crowds, we were tempted to make paths
much more dynamic than they are in the present system, e.g., by having a jondo use
a different path for each of its users, per time period, or even per user request. The
advantages of more dynamic paths include the potential for better performance
via load balancing among the crowd. In this section, however, we caution that
dynamic paths tends to decrease the anonymity properties provided by the system
against collaborating jondos. The reason is that the probable innocence offered by
Theorem 5.2 vanishes if the collaborators are able to link many distinct paths as
being initiated by the same jondo. Collaborating jondos might be able to link paths
initiated by the same unknown jondo based on related path content or timing of
communication on paths. To prevent this, we made paths static, so the attacker
simply does not have multiple paths to link to the same jondo.

To see why multiple linked paths initiated by the same jondo could compromise
its user’s anonymity, note that collaborating jondos have a higher probability of
receiving each path initiation message (i.e., the first request on the path) from
the initiator of the path than from any other individual member (see the proof of
Theorem 5.2). Multiple paths initiated by the same user’s jondo therefore pinpoint
that jondo as the one from which the collaborators most often receive the initiating
messages. Put another way, if the collaborators identify paths P1, . . . , Pk from the
same (unknown) initiator, then the expected number of paths on which the first

collaborator is directly preceded by the path initiator is µ = k(
n−pf (n−c−1)

n). By
Chernoff bounds, the probability that the first collaborator is immediately preceded
by the initiator on substantially fewer of these paths is small: the first collaborator
is immediately preceded by the path initiator on fewer than (1 − δ)µ paths with

14 ·

probability only e−µδ2/2 (see [Motwani and Raghavan 1995, Theorem 4.2]). Thus,
the initiator would be identified with high probability.

Again, it is for this reason that a jondo sets up one path for all its users’ com-
munications, and this path is altered only under two circumstances. First, a path
is altered when failures are detected in the path. More specifically, paths are only
rerouted when the failure of a jondo is unmistakenly detected, i.e., when the jondo
executes a fail-stop failure [Schlichting and Schneider 1983]. In our present im-
plementation, such failures are detected by the TCP/IP connection to the jondo
breaking or being refused; a jondo does not reroute a path based on simply timing
out on the subsequent jondo in the path (see line 23 of Figure 3). While this in-
creases our sensitivity to denial-of-service attacks (see Section 2.3), it strengthens
our promise of anonymity to the user.

A reasonable question, however, is whether a malicious jondo on a path can feign
its own failure in hopes that the path will be rerouted through a collaborator,
yielding information that incriminates the path initiator. Fortunately, the answer
is “no.” If a jondo in a path fails (or appears to fail), the path remains the same up
until the predecessor of that faulty jondo, who reroutes the remainder of the path
randomly (line 26 of Figure 3). Since the collaborating jondos cannot distinguish
whether that predecessor is the originator or not, the random choices made by that
predecessor yield no additional information to the collaborators.

The second circumstance in which paths are altered is when new jondos join
the crowd. The motivation for rerouting paths is to protect the anonymity of a
joining jondo: if existing paths remained static, then the joiner’s new path can
be easily attributed to the new jondo when it is formed. Thus, to protect joiners,
all jondos “forget” all paths after new jondos join, and re-establish paths from
scratch. To avoid exposing path initiators to the attack described previously in
this section, joins are grouped into infrequent scheduled events called join commits
(see Section 8). Once a join commit occurs, existing paths are forgotten, and the
newly joined jondos are enabled to participate in the crowd. Batching many joins
into a single join commit limits the number of times that paths are rerouted and thus
the number of paths vulnerable to linkage by collaborators. Moreover, each user
is alerted when a join commit occurs and is cautioned from continuing to browse
content related to what she was browsing prior to the commit, lest collaborators
are attempting to link paths based on that content.

6. PERFORMANCE

In this section we describe the performance of Crowds 1.0. As discussed in Section 3,
performance is one of the motivating factors behind the design of Crowds and, we
believe, a strength of our approach relative to mixes [Chaum 1981] (though there
are few published performance results for mix implementations to which to compare
our results). And, while Crowds performance is already encouraging, it could be
improved further by re-implementing it in a compiled language such as C. Crowds
1.0 is implemented in Perl 5 (a partially interpreted language), which we chose
for its rapid prototyping capabilities and its portability across Unix and Microsoft
platforms.

Results of performance tests on our implementation are shown in Figures 4–5.
In these tests, the source of requests was a Netscape 3.01 browser configured to

· 15

1
2

3
4

5

0
1

2
3

4
5

500

1000

1500

2000

path length

page size (kbytes)

msecs

Path Page size (kbytes)
length 0 1 2 3 4 5

1 288 247 264 294 393 386
2 573 700 900 1157 1369 1384

3 692 945 1113 1316 1612 1748
4 814 1004 1191 1421 1623 1774

5 992 1205 1446 1620 1870 2007

Fig. 4. Response latency (msecs) as a function of path length and page size

allow a maximum of 4 simultaneous network connections. The crowd consisted of
four jondos, each executing on a separate, moderately loaded 150 MHz Sparc 20
running SunOS 4.1.4. The web server was a fairly busy 133 MHz SGI workstation
running Irix 5.3 and an Apache web server. All of these computers are located in
AT&T Labs, and thus are in close network proximity to one another.

Figure 4 shows the mean latency in milliseconds of retrieving web pages of var-
ious sizes (containing no embedded URLs) for various path lengths. Each number
indicates the average duration beginning when the user’s jondo receives the request
from the browser and ending when the page has been written back to the browser.
In this figure, the path length is the number of appearances of jondos on the path.
That is, if a jondo appears k times on a path, then this jondo contributes k to the
total path length. So, for example, in Figure 2, the paths initiated by jondos 1,
4, and 6 are each of length two, and the paths initiated by 2, 3, and 5 are each of
length three.

One observation we can make from Figure 4 is that the latency sharply increases
when the path length increases from one to two. The primary reason for the sharp
increase is that a path length of two is the first length at which encryption of
page contents takes place. In a path of length one (which would be employed
only if there were one crowd member), the user’s jondo acts as a simple proxy
between the browser and end server, to strip away identifying information from
HTTP headers. In a path of length two, however, both the request and reply are

16 ·

passed, and encrypted, between the jondos on the path. To slow the growth of
this latency as the path gets longer, this encryption is performed using a path key,
which is a key shared among all jondos on a path. A path key is created by the
jondo initiating the path, and each jondo on a path forwards it to the next jondo
by encrypting the path key with a key it shares with the next jondo (see Section 8).
The existence of a path key enables requests to be encrypted at the jondo initiating
the path, decrypted by the last jondo in the path, and passed by intermediate jondos
without encrypting or decrypting the requests. Similarly, replies are encrypted at
the last jondo in the path, and decrypted only at the jondo where the path was
initiated. The cryptographic operations are performed using an efficient stream
cipher, allowing some of the encrypting and decrypting streams for the reply to be
generated while the jondos are waiting for the reply from the web server. However,
since even this cipher is implemented in Perl for portability, it remains a bottleneck
in our implementation.

Figure 5 shows the mean latency in milliseconds of retrieving, via paths of various
different lengths, pages containing URLs that are automatically retrieved by the
browser (see Section 5.3.1). In these tests, each embedded URL is the address of a
1-kilobyte image resident on the same server as the page that referenced it. Each
number indicates the average duration beginning when the user’s jondo receives the
initial request from the browser and ending when the jondo finishes writing the page
and all of the images on the page to the browser. It is clear from Figure 5 that the
number of images considerably impacts the latency of responses. Though this is to
be expected in general, this effect is particularly pronounced in our implementation,
and is due primarily to encryption costs. Moreover, returning images on the path
has the effect of serializing their retrieval, which further increases the latency over
that achieved by modern browsers alone (which use several network connections to
retrieve multiple images concurrently).

Because paths (and thus path lengths) are established randomly at run time, the
user cannot choose her path length to predict the request latency she experiences.
However, the expected path length can be influenced by modifying the value pf —
i.e., the probability that a jondo forwards to another jondo versus submitting to
the end server—at all jondos. Specifically, if n > 1, the expected length of a path
is

(1− pf)

∞
∑

k=0

(k + 2)(pf)k = (1− pf)

[

∞
∑

k=0

k(pf)k + 2

∞
∑

k=0

(pf)k

]

= (1− pf)

[

pf

(1− pf)2
+

2

1− pf

]

=
pf

1− pf
+ 2

This suggests that multiple types of crowds should exist: those employing a small pf

for better performance but less resilience to collaborating jondos (see Theorem 5.2),
and those using a large pf to increase security with a cost to performance.

Performance seen in practice may differ from Figures 4 and 5, depending on the
platforms running jondos and the speed of network connectivity between jondos.
In particular, a jondo connected to the Internet via a slow modem link considerably

· 17

1
2

3
4

5

5
10

15
20

25

4000

6000

8000

10000

12000

path length

1-kbyte images

msecs

Path Number of 1-kbyte images
length 5 10 15 20 25

1 2069 4200 5866 7219 8557
2 3313 4915 6101 8195 10994

3 4127 5654 7464 9611 11809
4 4122 6840 8156 10380 11823

5 4508 7644 9388 11889 13438

Fig. 5. Response latency (msecs) as a function of path length and number of embedded images

impacts latencies on paths that use it. Again, this suggests multiple types of crowds,
namely ones containing only jondos connected via fast links, and ones allowing
jondos connected via slower links.

7. SCALE

The numbers in Section 6 give little insight into how performance is affected as
crowd size grows. We do not have sufficient resources to measure the performance
of a crowd involving hundreds of computers, each simultaneously issuing requests.
However, in this section we make some simple analytic arguments to show that the
performance should scale well.

The measure of scale that we evaluate is the expected total number of appearances
that each jondo makes on all paths at any point in time. For example, if a jondo
occupies two positions on one path and one position on another, then it makes a
total of three appearances on these paths. Theorem 7.1 says that the each jondo’s
expected number of appearances on paths is virtually constant as a function of the
size of the crowd. This suggests that crowds should be able to grow quite large.

Theorem 7.1. In a crowd of size n, the expected total number of appearances

that any jondo makes on all paths is O
(

1
(1−pf)2 (1 + 1

n)
)

.

Proof. Let n be the size of the crowd. To compute the load on a jondo, say J ,
we begin by computing the distribution of the number of appearances made by J

18 ·

on each path. Let Ri, i > 0, denote the event that this path reaches J exactly i
times (not counting the first if J initiated the path). Also, define R0 as follows:

P (R0) = (1− pf)

∞
∑

k=0

(pf)k

(

n− 1

n

)k

= (1− pf)

(

1

1− pf
n−1

n

)

Intuitively, P (R0) is the probability that the path, once it has reached J , will never
reach J again. Then, we have

P (R1) =
1

n
P (R0)

∞
∑

k=0

(pf)
k

(

n− 1

n

)k

= (1− pf)

(

1

n

)(

1

1− pf
n−1

n

)2

P (R2) =
1

n
pfP (R1)

∞
∑

k=0

(pf)k

(

n− 1

n

)k

< (1− pf)

(

1

n

)2(
1

1− pf
n−1

n

)3

...

P (Ri) =
1

n
pf P (Ri−1)

∞
∑

k=0

(pf)
k

(

n− 1

n

)k

< (1− pf)

(

1

n

)i(
1

1− pf
n−1

n

)i+1

From this, the expected number of appearances that J makes on a path formed by
another jondo is bounded from above by:
(

1− pf

1− pf
n−1

n

)

[

∞
∑

k=0

k

(

1

n− pf (n− 1)

)k
]

=

(

1− pf

1− pf
n−1

n

)(

n− pf (n− 1)

(1− n + pf (n− 1))2

)

<
n− pf (n− 1)

(1 − n + pf (n− 1))2

=
1

(1 − pf)(n − 1)
+

1

((1− pf)(n − 1))2

<
2

(1 − pf)2(n − 1)

Therefore, the expected number of appearances that J makes on all paths is
bounded from above by:

2n

(1− pf)2(n − 1)
=

2

(1− pf)2

(

1 +
1

n− 1

)

8. CROWD MEMBERSHIP

The membership maintenance procedures of a crowd are those procedures that de-
termine who can join the crowd and when they can join, and that inform members of
the crowd membership. We discuss mechanisms for maintaining crowd membership
in Section 8.1, and policies regarding who can join a crowd in Section 8.2.

8.1 Mechanism

There are many schemes that could be adopted to manage membership of the crowd.
Existing group membership protocols, tolerant either of benign (e.g., [Cristian 1991;

· 19

Ricciardi and Birman 1991; Moser et al. 1991]) or malicious [Reiter 1996b] faults,
can be used for maintaining a consistent view of the membership among all jondos,
and the members could use voting to determine whether an authenticated prospec-
tive member should be admitted to the crowd. Indeed, a similar approach has been
adopted in prior work on secure process groups [Reiter et al. 1994]. While providing
robust distributed solutions, these approaches have the disadvantages of incurring
significant overhead and of providing semantics that are arguably too strong for the
application at hand. In particular, a hallmark of these approaches is a guaranteed
consistent view of the group membership among the group members, whereas it is
unclear whether such a strong guarantee is required here.

In our present implementation we have therefore opted for a simpler, centralized
solution. Membership in a crowd is controlled and reported to crowd members by a
server called the blender. To make use of the blender (and thus the crowd), the user
must establish an account with the blender, i.e., an account name and password
that the blender stores. When the user starts a jondo, the jondo and the blender
use this shared password to authenticate each other’s communication. As a result
of that communication (and if the blender accepts the jondo into the crowd; see
Section 8.2), the blender adds the new jondo (i.e., its IP address, port number,
and account name) to its list of members, and reports this list back to the jondo.
In addition, the blender generates and reports back a list of shared keys, each of
which can be used to authenticate another member of the crowd. The blender
then sends each key to the other jondo that is intended to share it (encrypted
under the account password for that jondo) and informs the other jondo of the new
member. At this point all members are equipped with the data they need for the
new member to participate in the crowd. However, to protect itself from attacks
described in Section 5.3.2, the new member refrains from doing so until it receives
a join “commit” message from the blender. This is discussed further in Section 8.2.

Each member maintains its own list of the crowd membership. This list is ini-
tialized to that received from the blender when the jondo joins the crowd, and
is updated when the jondo receives notices of new or deleted members from the
blender. The jondo can also remove jondos from its list of crowd members, if it
detects that those jondos have failed (see line 25 of Figure 3). This allows for each
jondo’s list to diverge from others’ if different jondos have detected different failures
in the crowd. This appears to have little qualitative effect on our security analysis
of Section 5, unless attackers are able to prevent communications between correct
jondos to the extent that each removes the correct jondos from its list of members.

A disadvantage of this approach to membership maintenance is that the blender is
a trusted third party for the purposes of key distribution and membership reporting.
Techniques exist for distributing trust in such a third party among many “third
party replicas”, in a way that the corruption of some fraction of the replicas can
be tolerated (e.g., [Deswarte et al. 1991; Gong 1993; Reiter 1996a]). In its present,
non-replicated form, however, the blender is best executed on a secure computer,
e.g., with login access available only at the console. Even though it is a trusted
third party for some functions, note that users’ HTTP communication is not routed
through the blender, and thus a passive attack on the blender does not immediately
reveal users’ web transactions (unlike the Anonymizer; see Section 3). Moreover,
the failure of the blender does not interfere with ongoing web transactions (again

20 ·

unlike the Anonymizer). We anticipate that in future versions of Crowds, jondos
will establish shared keys using Diffie-Hellman key exchange [Diffie and Hellman
1976], where the blender serves only to distribute the Diffie-Hellman public keys
of crowd members. This will eliminate the present reliance on the blender for key
generation.

8.2 Policy

It is important in light of Section 5 that some degree of control over crowd mem-
bership be maintained. First, if anyone can add arbitrarily many jondos to a
crowd, then a single attacker could launch enough collaborating jondos so that
n <

pf

pf−1/2(c + 1), at which point Theorem 5.2 no longer offers protection. Sec-

ond, since joins cause paths to be re-routed (see Section 5.3.2), if joins are allowed
to occur frequently and without controls, then paths may be re-routed sufficiently
frequently to allow collaborating jondos to mount the correlation attack described
in Section 5.3.2. In our present implementation, the blender serves as the point at
which joins to the crowd are controlled.

To address the latter concern, the blender batches joins together so they occur
in one scheduled, discrete event called a join commit. The schedule of join commits
is a configurable parameter of the blender, but we envision that one commit per
day should typically suffice. The blender informs all crowd members of the join
commit, at which point all newly joined members are enabled to participate in the
crowd and all old members reset their paths, as described in Section 5.3.2.

The need to limit the number of collaborators that join the crowd suggests that
two different types of crowds will exist. The first type would consist of a relatively
small (e.g., 10–30) collection of individuals who, based on personal knowledge of
each other, agree to form a crowd together. Each member would be allowed to
include at most one jondo in the crowd. More precisely, each person would be given
one account, and only one jondo per account would be allowed. Each member’s
personal knowledge of the other members enables her to trust that sufficiently few
members collaborate to ensure that n ≥

pf

pf−1/2(c + 1).

The second type of crowd would be a much larger “public” crowd, admitting
members that might not be known to a substantial fraction of the present member-
ship. The privacy offered by the crowd against collaborating members would rely on
the size of the crowd being so large that an attack aimed at making n <

pf

pf−1/2(c+1)

would require considerable effort to go undetected. That is, by limiting each user
to one account (e.g., the blender administrator sets up an account for a user only
after receiving a written, notarized request from that user) and each account to
one jondo, and by monitoring and limiting the number of jondos on any one net-
work (using IP address), the attacker would be forced to launch jondos using many
different identities and on many different networks to succeed.

9. USER INTERFACE

In our present implementation, there are several ways in which a user interacts with
her jondo, i.e., the jondo that serves as the HTTP proxy of her browser.

(1) The user can issue a crowd query by appending ?crowd? to the end of any URL
that she requests. This returns a list of all of the active jondos in the crowd,

· 21

Fig. 6. Crowd query: A crowd query shows the jondos that are available, and indicates which
one is acting as the user’s HTTP proxy for the browser.

according to her jondo. The information includes each jondo’s account name,
its IP address and its port number. An example is shown in Figure 6.

(2) When a user is browsing via the crowd, the word Crowd: is prepended to the
title of each page. Thus, a user can check whether or not she is using the crowd
by looking at the title of the documents in the browser. Of course, a web server
could add this word to the title of any document to fool the user, and so this
alone should not be relied upon.

(3) Crowds offers other informational pages to the user via the browser, similar to
Figure 6. For example, Crowds alerts the user when a join commit occurs.

The savvy Crowds user can also fine-tune her jondo’s behavior by way of a
configuration file that defines the behavior of her jondo. This configuration file
includes, for example, parameter settings to allow or disallow the passage of cookies,
i.e., data that a web server can download to the user’s browser and that the user’s
browser will include in subsequent requests to that server. By default, a jondo
strips all cookies out of requests it receives from browsers in order to better protect
its users’ privacy, but the jondo can be configured to let cookies pass. Other
configurable parameters of a jondo include, for example, the host and port of the
crowd blender, and the account name and password under which the jondo requests

22 ·

admission to the crowd. In the future, other configuration options may be added
to give the user further control over her jondo. For example, a parameter could be
included to define a threshold so that if the number of crowd members drops below
this value, then the user is alerted to this fact. Other parameters could be included
that specify which HTTP headers are allowed to pass in requests (presently a jondo
strips away any that contain information characterizing the user or her platform) or
what types of content (e.g., Java, JavaScript) are allowed to pass into the browser.

10. FIREWALLS

Firewalls present a problem for Crowds. Like all network servers, jondos are iden-
tified by their IP address and port number. Most corporate firewalls do not allow
incoming connections on ports other than a few well-known ones. Thus, a fire-
wall will generally prevent a jondo outside the firewall from connecting to another
behind the firewall. For this reason, firewalls represent a barrier to wide-scale
inter-corporation adoption of Crowds.

Since most firewalls are configured to allow outgoing connections on any port,
it is still possible for a jondo to initiate a path that goes outside the firewall and
eventually to web servers. However, the firewall gives the first jondo on the path
outside that domain a way to verify that the initiating computer resides within the
domain: it simply tries to open a connection back to its predecessor on the path,
and if that fails, then the path must have originated in the predecessor’s domain.
Thus, a crowd member behind a firewall is not offered the same anonymity as those
that are not.

It is conceivable that if Crowds becomes widespread, and there is demand for a
special reserved port, that firewalls can open this port and allow jondos to commu-
nicate. Until then, Crowds will be most useful across academic institutions, as a
service provided by Internet service providers, and within large corporations.

11. CONCLUSION

In this paper we have presented a novel approach to protecting users’ privacy while
retrieving information on the world-wide-web, and a system that implements it.
Our approach works by grouping web users into a geographically diverse collection,
called a crowd, which retrieves information on its users’ behalf by way of a simple
randomized routing protocol. Using degrees of anonymity, we have characterized
the anonymity properties provided by this protocol against several classes of at-
tackers. We have also described the Crowds system that we have implemented, the
measures it takes to defend against various attacks resulting from the way the web
works today, and the performance, scalability, and limitations of our system. The
principles behind our system can be more broadly applied for anonymizing other
forms of communication.

At the time of this writing, we have distributed over 450 copies of the Crowds
code free-of-charge in response to user requests, and we are maintaining the blender
for an active crowd on the Internet. Information about obtaining the Crowds code
can be found at http://www.research.att.com/projects/crowds.

· 23

Acknowledgements

We thank Gerrit Bleumer, Marc Briceno, Hal Finney, Ian Goldberg, David Gold-
schlag, Raph Levien, Jim McCoy, Fabian Monrose, Michael Reed, Paul Syverson,
and David Wagner for many valuable suggestions regarding Crowds and this paper.

REFERENCES

Brier, S. 1997. How to keep your privacy: Battle lines get clearer. The New York Times ,
January 13, 1997.

Chaum, D. 1981. Untraceable electronic mail, return addresses, and digital pseudonyms.

Communications of the ACM 24, 2 (February), 84–88.

Cristian, F. 1991. Reaching agreement on processor group membership in synchronous

distributed systems. Distributed Computing 4, 175–187.

Deswarte, Y., Blain, L., and Fabre, J. 1991. Intrusion tolerance in distributed com-

puting systems. Proceedings of the 1991 IEEE Symposium on Research in Security and
Privacy , 110–121.

Diffie, W. and Hellman, M. E. 1976. New directions in cryptography. IEEE Transactions

on Information Theory 22, 6.

Gabber, E., Gibbons, P., Matias, Y., and Mayer, A. 1997. How to make personalized

web browsing simple, secure, and anonymous. Proceedings of Financial Cryptography ’97 .

Gong, L. 1993. Increasingavailabilityand security of an authentication service. IEEE Jour-

nal on Selected Areas in Communications 5, 11 (June), 657–662.

Gulcu, C. and Tsudik, G. 1996. Mixing e-mail with BABEL. Symposium on Network and
Distributed System Security , 2–16.

Hickman, K. E. B. and Elgamal, T. 1995. The SSL protocol. Internet draft draft-
hickman-netscape-ssl-01.txt .

Miller, L. 1997. No solitude in cyberspace. USA Today , June 9, 1997.

Moser, L. E., Melliar-Smith, P. M., and Agrawala, V. 1991. Membership algorithms
for asynchronous distributed systems. Proceedings of the 11th International Conference on

Distributed Computing Systems , 480–488.

Motwani, R. and Raghavan, P. 1995. Randomized Algorithms. Cambridge University

Press.

Pfitzmann, A. and Pfitzmann, B. 1990. How to break the direct RSA-implementation of
mixes. Advances in Cryptology—EUROCRYPT ’89 , 373–381.

Pfitzmann, A., Pfitzmann, B., and Waidner, M. 1991. ISDN-mixes: Untraceable com-
munication with very small bandwidth overhead. GI/ITG Conference: Communication in

Distributed Systems , 451–463.

Pfitzmann, A. and Waidner, M. 1987. Networks without user observability. Computers

& Security 2, 6, 158–166.

Reiter, M. K. 1996a. Distributing trust with the Rampart toolkit. Communications of the
ACM 4, 39 (April), 71–74.

Reiter, M. K. 1996b. A secure group membership protocol. IEEE Transactions on Soft-
ware Engineering 1, 22 (January), 31–42.

Reiter, M. K., Birman, K. P., and van Renesse, R. 1994. A security architecture for
fault-tolerant systems. ACM Transactions on Computer Systems 4, 12 (November), 340–

371.

Ricciardi, A. M. and Birman, K. P. 1991. Using process groups to implement failure de-
tection in asynchronous environments. Proceedings of the 10th ACM Symposium on Prin-

ciples of Distributed Computing , 341–351.

Schlichting, R. D. and Schneider, F. B. 1983. Fail-stop processors: An approach to

designing fault-tolerant computing systems. ACM Transactions on Computer Systems 1, 3
(August), 222–238.

Syverson, P. F., Goldschlag, D. M., and Reed, M. G. 1997. Anonymous connections
and onion routing. Proceedings of the 1997 IEEE Symposium on Security and Privacy .

