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Abstract. We present a mix network topology that is based on sparse
expander graphs, with each mix only communicating with a few neigh-
bouring others. We analyse the anonymity such networks provide, and
compare it with fully connected mix networks and mix cascades. We
prove that such a topology is efficient since it only requires the route
length of messages to be relatively small in comparison with the number
of mixes to achieve maximal anonymity. Additionally mixes can resist
intersection attacks while their batch size, that is directly linked to the
latency of the network, remains constant. A worked example of a net-
work is also presented to illustrate how these results can be applied to
create secure mix networks in practise.
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1 Introduction

Mix networks were introduced by Chaum [4] as a technique to provide anony-
mous communications. The messages to be anonymized are relayed by a sequence
of trusted intermediaries, called mixes, to make the task of tracing them through
the network as difficult as possible. Nested layers of encryption and strict length
restrictions are additionally used to make the inputs of each mix node bitwise
unlinkable to its outputs.

Further research into mix networks, has been divided between real time sys-
tems, primarily for web browsing, such as onion routing [12], webmixes [1] or the
freedom network [3], and non real-time systems such as babel [13], mixmaster [18]
and the newer mixminion [6]. Other issues have been the trade off between real
time guarantees and anonymity properties, proper metrics to quantify anonymity
[24, 7], and the importance of cover traffic to maintain anonymity.

In this paper we present and discuss some proposals about the topology that
mix networks might assume. These are on one hand a fully connected graph, on
the other a mix cascade. We then discuss the advantages and disadvantages of a
restricted network topology, that can be modeled as a network corresponding to
a sparse constant degree graph, and analyze it using existing work on expander
graphs. Finally we compare the anonymity and other properties provided by this
new topology against the more traditional ones.
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We prove that such restricted networks scale well in the number of mix
nodes. The route length necessary to provide maximal anonymity grows only
logarithmically in the number of nodes in the network, and the total amount
of genuine traffic required to protect the network against traffic analysis and
intersection attacks grows linearly with the number of mix nodes.

The paper is organized in the following fashion: in section 2 we present pre-
vious work on mix network topologies namely fully connected mix networks and
cascades. We then proceed in section 3 to introduce a new network topology
based on expander graphs and give a brief summary of its advantages. In section
4 we introduce a framework for analyzing mix networks and definitions of pos-
sible attacks. Then in section 5 we analyze the properties of the new expander
graph topology introduced, and in particular the route lengths necessary, the vol-
umes of traffic to resist intersection attacks and its resilience to corrupt nodes.
In section 6 we compare the new topology with an analysis of fully connected
mix networks and cascades. We then illustrate our results, and how they can
be used in practice by creating and studying an example network in section 7.
Finally we present some possible avenues for future work in section 8.

2 Previous Work

Some work has already been done on the topology of mix networks. The network
topology influences how clients choose the path their messages take through the
mix network. The original proposal by Chaum [4] assumes a fully connected
graph, while mix cascades [14, 20, 2] force a particular sequence of mixes to be
used. The freedom network [3] only allows restricted routes to be used, for per-
formance reasons but without any published analysis about what repercussions
on anonymity such restrictions on the network might have. In [2] Berthold et
al briefly introduces the possibility of having mix networks that are sparse, but
then as we will see, focuses on describing the benefits of mix cascades.

2.1 General Mix Networks

In [4] David Chaum introduces mix networks as a collection of nodes that relay
messages between each other from their original senders to their final recipients.
Throughout the paper there is an implicit assumption that all nodes can commu-
nicate with all other nodes, therefore forming a fully connected network. Clients
choose the path their messages take by selecting a sequence of nodes at random,
from the set of all existing mix nodes. Mixmaster [18] which follows quite closely
Chaum’s original proposals, also allows clients to choose any route through the
network, using reliability statistics [17] to select nodes. Other proposals concern-
ing route selection use reputation metrics [8] to quantify how reliable mixes in
a network are.
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2.2 Mix Cascades

While the fully connected nature of the mix networks seemed to improve the
anonymity provided, Berthold et al [2] found that they can be vulnerable against
very powerful adversaries, such as those who control all the mix nodes except
one. In particular if only one of the mixes in the network is honest the anonymity
of the messages going through it will most likely be compromised. Attackers can
perform intersection attacks, while the probability that all nodes in a short path
are compromised is very high. Additionally if two or more messages follow the
same route, attacks are trivial to perform.

As a solution a cascade of mixes is proposed. Users of the network are not
free to choose which route to take, but are all forced to route their messages
though a predefined sequence of mixes. Further work has been done to improve
the reliability of networks of cascades against corrupt nodes using reputation [9].
The obvious drawbacks of cascades are the small anonymity sets they provide
in the general case, and the fact that they do not scale well to handle heavy
load. Cascades are also vulnerable to denial of service attacks, since disabling
one node in the cascade will stop the functioning of the whole system. Some
solutions are proposed to solve the problem that active attacks could pose, but
require user authentication to work properly [2].

3 Mix Networks Based on Expander Graphs

We propose a mix network with a network topology based upon sparse, con-
stant degree graphs, where users may only choose routes following this topology.
Furthermore each link out of a node should be chosen according to a prede-
fined probability distribution. Therefore selecting a path in the network can be
approximated as a random walk on the corresponding weighted graph. We will
show that this network provides some of the advantages of cascades, while being
more scalable. We will provide theoretical anonymity bounds using the proposed
metric for anonymity based on entropy in [24], and define under which condi-
tions the network provides anonymity close to the theoretical limit. Minimum
traffic bounds to prevent the network being vulnerable to traffic analysis and
intersection attacks are also calculated.

The topology that we propose for the mix network is based on expander
graphs. Expanders are a special family of graphs with the following properties:
a D-regular graph is a (K,A)-expander if for every subset S of vertexes of G,
if |S| ≤ K, then |N(S)| > A|S| where |S| is the number of vertexes in S and
|N(S)| is the number of nodes sharing an edge (neighbouring) with a vertex in
S. In plain language it means that any random subset of nodes will have “many”
different neighbouring nodes. In practise expanders have a relatively small and
constant degree D in relation to the number of edges of the graph, and a large
expansion factor A, that is proportional to the number of “neighbours”. A good
introduction to expander graphs and their applications can be found in [16].

A relevant result is that most bipartite graphs with degree at least three
provide good expansion properties, which means that a topology based on a



4 George Danezis

random bipartite graph with each mix node having three fixed neighbors would
be an expander with high probability [22]. Therefore such networks can be con-
structed by brute force, or by using the surveyed or proposed methods in [23].
The families of expanders with explicit constructions presented have a constant,
but large, degree but also an arbitrary large number of nodes, which makes them
practical for large networks.

The first question that comes to mind is quantifying the anonymity that such
networks provide in comparison to fully connected networks. In a fully connected
network a message coming out of the network has a probability of originating
initially from a particular node proportional to the input load of the node. As
we will see a random walk though the expander graph will converge toward the
same probability after a number of steps proportional to O(logN) where N is
the number of nodes in the network [10]. This represents the a-priori knowledge
of an adversary that only knows the topology of the graph, but no details about
the actual traffic going through it.

Intersection attacks presented in [2] rely on the fact that messages using the
same sequence of nodes will only occur in a fully connected network with a very
small probability. Since a mix network based on a small constant degree graph
only provides a limited choice of routes for messages to take, a node can wait so
that enough messages are accumulated before sending them, to make sure that
all its neighbors always receive messages. Because there is only a linear number
of routes to fill with dummy traffic, only order O(DN) messages are required
where N is the number of nodes and D the degree of the graph. This strategy is
more efficient than filling all the O(N 2) links in a fully connected graph, since
adding more nodes only requires the total traffic to increase linearly in order to
maintain the network’s resistance to traffic analysis.

Before we move on to prove the properties described above, as we will do
in section 5, we will first introduce a way of quantifying anonymity and some
definitions about the attacks that can be performed on mix networks.

4 A Framework for Analyzing Mix Networks

In order to compare fully connected mix networks, mix cascades and restricted
routing there is a need to have a way of quantifying not only their security but
also their efficiency. Efficiency can be measured following the usual paradigms of
communication networks, namely the latency of messages and the load on mix
servers. On the other hand security, and in particular anonymity, does not have
a well established way of being measured.

In order to quantify the anonymity provided by a network of mixes we will
use the metric proposed by Serjantov and Danezis [24]. We will consider the
sender anonymity set of a message as the entropy of the probability distribution
describing the likelihood particular participants were senders of the message. As
expected the anonymity of messages increases as the number of potential senders
increases. Given a certain number of participants, the anonymity of a message is
also maximized when all participants have an equal probability of having been
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the sender of a message. Recipient anonymity can be quantified in an equivalent
fashion, so we will only present the analysis of sender anonymous properties.

A message me exits the mix network at time te from node ne. The network
is made out of N mix nodes, n1 to nN . Messages mij are injected at node ni at
time tj . The task of an attacker is to link the message me with a message mij .

We consider the probability distribution

pij = Pr[me is mij ]

= Pr[me is mij |me inserted at ni]× Pr[me inserted at ni]
(1)

that describes how likely the input messages in the network are to have been
message me. We can express this probability as the probability that a node ni
was used to inject a message, multiplied by the probability a particular message
mij injected at this node is me. The entropy of the probability distribution pi is
the effective sender anonymity set of the message. Because of the strong additive
property of entropy we can calculate this entropy as:

A = H(pij)

= H(Pr[me inserted at ni])

+
∑

x∈1...N

Pr[me inserted at nx]

︸ ︷︷ ︸
traffic analysis attacks

×H(Pr[me is mij |me inserted at nx])︸ ︷︷ ︸
traffic confirmation attacks

(2)

An attacker might attempt to reduce the anonymity by subjecting the net-
work to traffic analysis in order to reduce the uncertainty of Pr[me inserted at ni].
We shall therefore name Anetwork = H(Pr[me inserted at ni]), the anonymity
provided by the network. This quantifies how effectively the traffic injected to
or ejected from particular nodes is mixed with traffic from other nodes. Given
a particular threat model if no technique is available for the attacker to reduce
the uncertainty of Anetwork beyond her a-priori knowledge, we can say that the
network is resistant to traffic analysis in respect to that particular threat model.

The attacker can also try to reduce the anonymity set of the message by
reducing the uncertainty of the probability distribution describing the traffic
introduced at the mix nodes, Pr[me is mij |me inserted at nx]. The attacker can
do this by using additional information about me and mji, like the times te the
message comes out of the network or tj the time it was injected in the network.
She can also do this by flooding nodes, or stopping messages arriving to the
initial nodes. It is worth noting that a network might protect users from traffic
analysis, but still provide inadequate anonymity because of such side information
leaked by messages as they enter and exit the mix network. Side information is
not limited to time, but can also be associated with the protocol or mechanism
used, client type, unique identifiers or route length indications observed at the
edges of the mix network. Attacks that try to link messages using such side
information leaked at the edges of the network, instead of tracing the message
through the network, are called traffic confirmation attacks [26].
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In analyzing and comparing the anonymity provided by networks with re-
stricted routes we will limit ourselves into considering the traffic analysis resis-
tance since it depends heavily on the topology while traffic confirmation attacks
depend on the particular mix batching and flushing strategy individual nodes
use. Having defined a way of quantifying the anonymity provided by the net-
work, we will study in the next section, the route length necessary to archive
maximal anonymity in expander graph based mix networks and the volumes of
traffic necessary to avoid traffic analysis attacks.

5 Anonymity Analysis of Restricted Network Topologies

In a fully connected mix network it is intuitive that a message that comes out
of a mix node, after a number of hops, could have originated from any node in
the network with a probability proportional to its input load. Since users chose
their initial nodes at random, or taking into account in the case of mixmaster
reliability statistics [17], we can say that the probability the messages originated
from an initial node is equal to the probability a client has to choose this node
as an entry point to the network. The same probability distribution is often
used to determine the intermediate and final node of the anonymous path. This
observation allows us to compute Anetwork for fully connected networks, using
the probability distribution describing the selection of the entry node.

For a graph that is not fully connected we need to calculate what the prob-
ability is that a message that is present in a node after a number of mixing
steps has originated from a particular initial node. This requires us to trace the
message backwards in the network. If the graph is not directed the likelihood
a message was injected at a particular node is equal to the probability a ran-
dom walk starting at the final node finishes on a particular node after a certain
number of hops.

Therefore, we consider the network as a graph and the act of selecting a
path through it as a random walk, and we model the route selection procedure
and actual communication as a Markov process. In practice some anonymous
route selection algorithms exclude nodes from being present on the path of a
message twice, which violates the memoryless property of the Markov process.
Despite this if we assume that a Markov process is still a good approximation
to the route selection process, after an infinite number of steps the probability
a message is present on a particular node should be equal to the stationary
probability distribution π of the process. Therefore the maximum anonymity
provided by the network will be equal to its entropy, Anetwork = H(π)

For reasons of efficiency we need to find how quickly the probability dis-
tribution q(t) describing where a message is after a number of random steps
t, converges to the stationary probability π of the Markov process. A smaller t
would allows us to minimize the number of hops messages need to be relayed for,
therefore reducing the latency and increasing the reliability of the network. Mot-
wani and Raghavan [19] provide a theoretical bound on how quickly a random
walk on a graph converges to the stationary probability. If πi is the stationary
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distribution of a random walk on a graph G and q(t) the probability distribution
after t number of steps starting from any initial distribution q(0). We define ∆(t)
as the relative point wise distance as follows:

∆(t) = max
i

|q(t)
i − πi|
πi

(3)

It can be shown [19] that this distance after a number of random steps t is
bound by the number of nodes in the network N and the second eigenvalue λ2

of the transition matrix corresponding to the graph of the network:

∆(t) ≤
√
N(λ2)t

mini πi
(4)

Therefore the distance decreases exponentially as the number of step t, for
which the message travels through the networks, increases linearly.

It is clear that the quick rate of convergence of the probability distribution is
dependent on the second eigenvalue being small. An extensive body of research
has concentrated on linking the value of the second eigenvalue to expansion prop-
erties of graphs, to show that good expanders exhibit small second eigenvalues
(see [19] for details). There is a fundamental limit of how quickly a network can
mix that depends on the degree D of the graph:

λ2 ≥
2
√
D − 1

D
(5)

The results above assure us that a mix network with a topology correspond-
ing to a good expander graph would mix well, in a number of steps logarithmic
in its size, O(logN). This means that in this small number of steps a message
that enters the network will leave the network at a node selected with probability
approaching the probability after an infinite number of steps, namely the station-
ary probability distribution π. Furthermore its degree could be bound in order
to allow for links to be padded with cover traffic, to protect against intersection
attacks or traffic analysis attacks, as we will study in the next section.

In fact the methods described above can be used to calculate the theoretical
probability that a messages that comes out at a mode ne of the network has been
injected at another node ni. In theory the a-priori knowledge of the attacker,
concerning where a message was injected, corresponds to the probability distri-
butions after the random walk on the graph representing the network. It also
depends on the way that initial nodes are being chosen by clients, using reliability
statistics, or other information. As the number of intermediaries grows this dis-
tribution converges towards being the same for all initial choices of entry nodes.
Therefore as the number of hops grow a network based on expander graphs offers
uniform anonymity, which means that the anonymity provided by the network
is the same regardless of the node used to inject a message. In the next section
we will study how much traffic is needed to make the network resistant to traffic
analysis, in other words an actual observation of its running will not give the at-
tacker any additional information beyond the theoretical calculations presented
above.
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A number of ways can be employed in order to find an expander graph that
would represent a good anonymous communication network. If the number of
nodes is small it can be done by brute force, until a graph is found with a second
eigenvalue that approaches the limit described above. Explicit constructions em-
ploying Ramanujan graphs [11] or zig zag products [23] can also be employed to
construct the network. Standard graphs such as multi dimensional hyper-cubes
also exhibit properties that could be suitable.

5.1 Protection Against Intersection Attacks

An advantage of mix cascades, as argued in [2], is that they are not susceptible
to intersection attacks. Such attacks use the fact that many messages are sent
using the same path, to perform traffic analysis attacks and follow the messages
through the network. The authors note that, if every time a message is sent
by the user under surveillance, the set of possible destinations of every mix is
intersected with the set of possible destinations of previous messages, then the
actual path of the message will become apparent. This is due to the very small
probability the same, even partial, route is used by different messages. Since in
mix cascades all messages use the same sequence of intermediary nodes, such an
attack does not yield any results. Of course traffic confirmation is always possible,
by observing all the edges of the network, and find correlations between initial
senders and final recipients. Such attacks will always be possible if the network
does not provide full unobservability [21], or other specific countermeasures.

In a mix network with restricted routes and small degree, such as one based
on expander graphs described in the previous section, the potential for intersec-
tion attacks described above, can be greatly reduced. This is done by making
sure that all the links from a node to its neighbors are used in a flushing cycle.
This is possible in practice since the number of these links in the network is rel-
atively small, and does not grow proportionally to O(N 2) as for fully connected
networks. Making sure that all links are used is sufficient to foil the simplest in-
tersection attacks, that use the intersection of sets of potential senders to trace
messages [15]. Traffic analysis is still possible if the probability a messages has
used a link is skewed. Therefore we need enough genuine traffic to be mixed
together for the observable load on the network links to be proportional to the
theoretical probability distribution described by the transition matrix.

Using a threshold mix as an example we will calculate how much traffic is
needed for no link of a node to be left empty. We assume that clients select the
next hop from a particular node using a probability distribution pn, where n is
the number of Ni neighboring nodes. Then the probability that the link to a
node is left empty in a batch of b messages is:

Pr[∃i.Ni empty] < Pr[N1 empty] + . . .+ Pr[Nn empty] (6)

Pr[∃i.Ni empty] <
∑

∀Ni
(1− pi)b (7)
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As the size of the batch of messages to be processed grows, the probability
that a link is empty decreases exponentially, making simple intersection attacks
infeasible. It is important to note that the same effect can be achieved by adding
dummy traffic on the links that are not used. Again the amount of dummy traffic
in the network will only grow linearly with the number of nodes in the network.

In order to avoid the attacker gaining any more information than the theo-
retical anonymity, which is the entropy of the stationary probability distribution
on the nodes Eπi , the actual flows of messages on the links should be as close
as possible to the matrix describing the network topology. As described above
each node receives a number of messages b, some of which will be output on a
particular link i according to a binomial distribution, with probability pi. We
can require the number of messages that are actually transmitted not to diverge
on a particular round or time period by more than a small percentage f from
the average mean. As the number of messages b received by the mix increases
the probability that X the number of messages transmitted on the link i, is close
to the expected mean bpi increases:

Pr[(1− f)bpi ≤ X ≤ (1 + f)bpi] = 1− 2Φ

(
−fk 1

2

√
pi

1− pi

)
(8)

Where Φ is the cumulative probability distribution of a normal random variable,
with mean zero and variance one. We can require f to be arbitrary small, like
.05, by mixing more messages together in a threshold mix [25]. Expressing the
above formula to calculate f makes it clear that the deviation from the mean
expected traffic gets smaller proportionally to the inverse square root of the
number of messages processed. This result can then be used in conjunction with
pmin, the probability associated with the link that is least likely to be used in
the network or mix, to derive how much genuine traffic would be necessary in a
node to protect against traffic analysis.

Another way of calculating the appropriate threshold value for a threshold
mix would be to calculate the number of rounds necessary to perform the in-
tersection attack. The techniques used do do this are related to the statistical
disclosures attacks described in [5, 15]. The attacker performs a hypothesis test
on each of the links, with H0 representing the hypothesis that the stream of
messages under surveillance are output on the link under observation, and H1

representing the hypothesis the messages are output on another link. In case H0

is true the volume of messages on the observed link follows a probability distri-
bution Y0 = k+Xb−1 otherwise it follows a probability distribution Y1 = Xb−1,
where b is the threshold of the mix, k the number of mixing rounds, and pi the
probability the link is used by messages. Xb−1 is the random variable following
the binomial distribution with probability pi after b − 1 trials. The mean and
standard deviation of these distributions are:

µY0
= k + k(b− 1)pi σ2

Y0
= k(b− 1)pi(1− pi) (9)

µY1
= k(b− 1)pi σ2

Y1
= k(b− 1)pi(1− pi) (10)
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In order to be able to accept or reject hypothesis H0 we will require the
observed volume of traffic to be within a distance of a few standard deviations
σY0

from the mean µY0
, while also at a minimum distance of a few standard

deviations σY1
from µY1

to avoid false positives. The number l of standard de-
viation depends on the degree of confidence required. The minimum number of
mixing rounds k that need to be observed by an attacker to confirm of reject the
hypothesis can therefore be calculated by:

µY0
− lσY0

> µY1
+ lσY1

(11)

k > 4l2
pi

1− pi
(b− 1) (12)

For values of l = 1 we get a confidence of 68%, for l = 2, 95% and for
l = 3, 99%. The above formula is true both for general mix networks and for
mix networks with restricted routes. We can require the value of rounds k to be
greater than one k > 1, with l = 0.6745 for the attacker to have only a confidence
of 50% in order to frustrate traffic analysis of messages that are not part of a
stream that follows the same route.

5.2 Corrupt Nodes

An important factor that has to be taken into account when judging an anony-
mous network, is how robust it is to corrupt nodes. In particular one has to
assess the likelihood that all the nodes that have been selected to be on the
path of a message are corrupt nodes. For the topology presented this amount to
determining the probability pl/c that l nodes selected by a random walk on the
expander graph, might include c ≤ l corrupt nodes. Gillman provides an upper
bound for this probability [10], that is dependent on the expansion properties of
the graph, and the “probability mass” of the corrupt nodes.

If the matrix representing the graph of the mix network has a second eigen-
value λ2 then define ε = 1−λ2. Assume that the set C of nodes is corrupt. Then
define πc as the probability mass represented by this corrupt set, πc =

∑
i∈C πi

where π is the stationary probability distribution of the random walk on the
graph. After a number of steps l the probability that a walk has only been
performed on corrupt nodes is:

Pr[tc = l] ≤
(

1 +
(1− πc)ε

10

)
e−l

(1−πc)2ε
20 (13)

The probability that a path is totally controlled by corrupt nodes therefore
depends on the amount of traffic processed by the corrupt nodes, and the mixing
properties of the graph, but decreases exponentially as the route length increases.
Assuming a particular threat model the route length can be increased until that
threat is very improbable. In practice the constant factors of the bound are too
large to lead to values of the route length that are practical in real systems.
Therefore despite the initially encouraging results, for even modest πc other
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methods might have to be used to determine and minimize the probability that
the full route is composed of corrupt nodes.

6 Comparing Sparse Networks with other Topologies

We have studied in the previous sections some properties of sparse mix networks
namely their necessary route length, batch size or volume of traffic necessary to
provide nearly maximal anonymity. We shall next compare these properties with
previously introduced topologies.

Sparse networks based on expander graphs scale well by providing maximal
network anonymity for a route length l proportional to O(logN). Furthermore
they can be made resistant to traffic analysis and intersection attacks using a
constant volume of traffic per node, depending on the degree D of the network.
By (12) we observe that if the route selection algorithm is uniform, then the
batch size b of nodes can be b < 1

4l2 k(D − 1) + 1 which is independent of the
number of nodes in the network.

6.1 Mix Cascades

Given our definitions it is clear that a mix cascade is resistant to traffic analysis,
since observing the network traffic does not provide an attacker with more in-
formation than she originally had about the correspondence of input to output
nodes. This is the case because there is no uncertainty about the node where all
messages were inserted, since there is only one. The fact that Anetwork = 0 does
not mean that the network does not provide any anonymity to messages, but
simply that all the anonymity provided to the messages originates conceptually
form the single H(Pr[me is mij |me inserted at nx]) component of (2).

This absolute protection against traffic analysis comes at a very high cost.
The anonymity provided is reduced to the volume of messages that can be pro-
cessed by the node with least throughput in the cascade. The latency of the
messages is also large, since each message has to be processed by all nodes in
the cascade.

Despite the inefficiencies presented above mix cascades are a valuable de-
sign. They are resistant to very powerful adversaries, that control all nodes but
one. They also highlight the advantages of implementing topologies that can be
analyzed, in order to understand their anonymity properties.

6.2 Mix Networks

General mix networks are distinct from sparse, constant degree, mix networks
because senders of anonymous messages are allowed to follow arbitrary routes
through them. This sometime is misinterpreted as meaning that matrix corre-
sponding to the mix network is fully connected. Indeed an attacker that has no
additional knowledge of the network, beyond the way routes are selected, has no
other way of attributing probabilities linking output messages to input nodes,
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other than by using a random walk on this fully connected graph, for a number
of steps corresponding to the route length.

An attacker that can observe the traffic in the network, on the other hand,
can get much better results. If we assume that the number of nodes is larger
than the threshold of the mixes, some links remain unused in each mix round.
Furthermore even if the threshold is comparable to the number of mixes, the
volume of messages sent will give the attacker a different probability distribution
from the theoretical one described by the route selection distribution. Therefore
an attacker can use the additional information, extracted from these observation
to trace messages more effectively.

We will denote the graph used for the route selection through the network
as G. This graph has N nodes, the number of mixes, that are all connected with
each other by weighted edges. The weights correspond to the probability that a
node is selected as the next mix in the path, and can be uniform if the selection
is performed at random, or it can be based on reliability statistics or reputation
metrics. Given a column vector v describing where a message was injected, the
probability P a messages comes out of the network at a particular nodes after l
steps, can be calculated to be Pl = Glv This is the a-priori information that an
attacker has about the correspondence between input and output nodes, even
before any traffic analysis has been performed.

As the attacker observes the network, for round i it can deduce a matrix Gi
with the mixes as the vertexes, and the traffic load that was observed between
them during round i as the weights on the edges. It is worth observing that Gi
is closely related to G in the sense that the selection of routes for any round is
performed using G, but is sparse if the threshold of the mixes is lower than the
number of nodes. In fact the weights on the edges follow the same probability
distribution as for G, but are going to be different subject the the variance of
the multinomial distribution, and the threshold of the mixes. An adversary that
observes the actual traffic patterns in the networks will therefore be able to
have more accurate information about where the messages injected are going,
by calculating the probability distribution P ′l = Gl . . . G2G1v.

The relation of Gi the graph of the traffic observed at round i with the
graph G used to route messages, is crucial in understanding the anonymity that
generic mix networks provide. The smaller the difference between Gi and G
the more resistant the network will be to traffic analysis. In order for Gi to be
close to G there needs to be enough traffic to make the mean load on all the
links proportional to the probabilities of the route selection, as described for
sparse topologies in section 4.2. In general one would expect liml→∞H(P ′l ) =
liml→∞H(Pl), but also ∀l,H(Pl) ≤ H(P ′l ), where H(·) denotes the entropy of a
distribution.

For Gi to be therefore a good approximation of G it is necessary each round
to fill all links with traffic volumes proportional to the values on the edges of G.
This requires the volumes of traffic handled by the network to be proportional
to O(N2) as the number of nodes N in the network grows. The batch size that
needs to be handled by each node therefore grows proportionally in the size
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of the network b < k
4l2 (N − 1) + 1, as described by (12). The increased batch

sizes also has a repercussion on the latency of messages that travel through the
network since mixes will wait for more messages before they operate.

Mix networks that do not use a deterministic threshold mixing strategy,
where the first batch of messages to go in are also the first batch of messages to
go out, can also be analyzed in a similar fashion by redefining Gi. It would then
need to represent the probability distributions leading to the effective anonymity
sets of messages instead of the volumes of traffic in the network.

7 An Example Network: Putting It All Together

In order to illustrate how all the results presented on mix networks based on
expander graphs fit together, we will present an example network and analyze
it. We will proceed to calculate the route length necessary for it to provide
uniform anonymity, the amount of real traffic that should be present in each
node for it to be resistant to traffic analysis and intersection attacks.

7.1 Selecting a Good Topology

We aim to create a network with N = 400 mix nodes, each with D = 40
neighbors. The neighbor of a mix both sends and receives messages from the mix
and therefore we can represent this network as an undirected graph. Furthermore
we will assume that senders will choose their path across the network using a
random walk on the graph, with equal weights on all the edges. Therefore the
probability that a messages follows a particular link, given that it is already on
a node is equal to pn = pmin = 1

40 .
Using a brute force algorithm we create a number of networks and compute

their second eigenvalue until a network with good expansion properties is found.
After testing less than ten candidates we find a graph with a second eigenvalue
λ2 = 0.3171, which is close to the theoretical limit given by equation (5) of
λ2 > 0.3122

As expected such a graph has Nl = 16 · 103 links instead of N2 = 16 · 104

that a fully connected graph would have. Therefore it is sparse in the sense that
only one in ten links are used.

7.2 Mixing Speed

Using the theoretical formula (4) we know that the network will provide nearly
uniform anonymity after a number of mixing steps proportional to logN . From
the graph we know that the mini πi = 1

400 since the stationary distribution is
uniform, and therefore the theoretical anonymity, according to [24], should be
equal to A = −log2N = −8.6438.

In theory the relative point wise distance ∆(t) between the observed q(t)

distribution after t steps and the stationary distribution πi should converge fol-
lowing ∆(t) ≤ n

√
nλt2. This allows us to calculate that the safe route length is
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around six. In practice much tighter bounds can be computed by directly calcu-
lating using Gt the distributions q(t) from the available graph G. It is therefore
observed that after four steps of the random walk the entropy of q(t) is equal
to the theoretical entropy calculated above. Figure a illustrates this by showing
how the mean entropy provided to messages entering on any node compares
with the minimum entropy that is offered by the network. Their convergence
indicates that after four steps the network provides uniform and also maximum
anonymity.
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7.3 Resisting Intersection and Traffic Analysis Attacks

In order to avoid the simplest forms of intersection attacks all the networks links
need to be used for every round. The probability a network link is not used is
described by equation (7). For this particular network all pi = 1

40 where pi is
the probability a link is followed. The probability that any link is left empty
for threshold mix with batch size b = 300 is therefore, Pr[∃i.Ni empty] < 2%.
Therefore for batches larger than 300 messages the probability a link is left
empty is very small.

In order to protect against more sophisticated traffic analysis attacks taking
into account statistical differences in the observed distributions from the graph
G, we need to calculate the probability this deviation is large (for example larger
than 10% as shown in figure b). In practice with a batch size of b = 300 as
specified above, the attacker would need to observe k > 4 1

40−1 (300 − 1) = 30
messages in a stream in order to have a confidence of 68% that a particular link
was used.
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8 Future Work

An area that has not been investigated in depth has been the creation of the
graph topology. Since the routes are restricted there is a need to advertise the
allowed routes to clients, but also for the mixes to collaboratively decide upon
a topology. If a brute force algorithm is used some randomness about the initial
seed could be contributed by each mix so that the result is assured not to be
biased. If an explicit construction is employed a similar procedure should be used
to make sure that the parameters of the network are not set by a minority of
potentially corrupt nodes, as discussed in [9].

Besides good mixing properties, expander graphs provide some useful ro-
bustness properties against deletion of nodes. A major concern when building a
network is the number of nodes an adversary needs to disable necessary to par-
tition the network, or reduce the anonymity it provides. Assessing the impact of
removing nodes on the speed of mixing would be a good start for assessing this
risk.

Finally strategies for countering active flooding or delaying attacks are nec-
essary. Since the number of neighboring nodes is small, they are more likely than
in a fully connected network to all be corrupt and mount active attacks against
the surrounded honest nodes.

9 Conclusions

The case has been argued in this paper that sparse networks provide desirable
properties against traffic analysis attacks and scale better than fully connected
networks or cascades. Some calculations presented, such as the probability a
route is fully captured by adversaries, are theoretically appealing but do not
provide tight enough bounds to be used in practice, while others are directly
applicable for analyzing networks. Maybe tighter bounds could be found by
restricting further the topology of the network.

The analysis of intersection attacks provides practical bounds to calculate the
amount of traffic necessary to defend mixes, but is only applicable to threshold
mixes. It is important to generalize it in the future to other mix batching and
flushing strategies, such as pool mixes presented in [24, 25]. It also offers a good
foundation to decide how many messages in the stream are to travel in the same
path. The required volume of data to make the network resistant to some rounds
of traffic analysis can also be used as a guide to decide how much cover traffic
is to be introduced.

The main contribution of this paper is that it highlights that a middle ground
exists between free route mix networks, and extremely restrictive mix cascades.
By designing the network carefully, and choosing appropriate topologies, some
properties of both can be achieved, such as improved resistance to intersection
attacks, along with shorter routes and better scalability.
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