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The past two decades have seen a growing interest in methods for anonymous communication on the Internet,

both from the academic community and the general public. Several system designs have been proposed in the

literature, of which a number have been implemented and are used by diverse groups, such as journalists,

human rights workers, the military, and ordinary citizens, to protect their identities on the Internet.

In this work, we survey the previous research done to design, develop, and deploy systems for enabling

private and anonymous communication on the Internet. We identify and describe the major concepts and

technologies in the field, including mixes and mix networks, onion routing, and Dining Cryptographers

networks. We will also review powerful traffic analysis attacks that have motivated improvements and

variations on many of these anonymity protocols made since their introduction. Finally, we will summarize

some of the major open problems in anonymous communication research and discuss possible directions for

future work in the field.
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1. INTRODUCTION

A famous cartoon in The New Yorker once carried the caption, “On the Internet, nobody
knows you’re a dog” [Steiner 1993]. This phrase symbolizes the general public’s percep-
tion that the Internet allows one to communicate in relative obscurity and anonymity.
Quite the contrary, today’s modern communications infrastructure is indeed capable of
identifying and recording what we do, where we go, and even sometimes what we say
on the Internet.
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Each time we send an email, visit a Web page, or talk to friends and family via
instant messaging, we send packets of data across the Internet that contain informa-
tion regarding where the message is going and who sent it (e.g., IP addresses, SMTP
header information, etc.). As packets are transmitted via several hops from the source
to their destination, anybody observing a link along that path can roughly identify who
is communicating with whom based on information contained in each packet. Even if
the packet data is encrypted, the source and destination addresses in the packet’s IP
header are still visible to an observer.

Research into designing and building anonymity systems seeks to build an infrastruc-
ture running on top of the existing Internet protocols that allows people to communicate
with each other without necessarily revealing their personal network identifiers, such
as IP addresses.

We can imagine many situations in which someone might desire strong communica-
tions privacy and anonymity on the Internet. Law enforcement agencies may want to
set up an online anonymous “tip line,” where people can report information they may
have on unlawful activity without fear of retribution or punishment. Government in-
telligence agencies may need to be able to monitor known extremist Web sites without
revealing their presence to the Web site operators. Private citizens may want to be able
to freely browse the Web, without advertisers collecting statistics on their personal
browsing habits and selling that personal information to other companies.

Anonymous communication systems can also provide a strong foundation for censor-
ship resistance for people living under oppressive regimes that try to limit what their
citizens can say and do on the Internet. There has been significant and interesting work
on designing censorship-resistant systems that allow people to anonymously store, pub-
lish, and retrieve data, while making it resilient to attack by an adversary [Waldman
and Mazières 2001; Dingledine et al. 2000; Waldman et al. 2000; Anderson 1996; Clarke
et al. 2000]. Concepts from the design of anonymous communication systems have also
been applied to the fields of cryptographic voting [Kilian and Sako 1995; Jakobsson et al.
2002; Boneh and Golle 2002], electronic currencies [Camenisch et al. 2005], anonymous
auctions [Harkavy et al. 1998], and anonymous credentials [Camenisch and Lysyan-
skaya 2001; Camenisch et al. 2006].

In this work, we survey the previous research done to design, develop, and deploy
systems for enabling private and anonymous communication on the Internet. We re-
view the major technologies in the field, including mix networks, onion routing and
Dining Cryptographers networks, as well as improvements and variations on those
primitives made since their introduction. We will also summarize some of the powerful
attacks an adversary might conduct in order to identify communication patterns in an
anonymity system. Our survey concludes with a discussion of the major open problems
in anonymous communication and future research directions.

2. BACKGROUND

In this section, we first define what we mean by “anonymity” and “anonymity systems,”
as well as discuss some of the most commonly used terms in the literature. We also
provide a classification for the various types of adversaries anonymity system designs
most often seek to defend against.

2.1. Anonymity and Pseudonymity

In an effort to standardize the terminology used in the literature on anonymous commu-
nication systems, Pfitzmann and Hansen [2008] have written a consolidated proposal

ACM Computing Surveys, Vol. 42, No. 1, Article 5, Publication date: December 2009.



On Anonymity in an Electronic Society 5:3

of terminology. We largely follow their definitions in this survey. We consider a system
to be a collection of actors, such as clients, servers, or peers, in a communication net-
work. These actors exchange messages via public communication channels (e.g., the
Internet). In borrowing terms from graph theory, we sometimes refer to the actors in a
network as nodes and the communication channels between them as links.

Pfitzmann and Hansen [2008] informally defined anonymity as “the state of being not
identifiable within a set of subjects, the anonymity set.” In other words, the anonymity
set is the set of all possible actors in a system that could have been the sender or
recipient of a particular message. We can further refine the anonymity set based on the
particular role subjects have with respect to a specific message. The set of subjects who
could have been the sender of a particular message is known as the sender anonymity
set and, similarly, the set of subjects who could have been the recipient of a particular
message sent is the recipient anonymity set.

In general, anonymity systems seek to provide unlinkability between sent messages
and their true recipients (recipient anonymity), and between received messages and
their true senders (sender anonymity). Pfitzmann and Hansen [2008] further defined
the unlinkability between senders and recipients in an anonymity system as relation-
ship anonymity. Put more simply, relationship anonymity means that an adversary
observing the senders and recipients in the network is unable to discern who is com-
municating with whom. We consider in greater detail the types of adversaries that may
be observing the network in Section 2.2.

Note that so far we have not considered unlinkability between senders and sent mes-
sages, or between recipients and received messages. It seems intuitive that someone
observing network traffic sent from or received by a subject in an anonymity system
can easily identify when that subject sends or receives a message. However, we will
describe in Section 5 anonymity systems that also try to hide the fact that a subject
is sending or receiving a message by introducing additional random “cover” traffic,
intended to obscure the true communication pattern between senders and recipients.
The property that actual messages sent from or received by a subject are indistinguish-
able from random noise is known as unobservability, a stronger security property than
unlinkability [Pfitzmann and Hansen 2008].

It is important to distinguish anonymity from pseudonymity. Where anonymity im-
plies that actors are not identifiable within the anonymity set, pseudonymity simply
means that actions, such as sending or receiving a message, are linked to a particu-
lar identifier other than the actor’s true identity. Pfitzmann and Hansen [2008] also
noted that a pseudonym need not be associated with only one holder. Instead, multiple
distinct subjects can share a single pseudonym, known as a group pseudonym. In the
case of a group pseudonym, the set of subjects represented by a single pseudonym may
indeed form an anonymity set.

While anonymity and pseudonymity are separate but related concepts, Goldberg
[2000] illustrated with his “Nymity Slider” concept that it is possible to build
pseudonymity on top of anonymity. An actor in an anonymity system can simply adopt a
particular pseudonym used to link a series of transactions over the anonymity system
to that identifier, thus providing pseudonymity rather than anonymity. The reverse,
however, is not necessarily true.

2.2. Adversarial Models

As in nearly all security-related research, adversaries are most often defined according
to their goals and strengths. Raymond [2000] identified a number of properties that
can be used in combination to describe the strength of an adversary. We summarize
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and classify these properties as follows:

—Capability. An important property of an adversary is whether that adversary is active
or passive. A passive adversary is one who is able to monitor and record the traffic
on network links entering and exiting clients or servers in an anonymity network. A
passive adversary is also able to record metadata about network traffic flows, such
as packet lengths and arrival times. Even simply passively monitoring traffic can
enable powerful statistical attacks, which will be discussed later in Section 6.

An active adversary has all the monitoring capabilities of a passive adversary,
but is also able to manipulate network traffic perhaps by either controlling one or
more network links or by operating a node in the anonymity network. He or she can
modify or drop traffic in parts of the network, as well as insert his own traffic or
replay legitimate network traffic that he previously recorded.

—Visibility. While not specifically enumerated by Raymond [2000], the visibility of the
adversary is a property often considered in the literature when defining a threat
model [O’Connor 2005; Newman et al. 2003; Danezis et al. 2003; Dingledine et al.
2004a; Reiter and Rubin 1998]. The visibility of an adversary determines how much
of the network he or she is able to passively monitor or actively manipulate. A global
adversary, as the name suggests, is a powerful observer that has access to all network
links between clients and servers in an anonymity network.

In contrast, a partial adversary is only able to monitor the links entering and exiting
a particular node in the network, or a small, related subset of nodes in the network.
An example of a partial adversary might be someone on the same local area network
as a node in the anonymity network, or even a common Internet Service Provider
(ISP) among multiple network nodes [Feamster and Dingledine 2004; Murdoch and
Zieliński 2007].

—Mobility. Even if an adversary does not have the large scale infrastructure required
to monitor all clients and servers in an anonymity network simultaneously, he or
she may be able to select which subsets of the network he wants to monitor based
on previously obtained information. We refer to such an adversary as an adaptive
adversary. For example, a government may be able to subpoena a selection of ISPs
under their legal jurisdiction to monitor the network traffic of some servers in an
anonymity network. An adaptive adversary could then choose to monitor a different,
possibly overlapping, subset of servers based on information learned from the network
traces obtained from the first subpoena.

In contrast, a static adversary is able to compromise or monitor some subset of
the network, but is not able to change which subset she or he observes at will. A
global adversary is, almost by definition, a static adversary: since she or he has a
global view of the anonymity network, she or he does not need to selectively monitor
smaller portions of the network.

—Participation. Raymond [2000] also suggested characterizing adversaries as being
either internal or external. An internal adversary is one who participates in the
anonymity network’s protocol as a client, or perhaps operates a piece of the network’s
infrastructure by running a server in the network. Note that an internal adversary is
not by definition also an active adversary. Instead, she or he could simply be monitor-
ing the traffic that passes through her or his own server without actively modifying
it.

An external adversary, on the other hand, does not participate in the anonymity
network or its protocol. Instead, he or she compromises the communication medium
used by clients (i.e., their network links) in order to monitor or manipulate their
network traffic.
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The type of adversary most commonly considered in the literature on anonymous
communication systems is the powerful passive global adversary. Since it is a common
security practice to try to defend against a worst-case scenario, assuming the presence
of a passive global adversary appears prudent.

Some have argued, however, that a passive global adversary is unrealistic in practice
for large anonymity networks deployed across the Internet [Newman et al. 2003]. The
geographic and jurisdictional diversity of the Internet makes it unlikely that a single
entity, or even a small collaboration of entities, can monitor all servers in a widely
distributed anonymity network. Further, if an adversary is powerful enough to monitor
the entire network, it seems unreasonable to assume that adversary is unable to also
actively manipulate network traffic. Instead, a more likely real-world adversary may
be an active adversary with only a partial view of the network.

3. HIGH-LATENCY ANONYMITY SYSTEMS

Designs for anonymous communication can often be classified into two general cat-
egories: high-latency systems and low-latency systems. High-latency anonymity sys-
tems are able to provide strong anonymity, but are typically only applicable for non-
interactive applications that can tolerate delays of several hours or more, such as
email. As expected, low-latency anonymity systems often provide better performance
and are intended for real-time applications, particularly Web browsing. Consequently,
some have referred to high-latency anonymity systems as message-based systems,
and low-latency anonymity systems as connection-based systems [Serjantov and Sewell
2003].

3.1. Overview

To illustrate a basic approach to anonymous mail, we begin with a hypothetical sit-
uation. Imagine Alice is a corporate whistleblower who wants to mail a letter to The
New York Times revealing some misconduct, but still wants to remain anonymous for
fear of losing her job. Similarly to how IP addresses can reveal who sent a particular
packet, simply writing a letter and dropping it in the local post office box would leak
information to the recipient about where the message originated because of the postal
markings on the envelope.

Instead, Alice places the envelope addressed to The New York Times inside another
envelope addressed to a third party named Charlie. This outer envelope is then placed
inside yet another envelope addressed to another person, Bob. Alice then places the
multiply enveloped letter into her local post office box. When Bob receives the envelope,
he opens it and finds another envelope addressed to Charlie. Recognizing the envelope
is not addressed to him, Bob then drops it in his local post office box. Similarly, when
Charlie receives and opens the envelope addressed to him, he finds another addressed
to The New York Times, which he then also forwards on.

Since the envelope received at The New York Times came from Charlie’s post office,
it does not give away any information about Alice’s location. The envelope received by
Bob can be used to identify Alice, but Bob only knows the next hop in the path and not
the letter’s content or its intended destination. Only if all people in the letter’s path
collaborate can they identify Alice as the sender of the letter received by the newspaper.

Clearly there are still a number of side-channel approaches to identifying the sender
of the original letter, such as DNA material left on the letter or envelope, handwriting
analysis, or a linguistic analysis of the letter’s content—an interesting field of study
known as stylometry. Any recipient along the letter’s path could also simply open all of
the envelopes and read the message contents.
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Still, the basic idea of remailing a message through several intermediaries underlies
many modern anonymous communication systems, and cryptography provides us the
tools necessary for preventing others along the path from “opening” the letter. It is
worth noting that current systems for anonymity and pseudonymity do not necessarily
protect against linguistic or stylometric linking of plaintext messages written by the
same author [Rao and Rohatgi 2000].

3.2. Mixes and Mix Networks

3.2.1. A Simple Mix. The basic building block of nearly all modern high-latency anony-
mous communication systems is a mix, a concept introduced by Chaum [1981]. At a high
level, a mix is a process that accepts encrypted messages as input, groups several mes-
sages together into a batch, and then decrypts and forwards some or all of the messages
in the batch.

More precisely, a mix first generates a public and private key pair and makes the
public component known to clients who wish to relay messages through the mix. We
let C = Ex(M ) denote encryption of a message M with mix x ’s public key, and also let
M = Dx(C) denote decryption of a ciphertext C with mix x ’s corresponding private key.
Further, we let Ax represent the identity or address of mix x (e.g., x ’s IP address).

Consider a sender, Alice, who wants to anonymously send a message M to a recip-
ient, Bob, via a single mix x. In Chaum’s [1981] original design, Alice would compute
Ex(Rx , M , AB), where Rx is a string of random bits and AB is Bob’s address. She
then sends the resulting ciphertext to the mix, which can use its private key to re-
trieve M and AB. Rx is simply discarded, but is included in the encryption to help pre-
vent an adversary from identifying two identical messages encrypted under the same
asymmetric key. More sophisticated approaches to probabilistic encryption, like RSA-
OAEP, were not invented until later [Goldwasser and Micali 1984; Bellare and Rogaway
1994].

The mix collects messages into a batch until it has received “enough” (we elabo-
rate on this in the next section), and then forwards each to the destination address
extracted from the decrypted input message. Chaum’s [1981] original design was to
output messages in lexicographic order, although later schemes output messages in a
random order [Möller et al. 2003; Danezis et al. 2003].

If Alice knows Bob’s public key (perhaps learned out-of-band or from a public key
server), she could also first encrypt the original message M with Bob’s public key in
order to prevent mix x from being able to read the plaintext message. If Alice and Bob
want to authenticate each other over the anonymous channel, then they must both
have exchanged and verified each other’s public keys prior to communicating over the
channel.

We can more concisely represent the above situation using the following notation,

where the left-hand side of the arrow represents the input to a mix,
x→ represents

processing done by mix x, and the right-hand side of the arrow indicates the mix’s
output:

Ex(Rx , M , AB)
x→ M .

An observer who can only monitor the messages entering and exiting the mix is
unable to correlate the inputs to outputs based on the message bits, since the mix cryp-
tographically transforms each message. Additionally, the messages have been delayed,
batched, and reordered, so the observer cannot link messages based on their message
arrival and departure times. Only the mix itself knows which input messages corre-
spond to which output messages; however, senders must trust the mix not to reveal to
others how the messages were reordered.
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At the time of Chaum’s [1981] seminal paper, public key cryptosystems like RSA were
still relatively new in academic research [Rivest et al. 1983]. Consequently, Chaum’s
design used RSA directly, which was later shown to be susceptible to a “tagging” attack
that allows an adversary to modify an encrypted input message and then identify the
corresponding output message [Pfitzmann and Pfitzmann 1990]. Later schemes employ
a hybrid encryption scheme in which RSA is only used for encrypting a symmetric key,
and the symmetric key is used for encrypting the remainder of the message [Möller
et al. 2003; Danezis et al. 2003].

3.2.2. Mix Networks. Clearly using a single mix suggests not only a single point of
failure, but also a single point of trust since a dishonest mix can reveal the true input-
output correlations. Instead of sending messages through a single mix, senders can
choose an ordered sequence of mixes through which to send their messages. We refer
to the sequence of mixes through which a message is routed as that message’s path.

If Alice wants to anonymously send a message M to Bob via a path P = {x, y , z}, she
would iteratively create a layer of encryption, in the same manner as above, for each
mix starting with the last mix in the path and working back toward the first. Alice then
sends the resulting multiply encrypted ciphertext to the first mix in the path. Each mix
can remove a layer of encryption to extract the address of the next mix in the path and
a ciphertext message to forward to that mix.

As the message traverses the path P, it results in the following cryptographic trans-
formations:

Ex(Rx , E y (R y , Ez (Rz , M , AB), Az ), A y )
x→ E y (R y , Ez (Rz , M , AB), Az )
y→ Ez (Rz , M , AB)
z→ M .

As before, in the case of a single mix, an observer watching the inputs and outputs of
any mix in the path is unable to link input messages of a mix to its outputs. Additionally,
each mix along a message’s path knows only the hop before and after itself in the path.
Thus, no single mix operator is able to compromise the anonymity of messages sent
through his mix.

To prevent the lengths of messages from leaking information about how many mixes
a message has already passed through, mixes can pad the messages to a fixed length
before forwarding them. After removing the message header, a mix simply generates
a block of uniformly random bytes indistinguishable from the encrypted payload and
appends it to the message. The last hop in the path can then simply separate the
randomly generated padding from the resulting plaintext message before sending the
original message to its final recipient.

How best to choose the sequence of mixes to use for a message’s path has been the
subject of some debate in the literature [Berthold et al. 2000b; Dingledine et al. 2004b].
There are two general path selection strategies typically considered: free routes and
mix cascades. A free route topology, as the name suggests, means clients are able to
choose any ordered sequence of mixes in the network for their message’s path. In a
mix cascade topology, there are one or more predefined routes through which all client
traffic is relayed.

We can also imagine several variations on these general approaches. For exam-
ple, Gülcü and Tsudik [1996] designed a mix system called Babel that used a free-route
topology, but also allowed messages to take intermix “detours” along the path specified
by the client. Any mix on a message’s path could reencrypt that message and send it
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through a series of mixes not originally specified by the client before returning to its
original path. Danezis [2003a] also suggested another mix network topology based on
expander graphs.

Berthold et al. [2000b] argued that mix cascades provide stronger anonymity than
free routes when the adversary compromises a large number of mixes in the network.
They presented several attacks that showed an adversary who controls all but one mix
in a free-route network can exploit his or her knowledge of how many mixes a message
has passed through in order to partition messages into smaller anonymity sets, thus
decreasing their anonymity.

Dingledine et al. [2004b] countered that the security of mix cascades is not actually
a result of that particular topology, but rather because messages enter the network
and proceed through the network in lockstep (i.e., synchronous batching). The authors
then showed that free-route networks can actually provide greater anonymity than
cascades when synchronous batching is used. Additionally, free-route networks can
provide better resilience in the event of node failure, since a single failed mix in a
cascade breaks all communication through that cascade. In a free-route network, clients
can simply route their traffic around the failed node.

3.3. Flushing Algorithms

In the introduction to mixes and mix networks above, we intentionally left undefined
how mixes decide when to send out (or “flush”) a batch of messages they have collected.
The algorithm a mix uses to determine which messages to forward to their next desti-
nation and when to do so is often referred to as a flushing algorithm [Serjantov et al.
2002]. Flushing algorithms are sometimes equivalently called batching strategies [Dı́az
and Serjantov 2003].

There have been numerous flushing algorithms discussed in the literature, as well
as simple but effective active attacks against them, which we review below.

3.3.1. Threshold Mixes. The classic mixes originally defined by Chaum [1981] are
known as threshold mixes. A threshold mix simply collects incoming encrypted mes-
sages until it has received n messages, where n is a parameter defined by the system
or the mix operator. After receiving n messages, the mix then decrypts all of them and
forwards them to their next destination in a random order.

A threshold mix is a simple flushing algorithm, but it is vulnerable to an active attack
called the (n −1) attack, or flooding attack [Serjantov et al. 2002]. In the (n −1) attack, an
attacker delays a legitimate message M from entering the mix. He or she then generates
and sends his or her own “dummy messages” into the mix until it flushes. The dummy
messages are generated such that they are indistinguishable from legitimate messages
to anyone but the attacker. Finally, the attacker then allows M into the mix and sends
more of his or her dummy messages until the mix flushes again. Since the attacker
generated the dummy messages himself or herself, he or she can easily identify which
of the decrypted mix outputs are his or her messages. The only mix output that is not
one of his or her own dummy messages thus corresponds to input M .

3.3.2. Timed Mixes. Rather than collecting a fixed number of messages like a threshold
mix, a timed mix instead collects messages for a fixed length of time t [Serjantov et al.
2002]. After t seconds have elapsed, the mix decrypts all messages it has received and
then forwards them to their next destination in a random order.

Timed mixes are also vulnerable to an active attack similar to the (n − 1)–attack
against threshold mixes. In a trickle attack, an active attacker delays all messages
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from entering the mix until t seconds elapse and the mix flushes. The attacker then
lets a particular message of interest M enter the mix, but continues to prevent all other
messages from entering the mix. When the mix flushes again, it will have only a single
output which trivially corresponds to M .

The (n− 1) attack and the trickle attack are often collectively referred to as blending
attacks [O’Connor 2005; Serjantov et al. 2002; Diaz and Preneel 2004].

3.3.3. Threshold and/or Timed Mixes. We can also consider a combination of the simple
threshold and timed flushing algorithms. A threshold-or-timed mix collects messages
until either it has received n messages or until t seconds have elapsed since the last
time the mix was flushed, whichever occurs first. Similarly, a threshold-and-timed mix
collects messages until t seconds have elapsed and it has collected at least n mes-
sages. With both algorithms, all collected messages will be flushed at the end of each
round [Serjantov et al. 2002].

Combining the threshold and timed flushing algorithms does not mitigate the threat
of (n − 1) or trickle attacks. Instead, the adversary simply combines the two attacks,
flooding the mix with dummy messages and then waiting t seconds for the mix to flush.

3.3.4. Pool Mixes. Instead of flushing all messages collected during the previous
round, pool mixes select a random subset of the collected messages to flush and then
retain the rest in the mix for the next round [Serjantov et al. 2002; Dı́az and Serjantov
2003; Serjantov and Newman 2003]. The set of messages retained in the mix is referred
to as the pool. When the mix process is first started, the pool is initialized with dummy
messages that are indistinguishable from actual messages.

The simplest type of pool mix simply retains a constant number of messages in the
pool each round, which we denote as Np. In the case of a threshold pool mix, the mix
waits until it has received n messages in addition to the Np messages in the pool. It
then randomly selects n messages from the n+Np total messages in the mix to forward.

Timed pool mixes operate in a similar manner, collecting messages for t seconds and
adding them to the pool. Let nt denote the number of messages received by the mix
in the previous t seconds. The mix then randomly selects nt messages from the pool of
nt + Np total messages to forward.

Instead of retaining a constant number of messages in the pool and flushing the rest,
dynamic pool mixes send a fraction f (0 < f ≤ 1) of the total messages in the pool at
the end of a round. If there are n + Np messages in the mix at the end of the round,
a dynamic pool mix randomly selects max{1, �n · f �} messages to forward [Serjantov
et al. 2002]. The rest are retained in the pool for the next round. In some sense, the
simple threshold and timed mixes above could also be seen as instances of a dynamic
pool mix, but with Np = 0 and f = 1.

While pool mixes do not eliminate the threat of (n−1) and trickle attacks, they do in-
crease the effort required on the part of the adversary. Instead of positively identifying a
message of interest after attacking a single mix round, the attack becomes probabilistic
since the message may be retained in the pool for an unpredictable number of rounds.

Of course, the probability that a message will remain in the pool for r rounds de-
creases as r increases. O’Connor [2005] presented a full analysis of the number of
rounds required for an adversary to perform an (n−1) attack against threshold, timed,
and dynamic pool mixes.

3.3.5. Stop-and-Go Mixes. Kesdogan et al. [1998] proposed a mixing algorithm they
termed a Stop-and-Go mix (SG-mix), sometimes also categorized as a continuous
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mix [Danezis 2004]. Instead of batching messages together, SG-mixes individually delay
messages as they pass through the mix.

A client sending a message through a series of n SG-mixes calculates a time window
[tmin, tmax]i and chooses a random delay ti from an exponential distribution, for each
mix i = 1 · · · n. The time windows are computed such that (tmin + ti) ∈ [tmin, tmax]i+1

and also (tmax + ti) ∈ [tmin, tmax]i+1. The time window and random delay for mix i are
included in the message encrypted with mix i’s public key.

After decrypting a received message, mix i can extract the time window [tmin, tmax]i
and the random delay ti chosen by the sender. If the current time tnow is outside the
given time window, the mix discards the message. Otherwise, the mix will forward the
message to the next hop at time tnow + ti.

3.3.6. Binomial Mixes. All of the flushing algorithms presented thus far output a de-
terministic number of messages given the internal state of the mix and its parameters.
The binomial mix instead flushes a random fraction of messages it has collected over
previous rounds [Dı́az and Serjantov 2003].

At the end of a mix round lasting t seconds, a binomial mix flips a biased coin with
a forwarding probability pf = P (n) for each message currently contained in the mix,
where n is the total number of messages in the mix and P (n) is the coin’s bias when
the mix contains n messages. If the result of the coin flip is heads, then the message is
forwarded to its next hop. Otherwise, the message is retained in the mix for the next
round. The result of this approach is that the actual number of messages output each
round is selected from a binomial distribution with mean npf and variance npf (1− pf ).

Again, this algorithm does not eliminate the possibility of active blending at-
tacks. Dı́az and Serjantov [2003] showed, however, that it can increase the amount
of time required for a successful attack, as well as require the adversary to spend more
resources sending dummy messages into the mix. O’Connor [2005] also derived the
expected number of mix rounds required for an adversary to perform an (n − 1) attack
against binomial mixes.

3.3.7. RGB Mixes. While none of the flushing algorithms proposed to date have en-
tirely eliminated the threat of the simple but effective (n − 1) attack, Danezis and
Sassaman [2003] proposed a technique for detecting when an attacker is conducting
the attack, and minimizing its negative impact on the anonymity of legitimate mes-
sages. The authors called their approach Red-Green-Black (RGB) mixes.

In RGB mixes, the genuine client messages received during a mix round are consid-
ered black messages. Since messages are encrypted, it is impossible for a mix to tell
what fraction of the received messages are black messages and which are messages
generated by an adversary conducting an (n − 1) attack. In order to estimate the num-
ber of legitimate messages received during a round, mixes send out “heartbeat” traffic,
called red messages, with each output batch. Red traffic is indistinguishable from black
traffic to an outside observer, and is “anonymously” addressed back to the mix itself.
Since the red traffic is addressed to itself, the mix can monitor the fraction of red mes-
sages it receives compared to black traffic. If it detects a statistically significant drop
in its received red traffic, the mix can deduce that it is currently under attack.

When the mix detects an attack, it generates additional dummy messages, called
green traffic, and sends them out with each batch. The intuition behind the green mes-
sages is that they increase the anonymity of the legitimate, black messages output
during each round, even though the mix is under attack. Additionally, an adversary is
unable to distinguish green traffic from legitimate black traffic, which makes identify-
ing the message targeted by an (n − 1) attack more difficult.
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3.4. Deployed Systems

While some of the work on mixes and mix networks has been purely academic and
theoretical, there have been a number of high-latency remailer systems publicly
available.

3.4.1. anon.penet.fi. One of the early deployed remailers was the rather popu-
lar Finnish anon.penet.fi pseudonymity service started by Johan Helsingius in
1993 [Helmers 1997]. The technical details of Helsingius’s service are quite simple.
A client simply sends a message to the service, which then generates an alias for the
sender, if one does not already exist, and stores a mapping of that alias to the sender’s
real email address in a database. The service then strips any identifying information
from the message and forwards it to the intended recipient. If the remailer receives a
message addressed to a previously generated alias, the remailer looks up the alias’s
true address in the database and the message can be delivered to the pseudonymous
user.

At one time, anon.penet.fi processed over 10,000 messages daily and the database
of pseudonyms contained over 200,000 entries [Helmers 1997]. Clearly the pseudonym
database represents a centralization of trust and a likely target for attack. Indeed,
Helsingius was eventually subjected to legal attacks from the Church of Scientology
claiming a user posted a message to a newsgroup that infringed on their copyright, and
they wanted Helsingius to reveal that user’s identity [Newman 1996]. The service was
subsequently shut down in 1996.

3.4.2. Cypherpunk Remailers. Cypherpunk remailers, sometimes referred to as Type I
remailers, were first developed by Hughes and Finney and are loosely based on Chaum’s
[1981] mix design [Parekh 1996]. Unlike the anon.penet.fi system, the cypherpunk
remailer system consists of multiple, distributed servers. Clients pick a sequence of
servers and include a header for each hop that specifies the next server in the path to
which the payload should be forwarded. Each hop uses its private key to decrypt the
message it receives, removes the header information, and forwards the payload to the
next server.

Unlike Chaum’s [1981] design, however, cypherpunk remailers do not add random
padding to messages after removing the control commands contained in the headers
encrypted for each hop. A passive adversary observing the network can thus potentially
correlate messages using the knowledge that the messages decrease in length as they
pass through the network. Additionally, cypherpunk remailers do not do any explicit
batching and delaying, so a passive adversary can also correlate messages passing
through a remailer based on entry and exit times.

Cypherpunk remailers supported anonymous replies through a construction called
reply blocks. A reply block is constructed in a layered manner similar to a normal
message. A sender can then include the reply block in a message anonymously sent to
a recipient, who would attach it to their reply. The reply is routed through the remailer
network according to the reply block and back to the original sender.

Matt Ghio later implemented a nymserver that simplified the use of reply
blocks [Parekh 1996]. A user can anonymously send their reply block to the nymserver
through a chain of remailers. The nymserver then allocates an alias for the received
reply block, and stores the pair in a database. When the nymserver receives a mes-
sage addressed to an alias, it forwards the message through the remailer network
using the stored reply block for that alias. We see the nymserver operates similar to
anon.penet.fi, but, since the reply blocks are sent to the nymserver anonymously, the
nymserver does not map an alias to an actual identity.
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3.4.3. Mixmaster. The Mixmaster, or Type II remailer design, made several design im-
provements over the cypherpunk remailers, including the addition of message padding
and batching [Möller et al. 2003]. Mixmaster uses a timed dynamic pool flushing algo-
rithm. Once every t seconds, a mix randomly chooses

min{N − Np, N ∗ f }

messages to forward, where N is the total number of messages in the mix, Np is the
minimum number of messages to retain in the pool, and f is the fraction to forward
each round.

Mixmaster additionally tries to defeat replay attacks by recording packet IDs in-
cluded in a message header, encrypted for each hop. If a mix receives a message with an
ID of a packet it has already processed, the duplicate is simply discarded. Unlike cypher-
punk remailers, however, Mixmaster does not include support for anonymous replies.

As of December 2007, the public Mixmaster network had 24 running servers.

3.4.4. Mixminion. Mixminion, or Type III remailer, is the current state-of-the-art in
remailer design [Danezis et al. 2003].

Mixmaster’s approach to replay detection required the mix to keep a list of recently
processed message IDs. Since mixes have a limited amount of memory, old message IDs
are necessarily purged after a period of time. An adversary can easily replay a message
again after its message ID has been purged from the mix’s history. Mixminion also
keeps a history of recently processed messages, but mixes periodically rotate the key
clients use to encrypt messages. After the key is rotated, messages encrypted with the
old key are no longer accepted and cannot be replayed. Thus, Mixminion servers must
only retain hashes of previously processed messages for a relatively shorter amount of
time.

Mixminion’s design is also an improvement over Mixmaster in that it includes a
specification for how clients can learn about remailers in the Mixminion network, as
opposed to Mixmaster’s informal, ad hoc approach. A distributed set of redundant di-
rectory servers provide clients with information about the current mixes in the network
(e.g., their IP addresses, public key information, etc.). When clients join the network,
they can fetch a summary of this information from the directory servers.

Like the cypherpunk remailers, Mixminion also supports anonymous reply blocks. In
the cypherpunk remailer and Babel designs, a reply block can be used multiple times
which can be exploited by an active attacker to trace the intended recipient back through
the network. The adversary can send a message with the same reply block into a mix
over multiple mix rounds and observe the outputs. The next hop for that particular
reply block must be in the intersection of all observed outgoing batches. Repeating this
process through several hops can eventually lead the attacker to identify the original
owner of the reply block.

Rather than allowing the same reply block to be replayed multiple times, Mixmin-
ion’s reply blocks instead are single-use reply blocks (SURBs). The anonymous recipient
must therefore create a new SURB for each reply she or he wants to receive. Unlike
Type I remailers, the designers of Mixminion were careful to ensure replies are indis-
tinguishable from normal forward messages. Since replies are likely to be less frequent
than forward messages, it is beneficial for the former to share an anonymity set with
the latter message type.

While Mixminion’s SURBs resist replay attacks, they are still susceptible to long-
term intersection attacks (we will describe such attacks in Section 6). Rather than rely
on reply blocks, designs like the Pynchon Gate [Sassaman et al. 2005] have suggested
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instead storing mail sent to a pseudonym on a nymserver. The pseudonym holder can
then use a private information retrieval protocol [Chor et al. 1995] to fetch its mail
from the nymserver.

As of December 2007, the public Mixminion network had 29 running servers.

4. LOW-LATENCY ANONYMITY SYSTEMS

The flushing algorithms used by the mix-based systems above can introduce large
delays on the order of several hours or even days between the time a message is sent
and when it arrives at the intended recipient. For applications like email, such delays
are tolerable and often even expected; however, real-time, interactive applications, like
Web browsing and SSH, require significantly lower latency.

The improved performance of low-latency anonymity systems, however, can increase
a system’s susceptibility to certain traffic analysis attacks [Shmatikov and Wang 2006;
Serjantov and Sewell 2003; Liberatore and Levine 2006]. We will examine such attacks
in greater detail in Section 6.

4.1. Anonymizer.com

We saw in the previous section that the basic building block for many high-latency
anonymity systems is typically a mix. Low-latency anonymity systems, however, are
often based on the notion of a proxy. While mixes explicitly batch and reorder incoming
messages, proxies simply forward all incoming traffic (e.g., a TCP connection) immedi-
ately without any packet reordering.
anonymizer.com, for example, is a company that offers a commercial proxy service.

Clients pay a subscription fee and then are allowed to relay their Web traffic through
proxy servers operated by the company. Client Web requests then appear to originate
from anonymizer.com’s servers, rather than from the client’s own IP address. Such an
approach is simple and efficient, but it requires clients to trust the company to not
monitor or log their traffic.

In the remainder of this section, we will consider other system designs that seek to
provide strong anonymity to clients while maintaining a level of performance acceptable
for interactive applications.

4.2. Onion Routing

Arguably the most prevalent design for low-latency anonymous communication in the
literature is an approach called onion routing, initially developed by Goldschlag et al.
[1996]. Unlike Crowds (see Section 4.4), onion routing clients do not necessarily relay
traffic for other clients. Instead, there is a set of servers called onion routers that relay
traffic for clients. We let R = {R1, R2, . . . , Rn} represent the set of n onion routers in
the network. As in mix networks, each onion router also maintains a private and public
key pair, the public component of which should be made known to clients. The original
onion routing prototype, however, did not include a formal mechanism for distributing
such information to clients or other onion routers [Syverson et al. 2000].

The first step to establishing an anonymous application-level connection over an
onion routing network is for the initiator to construct a multiply encrypted tunnel, or
circuit, through the network. The initiator first selects an ordered sequence of servers
in the network to use as the circuit’s path, much like in a mix network.

In mix networks, however, the initiator has to perform separate asymmetric cryp-
tographic operations for each mix along the path for each message it wants to send.
Additionally, each mix also has to do an asymmetric cryptographic operation for every
message it processes. Such an approach is acceptable for email messages that are likely
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fairly infrequent; however, loading a single Web page, for example, may require the ini-
tiator to also fetch several large images or many other Web objects. Using asymmetric
cryptography for every object requested would place a large computational cost on both
initiators and servers in the network. To minimize the computational costs imposed,
senders in an onion routing network only use public key cryptography to establish the
encrypted circuit and then use faster symmetric key cryptography to transfer the actual
data.

The initiator randomly generates two symmetric secret keys—a forward key KFi
and a backward key KBi—for each router Ri along its path. It also chooses forward

and backward cryptographic functions, fi and f −1
i , respectively, corresponding to the

generated symmetric keys. The pair (KFi, fi) is used to crypt data as it traverses the

path from the initiator towards the responder (e.g., a Web site), and the pair (KBi, f −1
i )

is applied to data from the responder to the circuit initiator.
As an example, if the initiator chose the path P = {Rx , R y , Rz}, the initiator would

construct an encrypted “onion” as follows:

Ex(tx , f x , KFx , f −1
x , KBx , R y ,

E y (ty , f y , KF y , f −1
y , KB y , Rz ,

Ez (tz , fz , KF y , f −1
z , KBz , ∅))).

The values ti in the onion indicate the expiration time of the onion, and the symbol
∅ is used to indicate to Rz that it is the last router in the path. The initiator sends
the onion to the first router in the path, Rx , which removes the outermost layer of
encryption using its private key, and learns the symmetric keys KFx and KBx generated
by the initiator, as well as the next server in the path. Rx then pads the remaining
encrypted payload with random bytes, so the onion maintains a constant length, and
sends the result to R y . Each server along the path repeats this process, until the onion
reaches the end of the path.

Once the circuit is constructed, the initiator can relay its application traffic over the
circuit using the symmetric keys generated for each hop. Similarly to how the onion
was constructed, the initiator encrypts a message (e.g., a Web request) once for each
router in the circuit using the generated forward keys KFi and then sends it to the first
router in the circuit. Each router in the circuit can remove a layer of encryption and
forward the result to the next server in the circuit, until it reaches the last server, which
can then forward the original message to the destination (e.g., a Web server).

When a response is sent along the reverse path of a circuit, a layer of encryption
is added by each router in the circuit using the backward key KBi and cryptographic

function f −1
i given during circuit setup. The initiator can then remove all layers of

encryption to recover the original response, since he or she has the secret keys he or
she previously generated for each router.

4.3. PipeNet

PipeNet was a low-latency anonymity system independently and informally proposed
around the same time as onion routing [Dai 1998]. Users in PipeNet first select a
random sequence of servers in the network, similar to path selection in onion routing.
Clients then set up a multiply encrypted tunnel by establishing a symmetric key with
the first hop, tunneling through that encrypted connection and establishing another
key with the second hop, and so on. PipeNet’s design was, however, impractical for real
networks like the Internet, and was never publicly deployed.

All communication in PipeNet occurs in discrete time units. The design assumed
there is exactly one packet sent over each link between network nodes during a time
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unit. If a packet is not received by a node over any one of its links, it does not forward
any packets for that time unit. As a result, a single misbehaving (or malfunctioning)
node can force all communication in the entire network to cease by simply not sending
a message for one or more time units [Back et al. 2001].

4.4. Crowds

The Crowds system was specifically designed for anonymous Web browsing [Reiter
and Rubin 1998]. Users in the system are represented by processes called jondos (a
la “John Doe”). Jondos are assigned to a crowd of other jondos by an administrative
process called a blender. The blender is also responsible for informing new jondos of
other members of the crowd.

When the user’s browser first makes a Web request, his or her jondo establishes a
random path through the network by first randomly picking another jondo (perhaps
even itself) from the crowd and forwarding the request to it. That jondo then flips a coin

biased with a forwarding probability pf > 1
2
. Depending on the outcome of the coin flip,

the jondo either randomly selects another member of the crowd to which the request
will be forwarded, or it forwards the request to the intended Web server. Each jondo also
remembers the hop before it along the forwarding path, so that when a reply is received
from the Web server the reply is relayed via the reverse of the established path. The
pairwise connections between jondos are encrypted using shared keys assigned by the
blender when a new jondo joins the crowd.

Since each member of the crowd relays requests for any other member, when a jondo
receives a request it does not know if that jondo was the original requester or if it simply
forwarded the request for another jondo; however, one or more malicious jondos on the
path may collaborate to try to identify the true initiator of a connection. Consider a path
that includes at least one malicious, collaborating jondo. The Crowds designers proved
the first collaborating node’s predecessor is no more likely to be the true initiator of that
connection than to not be the initiator (a property they defined as probable innocence) if

n ≥ pf

p f − 1/2
(c + 1),

where n is the total number of jondos, of which c are collaborating malicious jondos.
Clearly there is also a tradeoff between the forwarding probability pf and the length

of the established path and, consequently, performance for the user. Note that there is
no explicit batching, delaying, or reordering of messages as they are relayed through
the crowd. This is true of nearly all low-latency anonymity system designs.

4.5. Java Anonymous Proxy (JAP)

Web Mixes [Berthold et al. 2000a], as the name suggests, is another system intended to
provide anonymity for interactive, real-time Internet applications, like Web browsing.
Web Mixes, however, is quite different from the onion routing and Crowds designs.

The system consists of the Java Anonymous Proxy (JAP) software that runs on a
client’s computer and forwards client traffic into one of several available mix cascades.
Each mix in a cascade cryptographically transforms received packets and reorders
packets among data streams before forwarding them to the next mix. The last mix in
the cascade forwards traffic to a “cache-proxy,” which forwards the anonymized Web
request to the intended destination. The cache proxy also scans the Web response for
embedded objects and fetches those as well, before sending the entire response back
through the cascade to the client.
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In an effort to hinder traffic analysis, the Web Mixes design article calls for the JAP
software to maintain a constant traffic rate between the client and the first mix in the
cascade. It will insert dummy traffic if the client does not have any actual data traffic
to transmit. Constant-rate traffic padding is also suggested between the cache-proxy
and the last mix of each cascade. The deployed implementation, however, does not use
any cover traffic due to the excessive load it would place on the network.

The JAP software has been publicly available for several years and is second in pop-
ularity only to Tor (discussed in Section 4.8). It has recently evolved into a commercial
operation under the name JonDonym [JonDos GmbH 2008].

4.6. Tarzan

Tarzan is a low-latency anonymity system [Freedman and Morris 2002], and is loosely
related to the original onion routing design. Like onion routing, initiators in the Tarzan
network construct circuits through the network by generating symmetric keys for each
hop and iteratively encrypting them with public keys of the servers in the circuit. The
symmetric keys are then used to relay data over the circuit. Tarzan, however, uses UDP
for a transport protocol, as opposed to Tor that uses TCP.

Like Crowds, all participants in the network relay traffic for other users. The novelty
in the Tarzan design is in how clients learn about other servers in the network. Rather
than rely on a small set of directory servers with a complete view of the network,
Tarzan uses a peer-to-peer “gossip” protocol to share information about other servers.
When a node initializes, it discovers other servers by selecting a random neighboring
node that it already knows about (say, from a set of bootstrap nodes) and asking that
neighbor for all the other servers the neighbor knows about. The requesting node can
then select another random node from the newly learned set of servers and repeat the
process.

Tarzan also introduces cover traffic in the network, intended to help obscure actual
data traffic patterns and prevent a global passive adversary from linking traffic flows to
their initiators. When a node joins the network, it selects k other nodes called mimics,
and asks them to exchange “mimic traffic” with it. Each node selects its mimics based
on the result of repeated application of a cryptographic hash function incorporating
the node’s IP address and the current date. As a result, mimic selections are univer-
sally verifiable, preventing an adversary from selecting more than k mimics. Mimic
selections are also symmetric; otherwise nodes would only send data on their outgoing
links.

The initiator of an anonymous tunnel creates a circuit through the Tarzan network
by choosing the first hop randomly from his set of mimics. The second hop is selected
from the set of mimics chosen by the first hop, and so on. Application traffic is relayed
over the circuit using a layered encryption approach similar to onion routing.

While a node is online, it exchanges mimic traffic with its neighboring mimics that
is indistinguishable to an outside observer from application traffic. The rate at which
a node sends outgoing traffic is intended to approximately match the rate at which
it is receiving traffic. Since the initiator of a circuit is also exchanging mimic traffic
with other nodes, someone watching the node has a greater difficulty identifying it as
the source of a particular circuit. Additionally, the first hop in a circuit does not know
whether the traffic it is receiving is cover traffic or application traffic.

We note that, due to the cover traffic included in the Tarzan design, we could per-
haps have classified it as a system for unobservability in Section 5 and still adhere to
Pfitzmann and Hansen [2008] definition of unobservability; however, due to its close
relation to onion routing and MorphMix, we have chosen to include it in this section
for clarity and coherence.
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4.7. MorphMix

Similar in spirit to Tarzan, MorphMix [Rennhard and Plattner 2002] is a peer-to-peer
low-latency anonymity system in which all nodes in the network relay traffic for other
nodes. Like Tarzan and onion routing, MorphMix uses multiple nested symmetric en-
cryptions to transfer data along circuits. MorphMix’s approach to peer discovery and
circuit construction, however, is quite different from previous approaches and is con-
siderably more complex.

To construct a circuit, the circuit initiator a chooses a node b from the set of nodes it
currently knows about. a then requests from b a signed list of other nodes that it knows
about, from which a can pick the next hop of its circuit. Let x be the next hop chosen by
a from the set of nodes supplied by b. Further, let w be another node previously known
to a, which will be used as a “witness” node.

Node a establishes a symmetric key with x by sending to b half of a Diffie-Hellman
(DH) handshake encrypted with the witness w’s public key. b relays the ciphertext to w
who removes the layer of encryption and forwards the result to x. x generates its half
of the DH handshake and sends it to a via b. Both sides are then able to generate their
shared symmetric key. Note that no nodes other than a and x ever see both halves of the
DH handshake; thus there is no opportunity for a man-in-the-middle attack (assuming
x is honest). The initiator repeats this process for each hop in its circuit.

If a new node queries a malicious node collaborating with other nodes, however, the
malicious node could send the witness only nodes with which it is collaborating. Thus, it
can induce a to choose a path consisting only of malicious nodes, who can then collude to
identify the initiator and its destination. To try to minimize this attack, the MorphMix
designers attempted to add a collusion detection mechanism that tracks which nodes
appear in a tunnel together. If certain nodes are colluding, then they will appear to-
gether in tunnels with higher probability than noncolluding nodes. Unfortunately, this
approach was shown to be easily defeated by an adversary by offering sets of colluding
nodes to the initiator that intersect as little as possible [Tabriz and Borisov 2006].

4.8. Tor

Tor [Dingledine et al. 2004a] is the most recent evolution of onion routing and repre-
sents the current state-of-the-art in low-latency anonymity systems. The Tor design
makes several modifications and improvements over the original onion routing design
in terms of security, efficiency, and deployability. The Tor network is currently the
largest deployed anonymity network ever, consisting of over 1000 servers and more
than an estimated 250,000 users as of December 2007.

4.8.1. Directory Servers. The original onion routing prototype did not include any for-
mal specification for how clients learn about routers in the network. The Tor design
includes a specification for a small set of trusted authoritative directory servers, similar
to those in Mixminion. The directory servers are responsible for aggregating and dis-
tributing signed information about known routers in the network. The signed directory
information can also be mirrored by other routers in the network in order to reduce
load on the authoritative directory servers.

4.8.2. Circuit Establishment. Tor clients use a telescopic approach to circuit construc-
tion, a concept first introduced by Cebolla [Brown 2002]. The initiator of a circuit iter-
atively negotiates ephemeral session keys with each router in the circuit’s path using
DH key negotiation and one-way RSA authentication. When a key is established with
the first hop, the initiator can tunnel through that encrypted connection, establish an
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ephemeral session key with the second hop, and so on. When a circuit is no longer used,
the session keys are discarded.

This telescopic approach to circuit establishment results in two key benefits. First,
discarding the session keys when the circuit is closed means that subsequently com-
promising a router does not allow an adversary to recover the session key and decrypt
traffic encrypted under that key, giving Tor clients perfect forward secrecy. Second,
onion routers no longer need to store hashes of previously processed onions in order to
prevent replay attacks. Replaying one side of a DH handshake results in a different
session key, yielding no information to an attacker.

There have recently been two separate proposals for modifying Tor’s circuit construc-
tion algorithm. Kate et al. [2007] suggested a protocol using pairing-based cryptography
to establish circuits. A benefit of their approach is that session keys can be established
with in “one pass” rather than interactively negotiating keys with each successive hop
in the circuit, resulting in lower computation and communication overhead. Their de-
sign, however, relies on one or more trusted nodes to generate and distribute private
keys for all routers in the network.

Another alternative circuit construction algorithm presented by Øverlier and Syver-
son [2007] relies on precomputed DH parameters, the public components of which are
published by each router in Tor’s directory service and updated regularly. Clients can
then generate their own DH parameters and, using the routers’ public DH informa-
tion, compute the session keys to be shared with routers in their circuit. The approach
of Øverlier and Syverson [2007] effectively eliminates three RSA encryption operations
for clients and one RSA decryption operation for each node in a circuit. It also has the
benefit of allowing clients to do DH computations during their idle CPU cycles.

4.8.3. Location-Hidden Services. The Tor design also added an interesting feature called
location-hidden services, or simply hidden services for short. Hidden services allow users
to provide services, such as a Web server, accessible to anyone with a Tor client, but
without revealing the IP address or location of that server [Dingledine et al. 2004a].

Hidden services maintain anonymous connections to a subset of nodes in the network
known as introduction points. Clients can then connect to the hidden service’s introduc-
tion points and specify another node known as a rendezvous point, along with half of a
DH handshake. Both the client and the hidden service connect to the rendezvous point
and establish an encrypted tunnel through it. This somewhat roundabout approach is
intended to prevent the introduction points from being perceived as responsible for the
content offered by a disreputable hidden service.

Øverlier and Syverson [2006] described an attack that can allow an adversary to
identify the true host of a hidden service. The adversary simply runs a node in the net-
work and makes many requests to the hidden service. Over time, the hidden service will
repeatedly choose the adversary’s server as the first hop in its circuit to the rendezvous
point, since circuit paths are chosen randomly. The adversary can then statistically
determine the most likely host of the hidden service.

The authors described a countermeasure to their attack called entry guards, which
are similar in concept to helper nodes introduced by Wright et al. [2003]. The hidden
service chooses a small set of nodes (its “entry guards”) from which it will always
select the first hop in its circuits. Of course, if some or all of the chosen entry guards
are controlled by the adversary then the attack can still succeed; however, if none of
the selected entry guards are compromised then the attack described above can never
succeed since the adversary’s node will never be adjacent to the hidden service on the
hidden service’s circuit to the rendezvous point. Thus, entry guards give the hidden
service some possibility of defending against this attack, whereas without them the
attack can always succeed.
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5. SYSTEMS FOR UNOBSERVABILITY

The anonymity systems described in the previous section aim to prevent an attacker
from determining who is communicating with whom. Even though the adversary is
unable to identify the intended recipient of a particular message seen entering the
network, or the original sender of a message observed exiting the network, he or she
can still identify which senders or recipients were active during a period of observation.
We can also imagine scenarios in which users want to hide even the fact that they sent
or received a message.

In this section, we describe anonymity systems that provide unobservability—a
stronger property than unlinkability. In a system providing unobservability, an ad-
versary monitoring the users of the system is unable to distinguish messages carrying
actual content from random noise. Consequently, not only does the system conceal who
is communicating with whom, but it also hides which users sent or received a message
during a period of observation.

As we will see in this section, the current designs for systems that provide unobserv-
ability also introduce significant latency and overhead that often make them impracti-
cal for real-time anonymous communication over the Internet.

5.1. A Naı̈ve Solution

To illustrate a naı̈ve implementation of a system for unobservability, consider a system
consisting of n users connected via a broadcast channel. During an initial setup phase,
each user generates a public and private key pair under an asymmetric cryptosystem
that provides key privacy [Bellare et al. 2001]. The public component is distributed to
all other users via an authenticated—but not necessarily private—channel. The system
also has a parameter t that specifies the length of a time interval, and all users have
approximately synchronized clocks.

At the expiration of the time interval t, all n users in the system simultaneously
broadcast a fixed-length message of l bytes. If one user wants to send a message to
another user during that time interval, the sender encrypts the message m with the
public key of the recipient and broadcasts the resulting ciphertext to all other users. If
necessary, m is either truncated to l bytes or padded with l − |m| randomly generated
bytes before encrypting the message. Users who do not want to send an actual message
to another user during that time interval simply broadcast l random bytes.

Upon receiving a broadcast message c, each recipient attempts to decrypt c using
his or her private key. Under many standard encryption systems, if the result is a
plaintext message that “makes sense,” then the recipient knows that another user
sent it a message. If c is simply a message of random bytes, or is the ciphertext of a
message encrypted with another user’s public key, then the result of a “decryption”
will also appear to be random bytes. Thus, the other users in the system who are not
the intended recipients do not learn whether the broadcasted message is a ciphertext
intended for another user, or if it is simply a randomly generated block of bytes.

Since the transmitted messages consisting of randomly generated bytes are bitwise
indistinguishable from an encrypted ciphertext, and all n users broadcast to all other
users during each broadcast round, even a global adversary observing the network is
unable to determine which users transmitted an actual message to another user during
the round. If we assume users have a way of masking or rewriting the source address
of a message sent on the broadcast channel, then the system also provides anonymity
for the sender.

This naı̈ve system as described is conceptually simple and easy to implement, but
is clearly inefficient in terms of network overhead. The time interval parameter t also
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implies a performance bound on the system. That is, users cannot communicate at
more than l/t bytes per second. As t approaches zero, the system starts to behave as a
constant-rate broadcast channel which is impractical for a diverse, wide-area network
such as the Internet.

In the rest of this section, we consider more sophisticated designs that provide un-
observability with improved efficiency, scalability, robustness, or some combination of
these properties. Yet, as we will see, many of them still have a similar broadcast-based
component that limits their general deployability.

5.2. Dining Cryptographer Networks

In addition to inventing the concept of a mix, David Chaum also devised a system
called Dining Cryptographer networks (DC-nets) [Chaum 1988]. In his original work,
he proposed the following problem that gives rise to the protocol’s name. A group of
cryptographers are seated around a table having dinner at a restaurant. At the conclu-
sion of their meal, they are informed by the waiter that their bill has already been paid
for anonymously. They speculate that their bill was either paid by one of the cryptog-
raphers seated at the table, or by the United States National Security Agency (NSA).
The cryptographers respect each other’s right to have anonymously paid for the meal,
but they are still curious if NSA paid for it instead. If one of the cryptographers did, in
fact, pay the bill, can he or she let the others know while remaining anonymous?

It turns out that indeed such a protocol exists. Assume the cryptographers are seated
in a circle. Each cryptographer secretly flips a coin and records a 0 if the result of the flip
is tails and 1 if it is heads. Each then privately shares the result of his or her own flip
with the cryptographer on his left. Given these two values, the cryptographers can each
compute z = x ⊕ y , where x is the result of his or her own flip, y is the value learned
from the cryptographer to his or her right, and ⊕ represents addition modulo 2 (i.e.,
XOR). He or she then announces the result to the group. If one of the cryptographers
paid for the meal, he or she instead announces the value z ⊕ 1. Let z1, z2, . . . , zn be
the values announced by the n cryptographers seated at the table. They can all jointly
compute Z = z1 ⊕ z2 ⊕ · · · ⊕ zn.

If none of the cryptographers paid for the meal, then the result Z will be 0. If Z = 1,
then one of the cryptographers at the table paid the bill. The reasoning is easy to see
when we consider the n cryptographers as nodes in an undirected, circular graph, with
links between them representing the shared values between neighboring cryptogra-
phers. We call this graph a key graph. Let xi, j be the bit shared between neighboring
cryptographers i and j . Further, let si be cryptographer i’s secret bit indicating whether
or not he paid for the meal. Thus, each cryptographer i is announcing the result of
zi = x(i−1),i ⊕ xi,(i+1) ⊕ si. It follows that

Z = z1 ⊕ z2 ⊕ · · · ⊕ zn

= (xn,1 ⊕ x1,2 ⊕ s1) ⊕ (x1,2 ⊕ x2,3 ⊕ s2) ⊕ · · · ⊕ (x(n−1),n ⊕ xn,1 ⊕ sn)

= xn,1 ⊕ xn,1 ⊕ s1 ⊕ x1,2 ⊕ x1,2 ⊕ s2 ⊕ · · · ⊕ x(n−1),n ⊕ x(n−1),n ⊕ sn

= s1 ⊕ s2 ⊕ · · · ⊕ sn,

where the third step follows from a simple reordering of terms. If no cryptographer
paid for the meal, si = 0 for all i. Otherwise, there is precisely one si that is nonzero
and the result Z = 1. This example demonstrates the basic principle behind DC-nets,
showing how a member of the network can transmit a single bit without any other
communicant knowing who transmitted a message. It is easy to see how this approach
can be generalized to arbitrary message lengths and shared secret sizes.
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So far we have assumed all nodes in the network are honest, which is certainly not
always (if ever) true. Assume cryptographer i did, in fact, pay for the dinner. Now
consider if cryptographers (i −1) and (i +1) suspect i as having paid the bill and collude
to try to confirm their suspicions. After i announces zi, the collaborating nodes can
combine their shared secrets x(i−1),i and xi,(i+1) to compute

zi ⊕ x(i−1),i ⊕ xi,(i+1) = (
x(i−1),i ⊕ xi,(i+1) ⊕ si

) ⊕ x(i−1),i ⊕ xi,(i+1)

= x(i−1),i ⊕ x(i−1),i ⊕ xi,(i+1) ⊕ xi,(i+1) ⊕ si

= si.

Thus, two collaborating nodes can collude to reveal the message sent by a node be-
tween them. In order to prevent this, nodes can share a secret key (coin flip) with more
than just their neighbors, depending on the expected number of colluding adversaries
in the network. Whereas before we had a circular key graph with n nodes and n links,
every node can instead exchange a secret key with every other node in the network. The
resulting key graph is thus a complete graph. Only if all nodes collude to compromise
the anonymity of another can they determine the sender of a particular message.

Clearly the scheme presented thus far is also inefficient in terms of bandwidth over-
head. Each message bit anonymously transmitted requires all users to send the result
of their local computation to every other user. Thus, a total of n(n − 1) bits are trans-
mitted in order to anonymously send a single message bit. Instead, users can arrange
themselves in a ring where some “initiating” node i sends zi = xi,(i−1) ⊕ si to node i + 1.
Node i + 1 computes zi+1 = zi ⊕ x(i+1),i ⊕ si+1 and sends zi+1 to the next node i + 2, and
so on. This process repeats around the ring until the last node in the ring broadcasts
the final result to all other nodes. This approach only requires 2n transmissions, rather
than n(n−1). As n increases to support a large number of users, however, the bandwidth
overhead and delay induced by this approach can still become burdensome.

Another pernicious problem with DC-nets is that of message collisions. If two senders
try to transmit messages at the same time, their messages will be superimposed yielding
an unintended output. Consider again the cryptographers at the table. If two cryptog-
raphers claim to have paid for the dinner (i.e., si = sj = 1 for some i, j ), the resulting
value of Z will be zero. Indeed a single user wanting to disrupt the system for every-
one else can simply always broadcast random bits, performing an effective denial of
service attack. Detecting and preventing these attacks has been the focus of some re-
search [Waidner and Pfitzmann 1990; Golle and Juels 2004], but the bandwidth costs
and inefficiencies of the protocol remain high.

DC-nets are unique in that they offer information-theoretically secure anonymity,
rather than relying on computational assumptions. That is, modern cryptosystems,
such as RSA, are based on the computational unfeasibility of solving certain problems.
The security of DC-nets, however, cannot be broken given an unlimited amount of
computing power and time [Chaum 1988]. Unfortunately, as we mentioned above, their
bandwidth overhead and susceptibility to collisions makes them quite inefficient and
infeasible in practice.

5.3. Herbivore

The Herbivore anonymity system (a play on the name of the FBI’s Carnivore monitoring
system [Electronic Privacy Information Center 2005]) attempted to adapt DC-nets into
a design that would make them more efficient and suitable for use in low latency, real-
time Internet applications [Goel et al. 2003].

In the simple DC-net example above, all users of the system must combine their pri-
vately computed bits to transmit a single anonymous message bit. Clearly this approach
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does not scale to beyond a few users communicating on a lightly loaded network. Her-
bivore instead takes a hierarchical approach. When a new user joins the network, it is
assigned to one of many smaller groups of users called cliques. Every clique has between
k and 3k users, where k is a parameter of the system. If a clique becomes too small, its
users are merged into other cliques. Similarly, once a clique grows too large, it can be
separated into smaller cliques. Users within each clique are logically arranged in a star
topology, with one user at the center, and all other nodes communicate via this center
node. Each user in the clique still has a shared key with every other member of the
clique. At a higher level, cliques are arranged in a ring topology, allowing inter-clique
communication.

A novel contribution of the Herbivore system design is an anonymous slot-reservation
protocol for collision avoidance in a DC-net. Communication in Herbivore takes place
over a series of rounds, during which nodes reserve bandwidth on the channel and then
transmit fixed blocks of data.

To reserve a slot, each node that would like to transmit during a given round picks
a random number i ∈ [1, m] and then generates an m-bit reservation vector r with
ri = 1 and the rest filled with zeros. If a node does not want to transmit during a
round, it simply generates an all-zero reservation vector. All nodes then simultaneously
and anonymously broadcast their reservation vector to the group. Consequently, the
reservation vectors will be XORed, with the resulting m-bit vector having a 1 in each
position in which some node wants to transmit. Nodes then transmit their message in
order during the transmission phase of the round, according to their randomly chosen
slot in this reservation vector. The length of the vector is a system parameter chosen
according to how many users on average are expected to transmit during a single round.

During each transmission slot in a given round, each node locally computes the XOR
of the message it wants to send (if it reserved the current slot) and the pairwise keys
it shares with all other clique members. The center node then computes the XOR of its
own local value and those sent by the other clique members, and then broadcasts the
result. This star topology approach requires 2(k − 1) bits to transmit one anonymous
message bit.

5.4. P5

The P5 [Sherwood et al. 2002] system design is not based on DC-nets, but instead relies
on users to generate and broadcast cover traffic to hide the real traffic. P5 groups users
in a logical hierarchy of broadcast groups, arranged as a binary tree. When a message is
sent to a broadcast group g , the message is also sent to all groups that are descendants
of g as well as all groups that have g as a descendant. To send a message in P5, a user
first encrypts the message with the intended recipient’s public key and then broadcasts
the ciphertext to one of the broadcast groups the sender has joined. If the recipient is not
in one of the sender’s broadcast groups, the message can be anonymously broadcasted
across other groups in the binary tree.

A unique feature of the P5 design is that it allows users to trade off anonymity for per-
formance by letting users choose whether to join groups higher or lower in the broadcast
hierarchy depending on whether they desire more anonymity or better performance,
respectively. For example, joining the broadcast group at the root of the tree means that
all messages sent in that group are also broadcast to every other group in the tree.

Users in P5 also generate noise traffic at a constant rate, such that the noise packets
are indistinguishable from an authentic message packet. As a result, an adversary
observing the network is unable to discern when a user is sending an actual message.
The noise traffic is sent to a group chosen uniformly at random. Due to the constant
rate of traffic from each user and broadcast nature of the system, P5 users may have
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to drop traffic they do not have the resources to handle. Since groups higher up in the
broadcast hierarchy receive the most traffic, those channels may experience the highest
loss rates.

5.5. Nonesuch

While the previous systems prevent an adversary from distinguishing an actual mes-
sage transmission from random noise, the adversary is still able to discern which users
are participating in the anonymity network. In contrast, the Nonesuch system tries to
prevent an adversary from determining that a sender has participated in an anonymity
protocol by steganographically hiding messages for a high-latency mix network inside
an image [Heydt-Benjamin et al. 2006]. The design assumes the existence of a suitable
steganographic algorithm, rather than designing a new one.

In Nonesuch, users use steganography to hide a message in an image file, and then
post that image file to a Usenet newsgroup, for example, one about photography. Since a
simple inspection of an image should not reveal whether it contains a hidden stegotext,
the other images in the newsgroup serve as cover traffic. Nonesuch nodes periodically
retrieve all news images that were posted to the group and try to extract a stegotext
from each.

If a plaintext message were embedded as the stegotext, it would be trivial for an
adversary to simply retrieve all images in the group, run the stegotext extraction al-
gorithm on each to identify those carrying a hidden message, and then identify the
senders based on who posted the image. To prevent this simple attack, the hidden mes-
sages are in fact multiply encrypted messages to be routed through a high-latency mix
network. Consequently, the stegotext is indistinguishable from random bits.

Since Nonesuch nodes cannot initially distinguish actual messages from cover traffic,
all stegotext is treated as if it were a legitimate message. After Nonesuch nodes attempt
to extract a stegotext from an image, whether that image carries content or is cover
traffic, the nodes use a hash of a portion of the stegotext as an index to a global routing
table. With some probability, depending on the size of the hash and density of the
routing table, the header of a cover traffic message will hash to a position in the global
routing table that indicates the next hop in the mix network. If the hash does not
match an index in the routing table, the message is simply dropped. Thus, cover traffic
is attenuated as nodes attempt to propagate it through the network.

The process of cryptographically transforming a message, looking up the next hop in
a routing table, and forwarding the message repeats until all layers of encryption have
been removed and the message is delivered to the recipient, or the message is dropped
as cover traffic.

5.6. Anonymous Buses

Beimel and Dolev [2003] presented a rather novel approach to unobservability not
based on DC-nets. Consider a public transportation system with buses that pick up
passengers at predefined bus stations and drop them off at another station according
to some fixed schedule. Senders and recipients in a communication network can be
similarly modeled as “stations” and the bus can be thought of as carrying messages
between them.

In the simplest approach, the path the bus travels is formed by an Euler tour of the
senders and recipients in the network. The bus has n2 “seats,” with seat si, j reserved
for sending a message from user i to user j . If i has a message to send to some node
j , then it encrypts its message with j ’s public key and places it in seat si, j when the
bus stops at i. Otherwise, i simply fills si, j with some random bytes and then sends
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the bus to the next scheduled stop. When the bus arrives at j , j can try to decrypt the
contents of all s∗, j to see if it received any messages. Due to the semantic security of
the encryption, an observer is unable to discern whether a seat on the bus contains an
actual message or simply some random bytes.

The naı̈ve approach above suggests an O(n) time complexity and O(n2) storage com-
plexity for the bus. Additionally, an active adversary could simply overwrite arbitrary
seats on the bus with random data to cause messages to become corrupted. The au-
thors also analyzed more complex variations that attempt to optimize time and storage
complexity, as well as Byzantine fault tolerance [Beimel and Dolev 2003].

6. TRAFFIC ANALYSIS ATTACKS

Just as resistance to cryptanalysis attacks is a yardstick by which cryptographic al-
gorithm designers evaluate the security of their algorithms, traffic analysis is often
an effective tool that designers of anonymity systems use to determine the resilience
of their system against an attacker. Traffic analysis ignores the content of messages
and instead tries to derive as much information as possible from only network traffic
metadata, such as packet arrival times and message lengths.

The field of traffic analysis research is indeed broad enough to merit its own sur-
vey [Danezis and Clayton 2007]. Instead, here we only focus on some of the most signif-
icant traffic analysis techniques that have been applied to anonymity systems. These
attacks, broadly, seek to correlate senders and recipients using only metadata passively
collected about the messages or traffic flows in the system.

6.1. Website Fingerprinting

If the adversary has a list of guesses as to which site the target user is visiting, the
adversary can simply fetch those sites as well. He or she observes the quantity and
length of data packets received in response. From this metadata, the adversary can
build a fingerprint of what the Web site’s response traffic looks like when fetched via
an encrypted connection [Hintz 2002; Sun et al. 2002].

For example, if you were to visit cnn.com, you would fetch not just the page’s text,
but also several embedded objects such as images. Even if the request is encrypted
with SSL, the size and rate of packets returned is not well obscured. This approach,
however, does require the adversary to have a set of guesses as to which site a target user
is visiting so he or she can build up a database of Web site fingerprints to match against.

To mitigate this attack, most modern anonymity systems split messages into fixed-
length cells. Messages shorter than the length of a cell are typically padded with random
data. Ensuring that all transmitted data packet are of the same length helps to obscure
the true nature of the response traffic, potentially frustrating a simple fingerprinting
attack. Liberatore and Levine [2006] examined the effectiveness of various approaches
to padding data packets. The authors conjectured that they would be able to still ap-
proximate the underlying packet size (potentially broken across multiple cells) for low-
latency anonymity systems like Tor by also taking into account packet inter-arrival
times.

6.2. Timing Attacks

As discussed in Section 4, low-latency anonymity systems like onion routing do not
introduce any delays or significantly alter the timing characteristics of an anonymous
connection. As a result, a passive global adversary who is able to observe connections
entering and exiting the anonymity network may be able to link inputs and outputs
based on their patterns of packet inter-arrival times.
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The effectiveness of such attacks has been extensively analyzed in the litera-
ture [Levine et al. 2004; Zhu et al. 2004; Murdoch and Zieliński 2007; Shmatikov and
Wang 2006]. Levine et al. [2004] proposed an approach to mitigating timing attacks
called defensive dropping in which nodes introduce random packets called dummy traf-
fic at the start of the circuit. The dummy traffic is then probabilistically dropped as
it passes through the network. Shmatikov and Wang [2006] also proposed a traffic
padding scheme where nodes in a circuit inject dummy traffic between each other ac-
cording to a probability distribution over packet interarrival times.

The defenses proposed by Levine et al. [2004] and Shmatikov and Wang [2006] as-
sume a passive adversary. Zhu et al. [2004] showed that an active attacker can actually
induce timing delays into the client’s traffic that allows him or her to easily correlate
input and output flows in an anonymity network.

Timing attacks can also be performed by an active attacker who is unable to observe
both ends of a connection. Murdoch and Danezis [2005] demonstrated such an attack
against the Tor network. If an adversary can induce a client to connect to a Web site he or
she controls, the malicious Web site can send back data in an identifiable traffic pattern.
The adversary then probes routers in the Tor network with constant rate traffic. When
the adversary probes a router used in the client’s path, the identifiable traffic pattern
sent by the malicious Web site causes the probe response traffic to exhibit a similar
timing pattern. The adversary can repeat this attack to trace the client’s connection
back to the first router in the client’s circuit.

While the attack proposed by Murdoch and Danezis [2005] only enables the attacker
to determine the routers used in a client’s path, Hopper et al. [2007] leveraged the
Murdoch-Danezis attack and extended it to try to approximate the client’s network
location from among a set of candidates. After applying the Murdoch-Danezis attack,
the adversary can estimate the round-trip time between the client and the first node
in the inferred path in order to narrow down the set of candidate client locations.
After repeating this attack against the client several times over different circuits, the
adversary can approximate the likely network location of the client with increasing
precision.

6.3. Predecessor Attacks

In an analysis of their Crowds design, Reiter and Rubin [1998] considered an attack
in which a number of attackers join a crowd and attempt to identify the initiator of a
particular persistent connection. When the paths are periodically reformed in a crowd,
the persistent connection will have to be reestablished. Over time, the true initiator
of the connection is far more likely to be an adversarial node’s immediate predecessor
in a path than any other node. The attack assumes the connection in question can be
identified after each path reformation.

Syverson et al. [2000] analyzed a related attack against an onion routing network.
If an adversary can observe the first and last hop in a client’s circuit, she or he can
perform a timing analysis attack to try to link the two. The circuit’s initiator is thus the
immediate predecessor of the adversary observing the client’s entry node. The authors

derived a c2

n2 bound on the probability that an adversary who has compromised c of out

n nodes succeeds in being selected as the first and last nodes in the initiator’s circuit.
As the initiator repeatedly establishes a circuit, the probability that one of the paths
chosen is compromised increases.

Wright et al. [2004] formalized a general model of these attacks, called predecessor
attacks. The authors analyzed the expected number of rounds (path reformations) it
takes an adversary to be able to identify the initiator of a connection with high confi-
dence for Crowds, onion routing, mix networks, and DC-nets. They showed that a fully
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connected DC-net offers the best resilience against the predecessor attack. Such a net-
work topology suffers from quite limited scalability, though, for the reasons discussed
in Section 5.2.

6.4. Disclosure Attacks

Kesdogan et al. [2002] introduced an attack they termed the disclosure attack. Consider
a user, Alice, who repeatedly sends messages to one of m different communication
partners in each mix round. A passive adversary observes the messages entering and
exiting the mix and wants to identify with whom Alice is corresponding. The adversary
first waits until he has observed m mutually disjoint set of recipients 〈R1, . . . , Rm〉.
Each of these sets contains precisely one of Alice’s m communication partners.

The adversary then refines these sets by waiting to observe a new recipient set R
that intersects with only one previously observed Ri. Ri is then reduced to Ri ∩ R. The
adversary can continue this attack until he has reduce all Ri to only a single element,
thus identifying each of Alice’s m communication partners. For this reason, the disclo-
sure attack has also been referred to as an intersection attack in the literature [Danezis
and Serjantov 2004; Berthold et al. 2000b].

The basic disclosure attack is computationally difficult to perform due to the need to
find m mutually disjoint sets. Indeed, the first part of the attack is equivalent to the
Constraint Satisfaction Problem, which is NP-complete [Kesdogan et al. 2002]. Kesdo-
gan and Pimenidis [2004] proposed more efficient variants called the hitting set attack
and the HS* attack that yield “exact” results with fewer observations and lower com-
putational complexity.

Rather than mounting an exact attack that precisely identifies Alice’s communication
partners, Danezis [2003b] defined a statistical disclosure attack that reveals Alice’s
probable recipients. The attack is based on compiling a large number of observation
vectors whose elements represent the probability that Alice sent a message to each
of the N recipients in that round. From this, the attacker can approximate Alice’s
behavior.

Disclosure and statistical disclosure attacks rely on several assumptions that may
not hold in practice. In particular, they assume that Alice sends to only one of her
m communication partners in each round, and that these recipients are chosen with
uniform probability. Mathewson and Dingledine [2004] extended the attack to include
Alices who send to multiple recipients in each round with nonuniform probability. The
model used in the original disclosure attack also assumes a simple threshold mix,
though Danezis and Serjantov [2004] showed statistical disclosure can be effective
against pool mixes as well. Danezis et al. [2007] later described a variation called the
two-sided statistical disclosure attack which also takes into account anonymous replies
in order to refine the attack.

No efficient method for absolutely preventing intersection attacks has been found;
however, inserting dummy traffic is a measure often proposed to reduce the effective-
ness of such attacks. Berthold and Langos [2002] observed that intersection attacks are
possible if not all users of the system are active all the time. They proposed a scheme
where Alice pregenerates dummy messages while she is online, which are subsequently
sent by other nodes on her behalf while she is offline. Mathewson and Dingledine [2004]
considered Alices who send precisely M messages every round (either real or dummy
messages) and showed that the attack can still succeed even if Alice appears online
only 99% of the time.

Unfortunately, dummy traffic padding schemes effective against intersection attacks
often induce significant bandwidth overhead. Diaz and Preneel [2004] presented an
overview of the issues related to dummy traffic in mix networks.
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7. FUTURE DIRECTIONS

Research in the last 30 years has made significant progress towards enabling private
and anonymous communication on the Internet. We have seen how a careful application
of simple cryptographic primitives can allow people to communicate freely and openly,
without fear of retribution, persecution, or profiling. With an increasing level of public
awareness about threats to personal privacy, such as identity theft or online advertis-
ers tracking user behavior, academic and public interest in anonymous communication
systems is likely to continue to increase in the near future. Much work remains, how-
ever, before anonymous communication becomes practical, reliable, and accessible for
all Internet users.

7.1. Blocking Resistance

With recent attention on government-sponsored Internet censorship, such as the Great
Firewall of China [Clayton et al. 2006; Crandall et al. 2007], the ease with which
anonymizing technologies can be blocked will likely become more problematic. In the
case of Tor [Dingledine et al. 2004a], a list of all servers in the network is necessarily
publicly available—clients need to be able to learn the IP addresses of servers in the net-
work. A government operating a national firewall can simply retrieve this list of server
IP addresses and block connections to them from clients inside the firewall. Letting
legitimate clients obtain a list of server IP addresses while preventing an adversary
trying to block the network from doing the same is a challenging problem.

The Psiphon circumvention system [Citizen Lab 2008] takes a social network ap-
proach to server discovery. The system requires a user on the uncensored side of the
firewall to run a proxy server and then communicate its address to a trusted user on
the censored side through an out-of-band mechanism. Since the proxy’s address is not
publicly listed, the censor no longer has an easy method of identifying and blocking
connections to proxy servers outside the firewall. Unfortunately, censored clients who
do not know anyone on the outside also have no way of learning about uncensored proxy
servers.

Anonymity systems can also potentially be blocked by network censors based on char-
acteristics unique to their network protocols. If a firewall also inspects the payload of
packets, as opposed to simply looking at IP headers, it can detect patterns unique to
the protocols used by some anonymity networks. For example, early versions of the
Tor protocol include the string “Tor” in the certificates used during TLS handshakes
[Dingledine and Mathewson 2007], which made the protocol easily identifiable. A
firewall could conceivably then terminate connections identified as matching the
anonymity network protocol by injecting TCP RST packets [Clayton et al. 2006]. De-
signing efficient anonymity network protocols with steganographic properties such that
they can not be easily fingerprinted and censored while still remaining usable is an open
and challenging problem.

Köpsell and Hilling [2004] suggested a blocking-resistant system should follow a
“many access points” principle, such that the client only needs to find a single unblocked
access point to connect to the rest of the anonymity system. The intuition is that the
adversary can block some, but likely not all of the access points. The question then
becomes how do clients learn about access points to the network that are not currently
blocked.

Tor has recently adopted this approach with its bridge relay design. Volunteers in
uncensored countries operate relays called “bridges” that are not listed by the directory
servers. Since there is no complete public listing of all bridges, it becomes more difficult
for an adversary to find and block all of them. Blocked clients can learn about a small
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subset of available bridges via a Web site or automated email responder, and then use
the bridges to connect to the Tor network. As Köpsell and Hilling [2004] suggested,
however, the problem of building a blocking-resistant anonymity system is likely to
continue to be a race between the blockers trying to learn about available access points
(bridges) and the anonymity system designers trying to come up with alternate ways
of distributing bridge relay addresses.

7.2. Usability

An often overlooked aspect of anonymity is the usability of deployed anonymity systems.
Yet, as Back et al. [2001] noted, usability should be a security objective in any anonymity
system.

With the increasing amount of active Web 2.0 content, such as Flash, Java, and
JavaScript, the number of ways for attackers to subvert a user’s anonymity through
misconfigured applications or poorly written software continues to grow. These threats
were recognized as early as the original onion routing [Goldschlag et al. 1996] and
Crowds [Reiter and Rubin 1998] designs. Clayton et al. [2001] also identified a number
of application-level attacks that can compromise a user’s anonymity.

Yet, after over 10 years, the same threats present perhaps the easiest methods of
attacking a user’s anonymity. Developing better ways for users to identify and avoid
potentially malicious Web content is a challenging open problem, not just for anonymity
systems, but for Web security in general.

Improving user interfaces for anonymity systems is also a valuable research direc-
tion [Dingledine et al. 2007]. Installing and using many of the past deployed anonymity
systems has been somewhat cumbersome, limiting their adoption by the general public.
Tor has made some progress in this direction by bundling the Tor software with a user
interface and other commonly used tools [Clark et al. 2007], which may have contributed
to its popularity. Making it even easier for users to install and configure anonymity soft-
ware securely can increase a system’s userbase and, thus, increase anonymity for all
users [Dingledine and Mathewson 2006].

7.3. Incentives

Any successful anonymity network requires a diverse user base, as well as server opera-
tors all over the world. But how can we encourage people to participate in an anonymity
system? Acquisti et al. [2003] presented a framework for analyzing potential incentives
for actors participating in an anonymity system. The framework incorporates several
cost-benefit factors of participating in an anonymity system, such as the financial or
time expenses of sending an anonymous message, and benefits of acting as either an
honest or dishonest node in the network.

The Freedom Network took a commercial approach, by paying people to operate
servers and charging clients a subscription fee for the service [Boucher et al. 2000]; how-
ever, the commercial model was unsustainable and the service quickly went bankrupt.
In 2007, JonDonym began offering a similar paid anonymization service based on the
JAP system [JonDos GmbH 2008]. The software and a basic service is available to
clients at no cost. Optionally, those who desire improved performance can purchase a
“premium” account that allows clients to use cascades with improved bandwidth. Oper-
ators of mixes in premium cascades can receive payment based on the volume of traffic
relayed through their mix.

Tor’s entirely volunteer-based network has thus far proven more successful, as it
is the largest deployed anonymity network to date. Still, the demand from clients
can exceed the capacity of the relatively limited number of servers. We must devise

ACM Computing Surveys, Vol. 42, No. 1, Article 5, Publication date: December 2009.



On Anonymity in an Electronic Society 5:29

incentives for volunteers to operate servers in the network, for example, by providing
higher quality-of-service guarantees for the traffic of those who do. Such an approach
could have unexplored anonymity implications, though, since identifying a network
traffic flow as belonging to a server operator necessarily leaks information about the
initiator.

While an anonymity system almost invariably benefits from having more servers in
the network, encouraging more users to be clients in the network also helps improve
security [Dingledine and Mathewson 2006]. One of the common criticisms of Tor is that
Web browsing over Tor is slow, leading some users to simply stop using the system.
Given the wide variety of people who use the Internet, it seems only natural that
they would also have a wide variety of security and anonymity requirements. That is,
users in China discussing Falun Gong may have greater anonymity requirements than
someone simply reading the latest news stories, and would be willing to tolerate higher
latencies for a greater degree of anonymity.

Consequently, we may be able to encourage more users to participate in an anonymity
system by giving them the ability to control their own performance and anonymity
tradeoffs [Snader and Borisov 2008]. It is important, however, for all user traffic to still
blend together despite their self-selected performance differences [Dingledine et al.
2006]. To accurately consider tradeoffs between anonymity and performance, users
must also have a way of reasoning about the level of anonymity provided to them by
the system under their currently chosen performance parameters.

7.4. Scalability

The majority of deployed anonymity systems have not had to be concerned with scal-
ability, since the number of users participating in the network has been relatively
limited. As the general public becomes increasingly concerned about threats to per-
sonal privacy on the Internet, the number of users of anonymity systems is likely to
grow. For an anonymous communication system to be able to support truly ubiquitous
use, designs must be able to support not just more users, but also more servers in the
anonymity network.

Many designs like Tor rely on a small subset of servers to publish lists of all servers
currently available in the network through which clients can route their traffic. It is
easy to see that the size of the server directory grows linearly with the number of
servers in the network. As a result, more network bandwidth is consumed by sending
server directories to clients, instead of actually relaying application traffic.

An assumption inherent in many centralized, directory-based anonymity systems
is that every node in the network can connect directly to every other node. As the
number and diversity of network nodes increase, it is unlikely that this assumption
will hold. Network routes can fail, potentially leaving some nodes unreachable from
certain parts of the Internet. Additionally, servers will not have a sufficient number of
sockets available to maintain connections to all other servers in a network consisting
of hundreds of thousands of servers [Dingledine et al. 2005].

One approach to supporting improved scalability with weaker connectivity as-
sumptions may be to simply split an anonymity network into several smaller net-
works [Dingledine et al. 2005]. Rather than partitioning the network, Danezis [2003a]
examined an alternate mix network topology based on sparse expander graphs. He ar-
gued that such network topologies offer improved scalability over fully connected and
cascade topologies, while still providing desirable resistance against traffic analysis.

Peer-to-peer designs like MorphMix also present an interesting direction for research
into building massively scalable anonymity systems. More recently, Salsa was designed
with scalability in mind and is based on a distributed hash table [Nambiar and Wright
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2006]. Unfortunately, the peer-to-peer designs presented thus far also have challenging
anonymity problems [Tabriz and Borisov 2006; Borisov et al. 2007].

8. CONCLUSIONS

We live in a digital society. Every day many of us read the news, manage our banking,
conduct business, and chat with friends and family online. As we place more and more
of our lives on the Internet, it seems the threats to our personal privacy are constantly
increasing. Data storage is cheap, so many of our activities can be recorded. Advertisers
are coming up with more and more interesting ways to harvest and mine personal
information from this data for purposes such as targeted advertising.

Fortunately, academic researchers and cypherpunks alike have helped advance the
state of the art in anonymous communication system design and implementation in the
past thirty years. Publicly available high-latency mix networks, like Mixminion, can
provide strong anonymity for email. Low-latency anonymity systems, like Tor, enable
anonymous Web browsing, IRC, etc.; however, the rate at which new and interesting
attacks against these systems are discovered seems to be outpacing our ability to de-
sign effective defenses against them. Some attacks, such as application-level Java- and
Flash-based proxy-bypass attacks, remain unaddressed over a decade after they were
initially noted.

We feel it is unlikely that there will be a “silver bullet” solution that provides prov-
ably secure, efficient, and practical anonymity for all users over the current Internet
infrastructure. Though as the threats to personal privacy online continue to grow, pub-
lic and academic interest in improving existing systems for anonymity is only going
to increase. Lessons learned from current anonymity research may also help enable
and encourage future global network designs to include privacy and anonymity as a
fundamental property.

Finally, we refer interested readers to the Anonymity Bibliography1 to find many of
the references cited in this survey, as well as additional works not covered herein.
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BACK, A., MÖLLER, U., AND STIGLIC, A. 2001. Traffic analysis attacks and trade-offs in anonymity providing

systems. In Proceedings of the Information Hiding Workshop (IH’01), I. S. Moskowitz, Ed. Lecture Notes
in Computer Science, vol. 2173. Springer-Verlag, Berlin, Germany, 245–257.

BEIMEL, A. AND DOLEV, S. 2003. Buses for anonymous message delivery. J. Cryptol. 16, 1, 25–39.

BELLARE, M., BOLDYREVA, A., DESAI, A., AND POINTCHEVAL, D. 2001. Key-privacy in public-key encryption.
In Proceedings of the 7th International Conference on the Theory and Application of Cryptology and
Information Security (ASIACRYPT’01). Springer-Verlag, London, U.K., 566–582.

BELLARE, M. AND ROGAWAY, P. 1994. Optimal asymmetric encryption—how to encrypt with rsa. In Proceed-
ings of EUROCRYPT.
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KESDOGAN, D., EGNER, J., AND BÜSCHKES, R. 1998. Stop-and-go MIXes: Providing probabilistic anonymity in
an open system. In Proceedings of Information Hiding Workshop (IH’98). Lecture Notes in Computer
Science, vol. 1525. Springer-Verlag, Berlin, Germany.

KESDOGAN, D. AND PIMENIDIS, L. 2004. The hitting set attack on anonymity protocols. In Proceedings of the
6th Information Hiding Workshop (IH). 326–339.

KILIAN, J. AND SAKO, K. 1995. Receipt-free MIX-type voting scheme—a practical solution to the implemen-
tation of a voting booth. In Proceedings of EUROCRYPT 1995. Springer-Verlag, Berlin, Germany.
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