
A Formalization of

Anonymity and Onion Routing

S. Mauw1, J.H.S. Verschuren1,2 and E.P. de Vink1,3

1 Dept of Math. and Comp. Sc., Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, the Netherlands

2 TNO ITSEF, P.O. Box 96864, 2509 JG ’s-Gravenhage, the Netherlands
3 LIACS, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, the Netherlands

Abstract. The use of formal methods to verify security protocols with
respect to secrecy and authentication has become standard practice. In
contrast, the formalization of other security goals, such as privacy, has
received less attention. Due to the increasing importance of privacy in
the current society, formal methods will also become indispensable in
this area. Therefore, we propose a formal definition of the notion of
anonymity in presence of an observing intruder. We validate this def-
inition by analyzing a well-known anonymity preserving protocol, viz.
onion routing.

1 Introduction

Nowadays there is a growing concern about one’s privacy. The adoption of tech-
niques like RFID and DRM may have severe consequences for the privacy of the
individual [8, 6]. The widespread acceptance of electronic services, such as loca-
tion based services, electronic tolling, loyalty schemes, may carry consequences
on the user’s privacy. As ‘privacy’ is becoming more of an issue, there is an
increasing need for analysis of systems in relation to privacy requirements.

The so-called functional class in the Common Criteria (CC, [10]) distin-
guishes between four aspects of privacy: anonymity, pseudonymity, unlinkabil-
ity and unobservability. Anonymity, which is the topic of our current research,
ensures that a subject may use a resource or service without disclosing its user
identity. Pseudonymity ensures that a user may use a resource or service without
disclosing its identity, but can still be accountable for that use. Unlinkability en-
sures that a user may make multiple uses of resources or services without others
being able to link these uses together. Unlinkability differs from pseudonymity
in the sense that, although in pseudonymity the user is also not known, relations
between different actions can be provided. Unobservability ensures that a user
may use a resource or service without others, especially third parties, being able
to observe that the resource or service is being used.

Such informal definitions are essential to the understanding of the differ-
ent notions of privacy, but will only allow to investigate a system informally.
However, in contrast to other security properties, such as confidentiality and



authentication (see e.g. [14, 4]), privacy has hardly been studied from a formal
methods point of view (see e.g. [12, 11, 3] for more or less informal approaches
to anonymity). It is our aim to provide an appropriate formal definition of
anonymity and validate this definition by analyzing the well-known onion routing
protocol. In [14] a start is made to give a formal description of anonymity.

Our definition of anonymity is based on the above mentioned definition in the
CC and on the definition of anonymity provided by Pfitzmann et al. [12], which
reads “Anonymity is the state of being not identifiable within a set of subjects,
the anonymity set.” This anonymity group forms the basis of our definition. We
say that a user u′ is in the anonymity group of user u, if for every behaviour of
the system that can be attributed to u, there is another possible behaviour of
the system that can be attributed to u′, such that an observer or intruder cannot
tell the difference between these two behaviours. This means that an intruder
cannot tell the difference between u and any other user in its anonymity group.

Onion routing was originally devised by Goldschlag, Reed, Syverson in [9, 17]
as a solution for anonymous connections. Onion routing creates a layered data
structure called an onion. As the data passes through each onion router along
the way, one layer of encryption is removed according to the recipe contained
in the onion. The Naval Research Lab has a test bed Onion Routing Network
that is available for any one to use. While in operation, users in more than sixty
countries initiated up to 1.5 million connections per month through the prototype
system. This demand certainly shows an interest in the service. It also shows that
it is feasible. Based on this success, a design for a second generation system was
initiated [16].

Syverson et al. have performed an analysis of the second generation system
for onion routing. In [16] different attacker models are considered, viz. single,
multiple, roving and global adversary. A single and a multiple adversary point
to a situation where only one core onion router, respectively, more core onion
routers are compromised. In both cases the compromised onion routers are fixed.
A roving adversary points to a situation where a fixed-bound size subset of core
onion routers is compromised at any one time. At specific intervals, other core
onion routers can become compromised or uncompromised. Syverson et al. rule
out the global adversary (all core onion routers are compromised) as the onion
routing infrastructure cannot realize any anonymity in that case. They compare
the results with the protection provided by the Crowds model [13]. It is shown,
that onion routing generally resists traffic analysis more effectively than any
other published and deployed mechanisms for Internet communication.

Diaz et al. [5] and also Serjantov and Danezis [15] propose an information
theoretic approach to measure the level of anonymity of a system. In their model
the attacker will carry out a probabilistic attack: after observing the system, an
attacker may assign some probabilities to each sender as being the originator
of a message. This can be based on information the system is leaking, message
lengths, traffic analysis, etc. Subsequently, the entropy is used as a tool to cal-
culate the degree of anonymity achieved by the users of a system towards a

2



particular attacker. Their measurement method is applied to analyze the degree
of anonymity of crowds and onion routing.

We provide a possibilistic analysis of the onion routing protocol in a process
algebraic framework. We aim at determining the anonymity groups of part tak-
ing users under different circumstances, such as conspiring routers. In order to
appreciate the intricacies of the onion routing protocol, we have analyzed sev-
eral weaker protocols too. In this paper we will only report on our findings with
respect to a variation which we coined coconut routing.

Our paper is structured as follows. In Section 2 we provide a formal definition
of anonymity in a trace model. In Section 3 we explain an abstraction of the
onion routing protocol and give its formal specification in process algebra. We
also provide an alternative characterization which will show helpful in the formal
analysis of Section 4. In Section 5 we discuss conclusions and future research.

2 Formal definitions

Intruder capabilities In this section we define the notion of anonymity in pres-
ence of an eavesdropping intruder. In general, the intruder can overhear the
communication, but can not interpret all the messages. Dependent on the set
of keys known to the intruder, some behaviours of the system observed by the
intruder can be distinguished while others can not. If the intruder can not, based
on its eavesdropping capacities, distinguish between two users, these two users
are in the same anonymity group.

We fix a set of users U , a set of actions A, a set of traces T and a set of
keys K. The set of actions A is split up into a subset of observable actions Aobs

and a set of invisible actions Ainv. For our purposes, the set of traces T consists
of all finite and infinite words of actions from A.

The actions come equipped with some syntactic structure, the details of
which do not matter here. We assume that the set A can be viewed as the
collection of terms of some signature that includes an operation e, k 7→ {e}k

for an expression e and key k. Let K ⊆ K be a set of keys. A tagging function
θ : A → AΘ, with Θ some fixed set of tags, maps actions in A, i.e. terms over the
implicit signature, to tagged actions in AΘ, i.e. terms over the implicit signature
extended with the elements of Θ as new constants. The function θ is assumed to
be injective; the idea is to replace undecryptable subterms by some tag, such that
equal subterms are identified with the same tag. More concretely, the mapping
θK : A → AΘ has the property θK({e}k) = {θK(e)}k if the key k is in the set of
keys K and θK({e}k) = θ({e}k) if not. The mapping θK extends naturally from
actions to traces.

We say that two traces t1, t2 ∈ T are K-equivalent, notation t1 ∼K t2, if, for
some bijection β : Θ → Θ, it holds that θK(t1) = (β ◦ θ)K(t2). The interpretation
of t1 ∼K t2 is that the traces t1 and t2 are equal for what can be observed,
possibly after decryption with the keys in K, and there is a global correspondence
between the parts that can not be decrypted. Suppose we have the actions a =
{e1}k, b = {e2}k and c = {e3}k, and actions x = {e}k1 , y = {e}k2 and z = {e}k3 .

3



The tagging of traces is a means to express the capability of an intruder to
distinguish, e.g., the 2-element traces a · b and c · c even if the intruder can not
decrypt any of the terms . Likewise, we have x · y 6∼K z · z irrespective of which
of the keys k1, k2 and k3 are known.

The above notion of tagging and renaming captures that not all information
carried by a trace can be distinguished by the intruder. This even stretches a
little further: some actions will not be visible at all. Although we assume, that
the intruder can overhear all network activity, the internal activity of principals
can not be observed. Therefore, we have means to restrict a trace t over A to
a trace over Aobs of observable actions. The mapping obs : T → T is such that
obs(ε) = ε, obs(a · t) = a · obs(t) if a ∈ Aobs and obs(a · t) = obs(t) if not. We
use the notation t1 ∼K

obs t2 iff obs(t1) ∼K obs(t2). When the set of keys K is
clear from the context, we simply write t1 ∼obs t2. For the sake of simplicity,
we treat K as a constant set of keys. This will suffice for the treatment of the
onion routing protocol, where the intruder does not learn any new keys during
operation. In general, however, a privacy protocol may leak encryption keys,
requiring a dynamic modeling of K. This extension is rather straightforward
and will not influence the main line of reasoning. Therefore, we will ignore this
possibility.

User attribution Next, we address the notion of attributing a trace to a user. As
a trace can contain interaction of various sessions of many principals in different
roles, we introduce a mechanism to focus on a particular action of a trace. In
concrete situations we fix a so-called attribution function for each role that is
of interest. Such an attribution function α : T × N → U returns the user in
the particular role, involved in the interaction corresponding to the n-th action
t[n] of the trace t. For example, in a four step key agreement protocol we can
distinguish between the roles of initiator, responder and server. A trace t of a
system with many users, acting both as initiator and responder, contains many
sessions. There may be some communication at position n of t corresponding to
the third step of the protocol. The attribution function for initiator then returns
the initiator of the particular protocol session; the attribution function for the
responder returns the responder of the particular session.

The attribution function α(·, ·) does not take the intruder into account.
In general, the intruder considers a particular occurrence of an action in a
trace or part of a trace and tries to identify the user or users involved in
this. However, the selection by the intruder of the action of interest is based
on observable actions only. If two traces are observationally the same to the
intruder, its analysis is focused on the same action. The traces generally dif-
fer in the number and/or position of invisible actions, so that the particu-
lar action can be at different positions in the two traces. Therefore, we in-

troduce the partial mapping obscnt : T × N
p
→ N, that returns for a posi-

tion n in a trace t the corresponding position obscnt(t, n) in the reduced trace,
i.e. obscnt(t, 0) = 0, obscnt(a · t, n + 1) = obscnt(t, n) + 1 if a ∈ Aobs and
obscnt(a · t, n + 1) = obscnt(t, n) + 1 if a /∈ Aobs, and obscnt(ε, n + 1) is unde-
fined.

4



Selection functions Next, we introduce selection functions, that take only ob-
servables and relative positions of observables into account. A selection function
reflects a specific preference of the intruder. Formally, a mapping σ : T → N is
called a selection function, with respect to a set of keys K, if (i) σ(t) ∈ dom(t),
(ii) t[σ(t)] ∈ Aobs, and (iii) if t1 ∼K

obs t2 then obscnt(t1, σ(t1)) = obscnt(t2, σ(t2)).
Thus, if traces t1 and t2 are the same to the intruder that knows about the keys
in K, then the selection function σ points in t1 and in t2 to an observable action
at corresponding positions. Given the choice of positions governed by a selection
function σ, the attribution ασ of users to a trace, induced by the selection func-
tion σ, is then simply defined as ασ(t) = α(t, σ(t)). Note that, in general, we do
not have α(t1, σ(t1)) = α(t2, σ(t2)).

Below, we have occasion to further restrict the selection function that we
consider. Intuitively, it is clear that an intruder observing a system from its very
first startup is more powerful, than an intruder viewing the same system from
some moment in time onwards. Typically, we assume the selection functions
to stem from a class Σ of selection functions that point at positions in traces
beyond some initialization phase. Likewise, we only want to consider the traces
of the system under consideration. Thus, for a given system S with the set of
traces Tr(S) as its behaviour, we restrict the choice of traces to Tr(S) or a
subset thereof (for example, fair traces). Thus, a selection function σ will have
functionality σ : Tr(S) → U rather than σ : T → U .

Anonymity With this in mind, we are ready for the definition of an anonymity
group of a user. For a user u, its anonymity group AG(u) consists of all users u′

that can not be distinguished from u by the intruder: u′ is in the anonymity
group of u with respect to an attribution α and selection function σ, if for any
trace t that is attributed to u, i.e. α(t, σ(t)) = u, we can find an observationally
equivalent trace t′, i.e. t′ ∼obs t, that is attributed to u′. So, given the observable
behavior one can not tell whether u or any other user u′ in its anonymity group
was involved.

Definition 1. Let S be a system, Aobs ⊆ A a set of observable actions, K ⊆ K
a set of keys, Σ a class of selection functions and α an attribution function. For
a user u ∈ U , its anonymity group AG(u) is given by

AG(u) = { u′ ∈ U | ∀σ ∈ Σ ∀t ∈ Tr(S) ∃t′ ∈ Tr(S) :
ασ(t) = u → ασ(t′) = u′ ∧ t ∼obs t′ }.

Clearly, the size of AG(u) is an indication for the degree of anonymity user u has.
Furthermore, note that, in general, we do not have v ∈ AG(u) ⇔ u ∈ AG(v),
so the set of anonymity groups does not form a partition of the set of users. In
Section 4, we will exploit our definition of anonymity in a formal analysis of the
onion routing protocol.

3 An example: onion routing

We discuss the onion routing protocol for illustrating the formalization of pri-
vacy. After an informal explanation of the onion routing protocol, we provide

5



a formal specification in ACP-style process algebra. We will also briefly discuss
a weaker security protocol, which we call coconut routing. Next, we present an
alternative characterization of the onion routing protocol which helps in proving
our anonymity results in Section 4.

3.1 The onion routing protocol

The onion routing protocol as devised by Syverson et al. [17] is a constellation
of measures to establish anonymous connections between two agents. It is our
intention to formally describe and analyze the smallest protocol based on the
onion routing principle that still exhibits interesting privacy properties. Starting
point is a network of routers. We assume that the network forms a connected
graph, which means that there is a path from every router to every other router.
Such a path may be comprised of a series of intermediate routers.

To every router we associate a collection of users. Connections between a user
and its router are typically realized within a local network and will be considered
secure, while connections between two routers are not controlled by either router
and may belong to a global communication infrastructure such as the Internet.
It is realistic to assume that remote routers and connections between routers
may be compromised. Given this possibly hostile environment, the purpose of
the onion routing protocol is to enable a user S to send a message to a user R
without revealing the identity of S nor that of R.
In order to establish the above requirement, we assume the existence of a public
key infrastructure for the routers. This means that every router (whether com-
promised or not) has a public/private key pair and that all routers know the
public keys of all other routers. The Message Sequence Chart of Figure 1 ex-
plains how the protocol operates. Suppose that user S intends to send message
m to user R. For S this simply means that it uses its router OS as a proxy to
perform this task. Therefore, it sends message m and recipient R to OS. Next,
its router determines a path leading to the router to which R belongs and packs
the message in such a way that every node in the path can only deduce the next
node in the path, but nothing else. Suppose the chosen path is OS; O1; O2; OR,
then the message sent to O1 is O1, {O2, {OR, {R, m}pk(OR)}pk(O2)}pk(O1), i.e.
a header identifying the intended intermediate recipient O1 and a payload of
some content encrypted with the public key of O1. Since we expect that O1 only
knows its own secret key, O1 can only peel off the outermost layer of this compos-
ite message. Therefore, O1 obtains message O2, {OR, {R, m}pk(OR)}pk(O2) and
learns that this message has to be passed through to router O2. Likewise, O2
and OR peel off their layer from the onion and, finally, OR knows that it has to
send message m to its user R.

The reason why this protocol establishes privacy of the sender and receiver of
a message lies in the fact that the messages leaving a router cannot be related to
the messages that have entered a router. This unlinkability of incoming and out-
going messages requires that an attacker cannot trace an outgoing message back
to an incoming message by simply trying the public keys of all routers. There-
fore, we require randomized encryption, which means that the same message

6



S OS O1 O2 OR R

R, m

O1, {O2, {OR, {R, m}pk(OR)}pk(O2)}pk(O1)

O2, {OR, {R, m}pk(OR)}pk(O2)

OR, {R, m}pk(OR)

R, m

msc Onion run

Fig. 1. Sample run of the onion routing protocol.

encrypted with the same key every time yields a different enciphered message.
This can be established e.g. by salting the input. Which conditions exactly guar-
antee which kind of privacy is subject of the formal analysis later in this paper.

3.2 Coconut routing

The onion routing protocol works because the messages are packed in a series of
shells, which are subsequently peeled off by the conveying routers. It is interesting
to study weaker variants of this protocol and see how onion routing solves the
weaknesses. To this end, we introduce a variation on onion routing, which we will
call coconut routing. We will only conduct an informal analysis of this weaker
protocol. A thorough analysis follows along the same steps as the analysis of the
onion routing protocol above.

In the coconut routing protocol, the original message and the path are en-
crypted with a symmetric cryptographic key. This key is a secret shared by all
routers. Figure 2 shows a sample run of the coconut routing protocol and suffices
to understand its operation.

3.3 Formal specification of onion routing

The above describes onion routing informally. Next, we define the onion routing
protocol in ACP-style process algebra (see, e.g., [1, 7, 2]). We assume that the
reader is familiar with the basics of this particular branch of process algebra.
Nevertheless, our approach is independent of the chosen framework as long as it
supports reasoning at a trace level.

Fix a set R of routers, a set U of user, a set M of messages and a set K of
keys. The set Path of paths is defined by Path = R∗. We use r to range over R,

7



S OS O1 O2 OR R

R, m

{(OS, O1, O2, OR, R),m}K

{(OS, O1, O2, OR, R), m}K

{(OS, O1, O2, OR, R), m}K

R, m

msc Coconut run

Fig. 2. Sample run of the coconut routing protocol.

u and v to range over U , and m and p to range over M and Path, respectively.
Fix a router assignment ρ : U → R that associates a router ρ(u) with each user.
We use site(r) and site(u) to denote the set of users u′ such that ρ(u′) = r and
ρ(u′) = ρ(u), respectively. We assume to be given a mapping pk : R → K to
retrieve a public key pk(r) of a router r. Furthermore, the topology of the router
network is reflected by an undirected connected graph N having the set R as its
nodes. The set N (r), the neighborhood of the router r, consists of all routers r′

for which an edge connecting r and r′ exists in the graph N .

We use the notation path(r, q) for the collection of those non-empty paths
r1 · r2 · · · rn such that N (r, r1), N (ri, ri+1), for 1 ≤ i < n, and rn = q. Onions
are the basic objects that will be passed around in the onion routing protocol
below. The set of onions O, ranged over by o, is inductively given by

v ∈ U ∧ m ∈ M =⇒ 〈v, m〉 ∈ O (1)

o ∈ O ∧ r ∈ R =⇒ 〈r, {o}pk(r)〉 ∈ O. (2)

The collection O⊥ = O∪{⊥} extends O with the dummy onion ⊥. For a path p
and onion o, the function pack : Path×O → O is given by

pack(ε, o) = o (3)

pack(r · p, o) = 〈r, {pack(p, o)}pk(r)〉. (4)

The function pack wraps the onion o with the public keys of the routers along the
path p. In particular, for a path p = r1 ·r2 · · · rn, user v and plaintext m, we have
pack(p, 〈v, m〉) = 〈r1, {〈r2, {. . . 〈rn, {〈v, m〉}pk(rn)〉 . . .}pk(r2)〉}pk(r1)〉. Conversely,

8



the function peel : O → O⊥ is the inverse of packing, i.e., peel(o) = o′ if o =
〈r, {o′}pk(r)〉 for some router r and delivers ⊥ otherwise.

Node-oriented system description The basic building blocks in an onion routing
system are the routers. We consider the process Noder, with the subscript r
denoting the particular router, to come equipped with a buffer B that contains
the onions that are still to be delivered. In general, B ∈ Mul(O) is a multiset of
onions. Possible actions for Noder are taken from the alphabet

Ar = { input(u, v, m), read(r′, r, o), send(r, r′′, o), output(v, m)
| u ∈ site(r), v ∈ U , m ∈ M,N (r′, r),N (r, r′′), o ∈ O }.

We fix the set of actions A to A =
⋃

{ Ar | r ∈ R }. A router r with buffer B
can either

– input, from one of its users u, a new message m with destination v that can
subsequently be forwarded along a path p from r to the router of v,

– store an onion o that is read from one of its neighboring router r′ after
peeling it off,

– take an onion 〈r′′, {o′}pk(r)〉 from the buffer for sending to another router r′′,
or

– deliver an onion 〈v, m〉 in the buffer to the user v.

Using the operators + and
∑

to denote choice and · for sequential composition,
we obtain the following recursive definition of the behaviour of a node:

Noder(B) =
∑

u∈site(r),v∈U ,m∈M input(u, v, m) ·
∑

p∈path(r,ρ(v)) Noder(B ∪ {pack(p, v, m)})

+
∑

N (r′,r),o∈O read(r′, r, o) · Noder(B ∪ {peel(o)})

+
∑

o=〈r′′,{o′′}pk(r′′)〉∈B sendr,r′′(o) · Noder(B \ {o})

+
∑

〈v,m〉∈B output(v, m) · Noder(B \ {〈v, m〉}).

The communication function matches read and sent events, i.e.

read(r, r′, o) | send(r, r′, o) = comm(r, r′, o)

for any two routers r, r′ and onion o. The set H of encapsulated or forbidden
actions is given by

H = { read(r, r′, o), send(r, r′, o) | r, r′ ∈ R, o ∈ O }.

Finally, using ∂H to encapsulate partial communications and ‖ to denote parallel
composition, the onion routing network ORN is defined by

ORN = (∂H(‖r∈R Noder(∅))).

9



Thus, the onion routing network consist of a number of routers, each with a
local buffer. The system starts with all routers having an empty buffer, and
evolves by routers getting from and delivering to their clients and exchanging
onions with other routers. Because of the choice of the communication function
and encapsulation, the system ORN does not exhibit unmatched read and send

actions, but input, output and comm actions only.
A technical issue concerns the synchronization of read and send actions. In

general, the environment can influence a non-deterministic choice over the index
set path(r, ρ(v)) for a user v and message m, by offering only a selection of reads
that can match the send action that executes to the sending of pack(p, v, m) to
the first router along the path. This way an intruder could get control over the
choice of the path connecting r and v (and, e.g., direct it via some compromised
router). To prevent this, the usual trick is to insert a so-called silent action, skip

say, just in front of Noder(B+{pack(p, v, m)}) in the first summand. This would
clutter up the further analysis dramatically, with a distinction between nodes
that have or have not taken the skip-step after an input and path-selection. As we
consider in this paper mainly an intruder model with eavesdropping capabilities
only, we suppress this technicality in the remainder.

Path-oriented system description As alternative to the above node-oriented de-
scription of the network as a collection of nodes, one can follow an activity-driven
approach. The node-oriented description is not very appealing from a global
point of view. It is hard to identify the flow triggered by an intent of sending a
message m from a user u to a user v over the network. Therefore, we view an
onion routing network as a parallel composition of the process of the sending of a
message by an initiating user, the passage of the associated onion along a certain
path of routers, and the receipt of the message by the designated user. In order
to capture the above intuition, we define processes Comm(r, p, o), for a router r,
path p and an onion o, to reflect that the onion o resides in packed form at the
router r and still has to travel along the path p. Also, for usage in Section 4,
we define processes OR(u, v, m, p) representing the sending of message m from
user u to v along the path p. Thus

OR(u, v, m, p) = input(u, v, m) · Comm(r, p, 〈v, m〉) · output(v, m)

Comm(r, ε, o) = ε if o = 〈v, m〉 and v ∈ site(r)

Comm(r, r′ · p, o) = comm(r, r′, 〈r′, pack(r′ · p, o)〉) · Comm(r′, p, o)

if r′ ∈ N (r), Comm(r′, p, o) 6= δ

Comm(r, p, o) = δ otherwise

where, in the right-hand side, ε and δ are the successfully terminating process and
unsuccessfully terminating or deadlocking process, respectively. The resulting
system ORN ′ is then given by

ORN ′ =
∑

r∈R,u∈site(r),v∈U ,m∈M,p∈path(r,ρ(v)) input(u, v, m)·
(

ORN ′ ‖ Comm(r, p, 〈v, m〉) · output(v, m)
)

.

10



Note the recurrence of ORN ′ at the right-hand side. After the displayed in-
put action, the system continues with the processing of the input in compo-
nent Comm(r, p, 〈v, m〉), but is also ready to initiate the sending of new mes-
sages.

Next, we would like to have that the node-oriented and path-oriented description
of onion routing coincide. The former is closest to the informal description; for
the latter it is immediate what its traces look like.

Theorem 1. The systems ORN and ORN ′ have the same traces. ut

For a proof of Theorem 1, one introduces some auxiliary concepts, viz. that of a
distributed buffer state β and of a global communication state γ. Using these one
shows, for some suitable relation C, that C(β, γ) implies that the generalized
systems ORN(β) and ORN ′(γ) have the same traces. Since, in particular, it
holds that C(∅, ∅) and ORN = ORN(∅), ORN ′ = ORN ′(∅), the result follows.
The characterization of Theorem 1 will be exploited in the next section, where
we establish anonymity results for onion and coconut routing.

4 Anonymity properties of onion routing

In this section, we determine the anonymity group for senders and receivers
engaged in a message exchange via onion routing based on the formal definition
presented in Section 2. For the instantiation of Definition 1 we have to pick a
system, a subset of observable actions, a set of compromised keys, a class of
selection functions and a user attribution. The system under consideration is
ORN with set of traces Tr(ORN). We split the set of actions by considering
inputs and outputs to be invisible and communications to be observable, thus
Aobs = { comm(r, r′, o) | r, r′ ∈ R, o ∈ O }. Furthermore, we fix a set CN ⊆ R of
compromised nodes, i.e., a set of routers r of which the secret key corresponding
to the public key pk(r) is known to the intruder. Hence, the set K of compromised
keys consists of {pk(r) | r ∈ CN } that are no longer safe to use. The anonymity
analysis below is with respect to the observational equivalence ∼obs induced by
the observables Aobs and bad keys K.

The selection functions, that select the observable action of interest in a trace,
are restricted to functions that point beyond a proper initialization prefix. More
concretely, part of the anonymity results below depend on the fact that a router
has both been recorded as a receiving and as a sending host in the trace, earlier
than the selected subtrace. So, we want to distinguish an index Nt such that

∀r ∈ R∃n1, n2 < Nt : t[n1] = comm(r1, r, o1) ∧ t[n2] = comm(r, r2, o2)

for some routers r1, r2 ∈ R, o1, o2 ∈ O. For such an index Nt to exist at all, we
assume a fairness condition stating that every input and communication action
have a successor action (communication or output) in the trace. In terms of the

11



causality relation ≺
t
, to be defined in a minute, we require, for a trace t of ORN,

to hold that

∀i ∈ N : t[i] 6= output(·, ·) → ∃j ∈ N : i ≺
t
j.

The requirement is not only technically convenient, but, more importantly, it is
plausible as well. For it is realistic to postulate, that the intruder can not oversee
a whole infinite trace, but only a finite part of it. Therefore, it is safe to start
from the assumption that finite subprocesses will terminate within an infinite
trace.

The alternative characterization of ORN captured by Theorem 1 states that
a trace t of ORN is an interleaving of subtraces of the form OR(u, v, m, p) for
users u and v, message m and path p ∈ path(ρ(u), ρ(v)). In general, this does
not provide a unique decomposition of the trace t. There are multiple ways to
merge the finite subtraces OR(u, v, m, p) into an infinite trace t. Even more so,
if, e.g. due to retransmission, actions can have several occurrences in a trace.
For our purposes it suffices to choose, for every position n of t, a particular sub-
trace w = OR(u, v, m, p) such that n ∈ dom(w) (exploiting the partial function
interpretation of traces). More precisely, define for a trace t the relation ≺

t
on N

by

n ≺
t
m ⇐⇒ t[n] = input(u, v, m), t[m] = Comm(r, p, 〈v, m〉)[1],

u, v ∈ U , m ∈ M, r = ρ(u), q = ρ(v), p ∈ path(r, q), or

t[n] = Comm(r, p, o)[i], t[m] = Comm(r, p, o)[i + 1],

r ∈ R, p ∈ path(r), o ∈ O, i ∈ N, or

t[n] = Comm(r, p, 〈v, m〉)[k], t[m] = output(v, m),

r ∈ R, v ∈ U , m ∈ M, k = len(Comm(r, p, 〈v, m〉)),

q = ρ(v), p ∈ path(r, q)

such that ∀`, n < ` < m: t[`] 6= t[m]. Then w = OR(u, v, m, p), with finite
domain dom(w) = { i0, i1, . . . , ik, ik+1 }, is the subtrace of t for position n if
n ∈ dom(w), i0 ≺

t
i1 ≺

t
· · · ≺

t
ik ≺

t
ik+1, [i0] = input(u, v, m), t[i1, . . . , ik] =

Comm(r, p, 〈v, m〉), and t[ik+1] = output(v, m).
We define, for a selection function σ, the sender attribution function αs

σ and
receiver attribution function αr

σ , in full αs
σ , αr

σ : Tr(ORN) → U by αs
σ(t) = u and

αr
σ(t) = v if OR(u, v, m, p) is the subtrace of t for position σ(t).

Having observational equivalence and attribution in place, we continue with
discussing two properties of onion routing that will be used in the proofs of
anonymity results below. The first property states how a sequence of communi-
cations can be cut in two. See Figure 5.

Lemma 1 (path decomposition). Let r, r′ ∈ R, p ∈ path(r, r′). Let q be a
router on p such that p = p1 · q · p2 for suitable path p1 and p2. Then it holds
that Comm(s, p, o) = Comm(s, p1 · q, pack(p2, o)) · Comm(q, p2, o). ut

12



�

�

�

�

�

�

�

�

r

pack(p, o) r1

r2

pack(p2, o)

q

r3

r4

r5

o

r′

p1 · q

p2

Fig. 3. path decomposition

�

�

�

�

�

�

�

�

�

�

�

�

�

�

u′′ u′

r′ r

u
q

v

q′

v′

p′

1

p

p′

2

Fig. 4. cross over

The second property that we will exploit in the analysis below, states that if
an outgoing communication comm(r, r′, o) from a router r does not originate
from an input of a user of r, then there must be an earlier incoming commu-
nication comm(r′′, r, o′) such that the outgoing onion o is obtained from the
incoming onion o′ by peeling off one skin. See Figure 4.

Lemma 2 (cross over). Let r ∈ R, σ a selection function and t a trace such
that σ(t) = i, t[i] = comm(r, r′, o).

(a) If αs
σ(t) /∈ site(r), then j ≺

t
i, t[j] = comm(r′′, r, o′) and o′ = pack(r′, o) for

some j < i, r′′ and o′.
(b) If αr

σ(t) /∈ site(r′), then i ≺
t

k, t[k] = comm(r′, r′′, o′) and o = pack(r′, o′)
for some i < k, r′′ and o′. ut

We first consider the case of anonymity for senders. We distinguish between the
situation where the key of router of the site is or is not compromised. As a
consequence of Theorem 2 we have that, no matter how many keys have been
leaked, the anonymity of a user is save as long as the key of its router is.

Theorem 2. For a set of compromised nodes CN, onion routing has the follow-
ing anonymity groups for senders: AGs(u) = U if ρ(u) /∈ CN, and AGs(u) =
site(u) otherwise. ut

The proof of the theorem exploits Lemma 1, in case ρ(u) /∈ CN, to construct,
for any trace t of ORN with αs

σ(t) = u, an alternative trace t′ of ORN such that
αs

σ(t′) = u′. If ρ(u) ∈ CN, then, we construct a particular trace t with αs
σ(t) = u

and use Lemma 2 to rule out that any observational equivalent trace t′ can be
attributed to a user u′ not in site(u).

Next, we turn to the receiver. In the proof of Theorem 2 we exploited the initial-
ization condition which helps in prepending subbehaviour to the subtrace under

13



consideration. For the case of the receiver we call upon the fairness assumption
in order to find subbehaviour that extends the particular subtrace.

Theorem 3. For a set of compromised nodes CN, onion routing has the fol-
lowing anonymity groups for receivers: AGr(v) = U if router(v) /∈ CN, and
AGr(v) = {v} otherwise. ut

The proof of Theorem 3 is in the same vein as that of Theorem 2.

For comparison, we next consider the coconut case. Recall that in our model
for coconut routing, packets are decrypted but not encrypted again at the node.
Instead, the original encrypted packet is forwarded.

Theorem 4. Coconut routing has for senders the anonymity groups AGs(u) =
site(u), and, for receivers the anonymity groups AGr(v) = site(v) if the key k is
not compromised, but AGr(v) = {v} otherwise. ut

Theorem 4, which can be proven along the same line as its onion routing coun-
terparts, shows the weakness of our artificial coconut routing scheme. However,
if incoming messages are decrypted and encrypted again using a randomized
symmetric encryption schema the above reasoning does not apply. Then, the
difference of onion routing vs. coconut routing lies in the robustness. If the sin-
gle symmetric key is leaked, coconut routing breaks down, whereas for onion
routing users at uncompromised sites remain anonymous.

The above analysis establishes the anonymity groups given the choice of pa-
rameters to the problem. A number of variations have been considered by way
of experiments for our definition of anonymity groups. For example, instead of
restricting the selection functions to the class Σ one can allow arbitrary selec-
tions, but demanding that each router sends itself a fake message over a random
path. This does not affect the anonymity results. However, the sender anonymity
drops to an isolated site for senders, but not for receivers if such a randomized
initialization phase does not take place and general selection functions are al-
lowed. Another line of variation is in the fairness assumptions or in the definition
itself. A concrete alternative is to consider ‘windows of observation’, leading to
a set-up that is simpler than the one with selection functions, but unintuitive
results (as one can claim behavior just outside the window of the intruder).
In fact, one could argue that the selection functions form a generalization of
considering finite prefixes. A protocol, that we baptized kiwi-routing employs
symmetric keys that are shared among pairs of routers. This protocol is weaker
than coconut routing (whence the naming) in the sense that it breaks down as
soon as one of the many shared keys gets compromised.

5 Conclusion

The achievements of our research are twofold. First of all, we have given a general
and formal definition of anonymity in a trace model. Main parameters of this

14



definition are the attribution function which assigns to each trace a user, and
the capabilities of the intruder. This allows us to calculate a user’s anonymity
group, i.e. the collection of other users that cannot be distinguished from this
user by the intruder. Our definition is of a qualitative nature and discards quan-
titative aspects. This means that we only consider statements such as “could this
behaviour be attributed to some other user”, rather than “what is the chance
that this behaviour is caused by some other user”. It is our believe that a for-
mal quantitative analysis of a security protocol can only be achieved after first
having developed a proper qualitative analysis methodology. In future research
we wish to investigate the use of tool support to analyze privacy protocols and
to adapt our approach to a quantitative setting.

The second result of our research is the formalization of a basic onion routing
protocol and its analysis. By abstracting from several details we were able to
concentrate on what we consider the protocol proper and to formalize some of
the insights expressed by the designers of the protocol. By varying over the
user attribution function we could analyze the anonymity of both the receiver
and sender of some intercepted message. Reasoning about different attribution
functions, such as “did u ever send a message”, follows the same line. Due to the
restrictions on the intruder’s choice function, we were able to express conditions
on the initialization of the protocol that guarantee full privacy. It is not the case
that during this initialization phase senders of messages can be traced back. The
size of a user’s anonymity group expands during this phase until it comprises all
other users. It would be interesting to express the anonymity group of each user
during initialization as a closed expression.

One of our aims was to understand why the onion routing protocol has its
current shape and under which conditions its privacy properties are satisfied.
Thereto we compared it to several weaker protocols, of which we have discussed
the coconut routing protocol here only. This comparison explains what the im-
plications are of simplifying the layered messages. Coconut routing hardly guar-
antees privacy. While performing our analysis, it turned out quite naturally that
the onion routing protocol requires randomized encryption to guarantee full pri-
vacy. Without such randomization the protocol is vulnerable to guessing attacks,
when the intruder seeks to relate incoming and encryptions of outgoing traffic.

It would be interesting to analyze more complex versions of the onion rout-
ing protocol, such as an extension of the protocol with connections, like in the
original onion routing protocol. Further validation of our methodology would
not only require to consider other protocols, but also stronger intruder models.
In the case of the onion routing protocol it is conjectured that an active intruder
could not threaten privacy more than a passive (eavesdropping) intruder. Since
denial-of-service attacks is a topic of research of its own, we will not consider
these attacks in the course of our privacy research.

A final topic of future research is the formalization of other privacy no-
tions, such as unlinkability, pseudonymity and unobservability. Initial research
indicates that their formalization follows the same line as the formalization of
anonymity.

15



References

1. J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge Tracts

in Theoretical Computer Science. Cambridge University Press, 1990.
2. J.A. Bergstra, A. Ponse, and S. A. Smolka. Handbook of Process Algebra. Elsevier,

2001.
3. R. Clarke. Introduction to dataveillance and information privacy, and definitions

of terms. http://www.anu.edu.au/people/Roger.Clarke/DV/Intro.html, 1999.
4. C.J.F. Cremers, S. Mauw, and E.P. de Vink. Defining authentication in a trace

model. In T. Dimitrakos and F. Martinelli, editors, Proc. FAST 2003, 1st Inter-
national Workshop on Formal Aspects in Security and Trust, pages 131–145, Pisa,
2003. IITT-CNR technical report.

5. C. D́ıaz, J. Claessens, S. Seys, and B. Preneel. Information theory and anonymity.
In B. Macq and J.-J. Quisquater, editors, Proc. 23rd Symposium on Information

Theory in the Benelux, pages 179–186. Université Catholique de Louvain, 2002.
6. EPIC. Comments of the Electronic Privacy Information Center.

www.epic.org/privacy/drm/, 2002.
7. W.J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer

Science, an EATCS Series. Springer, 2000.
8. Association for Automatic Identification and Mobility. Rfid.org.

www.aimglobal.org/technologies/rfid/, 2004.
9. D.M. Goldschlag, M.G. Reed, and P.F. Syverson. Hiding routing information. In

R.J. Anderson, editor, Proc. 1st International Workshop on Information Hiding,
pages 137–150, Cambridge, 1996. LNCS 1174.

10. ISO. Common Criteria–ISO/IEC/15408. http://csrc.nist.gov/cc/, 1999.
11. M. Korkea-aho. Anonymity and privacy in the electronic world, 1999. Seminar on

Network Security, Helsinki University of Technology.
12. A. Pfitzmann and M. Köhntopp. Anonymity, unobservability, and pseudonymity.

In H. Federrath, editor, Designing Privacy Enhancing Technologies, pages 1–9.
LNCS 2009, 2001.

13. M.K. Reiter. Crowds: Anonymity for web transactions. ACM Transactions on

Information and System Security, pages 66 – 92, 1998.
14. S. Schneider and A. Sidiroupoulos. CSP and anonymity. In Proc. ESORICS’96,

pages 198–218. LNCS 1146, 1996.
15. A. Serjantov and G. Danezis. Towards an information theoretic metric for

anonymity. In H. Federrath, editor, Proc. PET 2002, pages 41–53. LNCS 2482,
2003.

16. P. Syverson, G. Tsudik, M. Reed, and C. Landwehr. Towards an analysis of onion
routing security. In H. Federrath, editor, Designing Privacy Enhancing Technolo-

gies, pages 96–114. LNCS 2009, 2001.
17. P.F. Syverson, D.M. Goldschlag, and M.G. Reed. Anonymous connections and

onion routing. In IEEE Symposium on Security and Privacy, pages 44–54, Oakland,
California, 1997.

16


