
Toward an Efficient Website Fingerprinting Defense

Marc Juarez1, Mohsen Imani2, Mike Perry3, Claudia Diaz1, and Matthew Wright2

1 KU Leuven, ESAT/COSIC and iMinds, Leuven, Belgium,
name.surname@esat.kuleuven.be

2 The University of Texas at Arlington, TX, USA,
mwright@cse.uta.edu,mohsen.imani@mavs.uta.edu

3 The Tor Project, https://torproject.org
mikeperry@torproject.org

Abstract. Website Fingerprinting attacks enable a passive eavesdropper
to recover the user’s otherwise anonymized web browsing activity by
matching the observed traffic with prerecorded web traffic templates. The
defenses that have been proposed to counter these attacks are impractical
for deployment in real-world systems due to their high cost in terms of
added delay and bandwidth overhead. Further, these defenses have been
designed to counter attacks that, despite their high success rates, have
been criticized for assuming unrealistic attack conditions in the evaluation
setting. In this paper, we propose a novel, lightweight defense based
on Adaptive Padding that provides a sufficient level of security against
website fingerprinting, particularly in realistic evaluation conditions. In
a closed-world setting, this defense reduces the accuracy of the state-of-
the-art attack from 91% to 20%, while introducing zero latency overhead
and less than 80% bandwidth overhead. In an open-world, the attack
precision is just 1% and drops further as the number of sites grows.

Keywords: privacy, anonymous communications, website fingerprinting

1 Introduction

Website Fingerprinting (WF) is a type of traffic analysis attack that allows
an attacker to recover the browsing history of a client. The attacker collects a
database of web traffic templates and matches the client’s traffic with one of the
templates. WF has been shown to be effective in a wide variety of scenarios
ranging from HTTPS connections [15], SSH tunnels [9], one-hop proxies [10],
VPNs [19] and even anonymous communication systems such as Tor [5].

The success of WF against Tor, one of the largest deployed systems for anony-
mously browsing the Web [20], is particularly problematic. Tor offers stronger
security than one-hop proxies and it is meant to protect against attacks like WF
that require only a local eavesdropper or a compromised guard node. However,
recent WF attacks achieve more than 90% accuracy against Tor [5,23,22], thus
breaking the anonymity properties that it aims to provide.



To counter these attacks, a broad range of defenses has been proposed. The
key building block of most of these defenses is link padding. Link padding adds
varying amounts of delays and dummy messages to the packet flows to conceal
patterns in network traffic. Given that bandwidth and latency increases come
at a cost to usability and deployability, these defenses must strive for a trade-off
between security and performance overheads. Unfortunately, the state-of-the-art
link-padding defenses are not acceptable for use in Tor: they increase latency,
delaying page loads between two and four times and impose bandwidth overheads
between 40% [4] and 350% [8] on average.

We note that any delays introduced by a defense are a concern for low-latency
systems, as they have a direct impact on the usability of the system in interactive
applications. Moderate bandwidth overheads may also impact the user experience
but the load factor needs to increase substantially before being noticeable by
users. Moreover, the Tor network has spare bandwidth on the ingress edge of
the network, making it possible to afford a client-side defense that consumes a
moderate amount of bandwidth. In this work, we thus explore the design space
of effective link-padding defenses with minimal latency overhead and modest
bandwidth overhead.

The contributions of the following sections are:

An analysis of the suitability of WF defenses for deployment in Tor.
In Section 2, we define the threat model and give a background of existing attacks
and defenses. Based on this literature review, we discuss the suitability of these
defenses for an implementation in Tor.

A lightweight defense against WF attacks. We have adapted Adaptive
Padding to combat WF in Tor and dubbed this new defense Website Traffic
Fingerprinting Protection with Adaptive Defense (WTF-PAD). Section 3 gives
its specification, and Section 4 presents an evaluation and a comparison of WTF-
PAD with the existing WF defenses. We find that WTF-PAD is effective and
has reasonable overheads for a system like Tor.

An evaluation of the defense in realistic scenarios. Prior work has shown
that the accuracy of the WF attack decreases significantly when certain assump-
tions about the setting or user behavior do not hold [11], but to the best of
our knowledge this is the first study that evaluates the effectiveness of a WF
defense in these scenarios. In Section 5, we show the results for two realistic
scenarios: (i) open-world, in which the attacker monitors a small set of web pages
and, (ii) multi-tab, where the users browse the pages using multiple tabs. We
show that for these scenarios, the defense substantially reduces the accuracy of
the state-of-the-art WF attack.

The source code and datasets that we used in our evaluations are publicly
accessible4.

4 https://github.com/wtfpad/wtfpad



Client

Attacker

Bridge

Tor network

Guard

Middle

Exit

Web

Fig. 1: The WF adversary model considering Tor bridges.

2 Website Fingerprinting (WF)

Tor is an overlay network that routes connections through three-hop circuits
using onion routing [7]. The onion routers encrypt the messages in layers so that
neither the relays nor localized network eavesdroppers can know both the origin
and the destination of a connection.

In this paper, we assume that the client connects to Tor through a bridge,
a volunteer-run proxy to the Tor network (see Figure 1). The adversary has
access to the communication at a point between the client and the bridge. The
adversary is local, meaning that he is unable to observe other parts of the network,
and passive: he can observe and record packets but cannot modify, delay, drop
or inject new packets. We also assume that the adversary cannot learn anything
about packet payloads due to the use of layered encryption.

Defensive padding is performed end-to-end between trusted endpoints, with
the adversary only having access to the padded traces. For this research, we
assume the bridge is trusted. This allows to implement the defense as a Pluggable
Transport (PT) [21], avoiding modifications in the Tor source code. Note this
model is equivalent for a client connecting to the trusted entry guard without a
bridge, but in that case the defense would need to be implemented at the guard.

The objective of the WF adversary is to determine what pages the user
downloads over Tor by looking at the network traces. Early works on this
problem [10,19] assumed a user model that could only access a small set of
pages—an assumption that is unlikely to be met in practice. This assumption
is known as the closed-world assumption, and it overly simplifies the problem to
the point of being irrelevant to most real-world settings. In contrast, the more
realistic open-world allows the user to visit any page and the attacker’s goal is
to determine whether the user downloads one of a small set of monitored pages.
We have evaluated both scenarios: the closed world favors the attacker and gives
a lower bound of the defense effectiveness, but our objective is to measure the
performance of the defense in realistic conditions.

WF attacks are a serious threat to Tor’s security: the adversary only needs the
ability to eavesdrop on the client’s link to the network, which can be achieved
with moderate resources. With the continuous improvement in WF classifier
accuracy over the past few years, this is a pressing concern. The first attack



against Tor obtained 3% accuracy with a Naive Bayes classifier [9] in a closed
world and without any WF countermeasures. However, the attack has been
revisited with more refined feature sets [17], and state-of-the-art attacks attain
over 90% accuracy [5,23,22,16].

2.1 Defenses

Most of the defenses in the literature are theoretical designs without a specifi-
cation for an implementation. Only a few have been evaluated for anonymous
communications, and the only one that is currently implemented in Tor does
not work as expected. In this section, we review WF defenses proposed in the
literature and discuss their suitability for implementation in Tor.

Application-level defenses. These defenses work at the application layer.
HTTPOS modifies HTTP headers and injects HTTP requests strategically [13],
while Randomized Pipelining, a WF countermeasure currently implemented in
the Tor Browser, randomizes the pipeline of HTTP requests. Both defenses have
been shown to be ineffective in several evaluations [5,23,22,11].

Supersequences and traffic morphing. Recent works have proposed de-
fenses based on generalizing web traffic traces [22,3]. They create anonymity
sets by clustering pages and morphing them to look like the centroid of their
cluster. This approach aims to optimally reduce the amount of padding needed
to confound the attacker’s classifier. These defenses, as well as traffic morphing
techniques [25,12], have the shortcoming that require a database of webpage tem-
plates that needs to be frequently updated and would be costly to maintain [11].

Constant-rate padding defenses. Dyer et al. evaluated the impact of padding
individual packets [8], finding that this is not sufficient to hide coarse-grained
features such as bursts in traffic or the total size and load time of the page.
Dyer et al. simulated a proof-of-concept countermeasure called BuFLO, which
used constant-rate traffic with fixed-size packets. The authors report excessive
bandwidth overheads in return for moderate security. The condition to stop the
padding after the transmission ends is critical to adjust the trade-off between
overheads and security. BuFLO stops when a page has finished loading and a
minimum amount of time has passed, not covering the size of a page that lasts
longer than the minimum time.

Tamaraw [4] and CS-BuFLO [5,2], both attempt to optimize the original
design of BuFLO. Instead of setting a minimum duration of padding, Tamaraw
stops padding when the total number of transmitted bytes is a multiple of a
certain parameter. This approach groups webpages in anonymity sets, with
the amount of padding generated being dependent on the webpage’s total size.
Given the asymmetry of web browsing traffic, Cai et al. also suggest treating
incoming and outgoing traffic independently, using different packet sizes and
padding at different rates. Furthermore, the authors sketched CS-BuFLO as
a practical version of BuFLO, extended with congestion sensitivity and rate
adaptation. Following Tamaraw’s grouping in anonymity sets by page size, they



propose either padding up to a power of two, or to a multiple of the amount of
transmitted application data.

We question the viability of the BuFLO-based defenses for Tor. Their latency
overheads are very high, such as two-to-three times longer than without defense,
and the bandwidth overheads for BuFLO and CS-BuFLO are over 100%. In
addition, due to the popularity of dynamic web content, it is challenging to
determine when a page load completes, as needed in Tamaraw and CS-BuFLO.
Nevertheless, in this paper, we compare our system against these defenses because
they are the closest to meeting the deployment constraints of Tor.

3 Adaptive Padding

Adaptive Padding (AP) was proposed by Shmatikov and Wang to defend against
end-to-end traffic analysis [18]. Even though WF attacks are significantly different
from these end-to-end attacks, AP can be adapted to protecting against WF
due to its generality and flexibility. AP has the defender examine the outgoing
traffic pattern and generate dummy messages in a targeted manner to disrupt
distinctive features of the patterns — “statistically unlikely” delays between
packets. Shmatikov and Wang showed that with 50% bandwidth overhead, the
accuracy of end-to-end timing-based traffic analysis is significantly degraded [18].

In the BuFLO family of defenses, the inter-arrival time between packets
is fixed and application data is delayed, if needed, to fit the rigid schedule of
constant packet timings. This adds delays in the common case that multiple real
cells are sent all at once, making this family of defenses ill-suited for a system
like Tor, as it would significantly harm user experience. By contrast, Adaptive
Padding (AP) does not delay application data; rather, it sends it immediately.
This minimal latency overhead makes AP a good candidate for Tor.

In the rest of this section, we describe AP and explain how we adapt it to
defend against WF attacks in Tor.

3.1 Design Overview

To clarify the notation adopted in this paper, we use outgoing to refer to the
direction from the PT instance running at the client to the PT at the bridge,
and conversely, incoming is the direction from the PT server to the client.

The basic idea of AP is to match the gaps between data packets with a
distribution of generic web traffic. If an unusually large gap is found in the
current stream, AP adds padding in that gap to prevent long gaps from being
a distinguishing feature. Shmatikov and Wang recognized the importance of
bursts in web traffic and thus developed a dual-mode algorithm. In burst mode,
the algorithm essentially assumes there is a burst of real data and consequently
waits for a longer period before sending any padding. In gap mode, the algorithm
assumes there is a gap between bursts and consequently aims to add a fake burst
of padding with short delays between packets. In this paper, we follow Shmatikov
and Wang and define a burst in terms of bandwidth: a burst is a sequence of



packets that has been sent in a short time period. Conversely, a gap is a sequence
of packets that are spread over a long timespan.

AP algorithm. The AP algorithm is defined by two histograms of delays that
we call HB (used in burst mode) and HG (used in gap mode). The histograms
have a set of bins that spans over the range of possible inter-arrival times. Each
bin contains a number of tokens, which can be interpreted as the probability
of selecting an inter-arrival time within the range of delays represented by that
bin. The last bin, which we dub the “infinity bin”, includes all possible values
greater than the second-to-last bin. For more details on how these histograms
are defined in WTF-PAD we refer the reader to Appendix A.

AP implements the state machine shown in Figure 2 in each defense endpoint,
i.e. both PT client and server. For simplicity, let us consider just the client’s state
machine in the following explanation. The operation of the server is symmetrical.

S
wait

start B
t← HB

G
t← HG

R psh

snd(R)

t = inf

t expires

snd(D)

t = inf or
R psh
snd(R)

t expires

snd(D)

R psh

snd(R)

Fig. 2: AP algorithm as a finite state machine as implemented in the PT client.
The events are in bold and the actions in italics. The action (snd(·)) refers
to sending messages, either real (R) or dummy (D). The psh event means a
message pushed from the application (Tor browser) to the PT client.

Burst mode. As depicted in the diagram, AP starts idle (state S) until the
packet with the HTTP request is pushed from the browser (R). This causes it
to enter burst mode (state B), drawing a delay t from the HB histogram. Then
it starts to count down until either new data is pushed or t expires. In the first
case, the data is immediately forwarded, a new delay is sampled and the process
is repeated again, i.e. it remains in burst mode. Otherwise, a dummy message
(D) is sent to the other end and AP switches to state G (gap mode). The HB

histogram is built using a large dataset of web traffic, out of which we sample
the times between the end of a burst and the beginning of the following burst
(see Section 3.3). Therefore, while we are in a burst, the delays we sample from
HB will not expire until we find an inter-arrival time that is longer than typical
within a burst, which will make the delay expire and trigger the G state.

Gap mode. While AP is in state G, it samples from histogram HG and sends
dummy messages when the times it samples expire. The histogram for gap
mode, HG, is built from a sample of inter-arrival times within a burst in traffic



collected for a large sample of sites. That is, by sending packets with inter-arrival
times drawn from HG, we are able to generate fake bursts that follow the timing
distribution of an average burst. A transition from G back to B occurs upon
either sampling a token from the infinity bin or receiving a real packet. Similarly,
a transition from B to S happens when we sample a token from the infinity bin.

Note that AP immediately forwards all application data. Since sending a real
packet means that the timeout expired, AP has to correct the distribution by
returning the token to its bin and removing a token from the bin representing
the actual delay. This prevents the combined distribution of padding and real
traffic from skewing towards short values and allows AP to adapt to the current
transmission rate [18]. If a bin runs out of tokens, to minimize its effect on
the resulting distribution of inter-arrival times, we remove tokens from the next
non-empty greater bin [18]. In case all bins are empty, we refill the histogram
with the initial sample.

3.2 WTF-PAD

We propose a generalization of AP called Website Traffic Fingerprinting Protec-
tion with Adaptive Defense (WTF-PAD). WTF-PAD includes implementation
techniques for use in Tor and a number of link-padding primitives that enable
more sophisticated padding strategies than the basic AP described above. These
features include:

Receive histograms. A key feature to make padding realistic is to send
padding messages as a response to messages received from the other end. In
WTF-PAD, we implement this by keeping another AP state machine that reacts
to messages received from the other PT endpoint: the PT client has a rcv event
when it gets a packet from the PT server. This allows us to encode dependencies
between incoming and outgoing bursts and to simulate request-response HTTP
transactions with the web server. Padding introduced by the rcv event further
distorts features on bursts, as just one packet in the outgoing direction might
split an incoming burst as considered by the attacks in the literature.

Control messages. WTF-PAD implements control messages to command the
PT server padding from the PT client. Using control messages, the client can
send the distribution of the histograms to be used by the PT server. This way,
the PT client is in full control of the padding scheme. It can do accounting on
received padding traffic and alert the user if relays in its circuits are sending
unscheduled padding.

Beginning of transmission. Control messages can also be used to signal the
beginning of the transmission. If we are in state S and a new page is requested,
we will need to flag the server to start padding. Otherwise, the transmission
from the first request to the following response is uncovered and reveals the size
of the index.html page.

Soft stopping condition. In contrast to Tamaraw and CS-BuFLO, WTF-
PAD does not require an explicit mechanism to conceal the total time of the



transmission. At the end of the transmission, the padding is interrupted when
we hit the infinity bin in the gap state and then the infinity bin in the burst state.
See the Appendix A for further discussion on how to set the tokens in the infinity
bins. The lack of a firm stop condition represents an advantage over existing
link-padding-based defenses, which require a mechanism to flag the boundaries
of the transmission. The probability of stopping will depend on the shape of the
histograms at the end of the transmission.

3.3 Inter-arrival time distributions

Shmatikov and Wang did not specify in the original AP paper how to build
and use the distribution of inter-arrival times in the AP histograms. In their
simulations, they sampled the inter-arrival times for both real and padding traffic
from the same distribution. To build the histograms, we have sampled the times
from a crawl of the top 35K pages in the Alexa list. First, we uniformly selected a
sample of approximately 4,000 pages and studied the distribution of inter-arrival
times within their traces.

10−6 10−5 10−4 10−3 10−2 10−1 0 10 102

Inter-arrival times in seconds (log scale)

P
a
ck

et
co

u
n
ts

0

1.5e6

2e6

Incoming
Outgoing

Fig. 3: Histogram of the inter-arrival times in a large sample of the top 35K
Alexa.

In order to implement WTF-PAD without revealing distinguishing features
between real and fake messages, we need to send dummies in time intervals that
follow the same distribution as real messages. In Figure 3, we observe that times
for incoming and outgoing traffic have different distributions. The asymmetric bit
rates in the connection we used to conduct the crawl account for this difference.
Since WTF-PAD has different histograms in the client and the bridge we can
simulate traffic that follows different distributions depending on the direction.

Next, we explain how to find the bursts and the gaps in the inter-arrival time
distribution and build the histograms HB and HG. Intuitively, the burst-mode
histogram HB should consist of larger delays covering the duration of typical
bursts, while the gap-mode histogram HG should consist of smaller delays that
can be used to mimic a burst. To split inter-arrival times into the two histograms,
we calculate the instantaneous bandwidth at the time of each inter-arrival time
to determine if it is part of a burst or not. Then, we set a threshold on the
bandwidth to draw the line between bursts and gaps.



We estimate the instantaneous bandwidth using a sliding window over a
sequence of consecutive packets. We have experimented with different window
lengths and threshold values. The best results against the state-of-the-art WF
attack are achieved for a window of two consecutive packets and a threshold set
to the total average bandwidth for the whole sample of traces.

3.4 Tuning mechanism

AP can hide inter-arrival times that are longer than the average, but it does not
hide times that are shorter than the average. To effectively hide these times
we need to either add delays to exceptionally long traces or add more padding
over all traces to level them off and make them less distinctive. We focus on the
latter approach because our objective is to minimize delay. WTF-PAD provides
a mechanism to tune the trade-off between bandwidth overhead and security:
one can modify the parameters of the distributions used to build the histograms
to add more padding and react to shorter inter-arrival times.

Inter-arrival time in seconds (log scale)

D
en

si
ty

-8 -6 -4 -2 0 2

0
.0

0
.1

0
.2

0
.3

0
.4

µ− µ′

σ

σ′

Fig. 4: Histogram of times between consecutive bursts for incoming traffic. In
dark gray we superpose the PDF of our log-normal fit. In light gray, we show the
PDF of a shifted log-normal distribution that we use to build the HB histogram.

To illustrate this, we show in Figure 4 the HB histogram as sampled from
our dataset. We observe that the distribution of the logarithm of these times can
be approximated with a normal distribution N (µ, σ2). That is, the inter-arrival
times follow a log-normal distribution. We can modify its mean and variance
to obtain another normal distribution N (µ′, σ′2) that we will use to sample
the inter-arrival times of HB. By using N (µ′, σ′2) we are shifting the average
distribution of inter-arrival times toward shorter values. This results in a greater
amount of short times being covered by padding, which increases the bandwidth
overhead but causes the pages become less distinguishable and thereby reduces
the attacker’s accuracy.



We created a statistical model of the underlying distributions of inter-arrival
times from the samples we extracted from our dataset. We experimented with
multiple positively skewed distributions to build the model and test the goodness
of fit with the Kolmogorov-Smirnov test. We estimated the parameters of the
distributions using maximum likelihood estimation. Even though Pareto and
Beta distributions seemed to fit best, we decided for simplicity to use normal
and log-normal distributions, given that the error was not significantly greater
than that observed in the other distributions.

To calibrate the possible shifts, we set µ′ and σ′ according to the percentile of
the real data we want to include. For instance, assuming a normal distribution,
if we adjust µ′ to the 50th percentile, we obtain µ′ = µ and σ′ = σ. If we set µ′

to the value of the Probability Density Function (PDF) at the 10th percentile,
we then derive the σ′ using the formula of the PDF of the normal distribution.

4 Evaluation

In this section we discuss how we evaluated WTF-PAD, present our findings and
compare them with the results we obtained for existing defenses.

4.1 Data

Unlike most previous defense evaluations, which used simulated data, we have
used web traffic that has been collected over Tor. We used a dataset that had
been collected for a study about a realistic evaluation of WF attacks [11]. This
dataset consists of 40 instances, collected in ten batches of four visits, for each
homepage in top-100 Alexa sites [1]. For the open-world, the dataset also has
one instance for each website in the Alexa 35,000 most popular websites.

4.2 Methodology

To evaluate the improvements in performance offered by the defense, we applied
the attack’s classifier on both the original traffic traces and traces that have been
protected by applying the defense. The difference in bandwidth and latency
between the original and protected traces provides us with an estimate of the
overheads. We applied the state-of-the-art attack on the set of protected traces
to evaluate the effectiveness of the defense. The average accuracy over multiple
runs determines the security provided by the defense.

In the closed world, we measure the accuracy as the True Positive Rate (TPR),
or Recall. We also measure the False Positive Rate (FPR), the Positive Predictive
Value (PPV)—also called Precision, and the harmonic mean of precision and
recall (F1-Score), as they play an important role on evaluating the effectiveness
of the attack in the open-world.

The state-of-the-art attack is based on a k-NN model [22]. k-NN is a super-
vised learning algorithm that selects the k closest instances (the neighbors), and
outputs the class of the majority of the neighbors. Wang et al. determined that



the number of neighbors that optimizes the trade-off between TPR and FPR is
k = 5. The distance defined by Wang et al. for use in k-NN is a weighted sum of
a set of features. This feature set is the most extensive in the WF literature with
more than 4,000 features and including features that extensively exploit bursts.

In order to have a comprehensive evaluation of WTF-PAD, we also evaluated
it with other existing WF attacks that take into account features that are not
included in k-NN.

4.3 Results

To evaluate the trade-off between bandwidth overhead and accuracy provided by
WTF-PAD, we applied the attack on protected traces with different percentile
values, ranging from 0.5 (low protection) to 0.01 (high protection) percentiles.

In Figure 5, we show the trade-off curves for both normal and log-normal fits.
We observe a steeper decrease in accuracy for the normal model with respect to
the log-normal one. Remarkably, beyond a certain point (around 0.1 percentile),
the tuning mechanism saturates to 15% accuracy for both models: percentiles
lower than that point do not further reduce accuracy and only increase bandwidth
overhead. The trend we observe is the cost in bandwidth exponentially growing
with the protection level that the defense attempts to provide

1 1.5 2 2.5
0

0.5

1

Bandwidth overhead ratio

A
cc

u
ra

cy

Log-normal

Normal

Fig. 5: Average accuracy versus median bandwidth overhead ratio.

Table 1 summarizes the security versus overhead trade-off obtained for dif-
ferent attacks (i.e., k-NN, NB, SVM, DL) and defenses BuFLO, Tamaraw, CS-
BuFLO and WTF-PAD. As we see, WTF-PAD is the only defense to provide
zero latency overhead. The other defenses we tested produce between 145-200%
additional median delay to fetch a webpage. WTF-PAD also offers moderate
bandwidth overhead. For our datasets, we observed that the median bandwidth
overhead was always below 80% while attaining decreases in the accuracy of the
attack that are comparable with the other defenses.

ROC curve. To study the impact of WTF-PAD on the performance of k-NN,
we also plotted the ROC curve with and without protection. The ROC curve
represents the performance of the classifier when its discrimination parameter
changes. The standard k-NN is not a parametric algorithm, meaning that there
is no explicit parameter that one can use to set the threshold and tune the



Table 1: Performance and security comparison among link-padding
defenses in a closed world.

Accuracy (%) Overhead (%)

Defense Parameters kNN Pa-SVM [17] DL-SVM [23] VNG++ [8] Latency Bandwidth

BuFLO [8] τ = 10s, ρ = 20ms, d = 1500B 14.9 14.1 18.75 N/A 145 348
CS-BuFLO [2] ρ = [20, 200]ms, d = 1500B, CPSP N/A 30.6 40.5 22.5 173 130
Tamaraw [22] ρout = 0.053, ρin = 0.138, d = 1500B 13.6 10.59 18.60 12.1 200 38

WTF-PAD Normal fit, p = 0.4, d = 1500B 17.25 15.33 23 26 0 77*

* Due to a bug in our source code, we incorrectly reported 54% in the published version.

trade-off. We have defined more or less restrictive classifications of k-NN by
setting a minimum number of votes required to classify a page. We used 10-fold
cross-validation to average the ROC curve for k = 5 neighbors in a closed world
of 100 pages. To plot the ROC graph we had to binarize the classification: we
divided the set of pages into two halves, 50 monitored and 50 non-monitored,
and considered the monitored as the positive class and the non-monitored as the
negative one. Then, all the positive (monitored) observations that are classified
as a page in the positive class are counted as true positives, even if the instances
were classified as a different monitored page. This is a more advantageous
scenario for a surveillance-type of attacker that only tries to identify whether the
page is monitored or not.

In Figure 6, we compare the ROC curves for the data before and after applying
the defense with respect to random guessing. We notice a significant reduction
in the performance of the classifier. Compared to unprotected data with an AUC
of 0.95 (close to perfect classification), WTF-PAD has an AUC of 0.66, which is
substantially closer to random guessing.

1

1

0

FPR

T
P

R

Unprotected
(AUC≈ 0.95)

WTF-PAD
(AUC≈ 0.66)

Random
(AUC = 0.5)

Fig. 6: 10-fold cross-validated ROC curves of k-NN with five neighbors and using
a strict consensus threshold.



5 Realistic Scenarios

In this section, we present the results of the evaluation of the defense in two
realistic scenarios: the open world and the use of multi-tab browsing.

5.1 Open-world evaluation

We now evaluate the performance of the defense against the k-NN algorithm in
the open-world scenario. Our definition of the open-world is similar to the ones
described in prior work. We have evaluated the k-NN with the evaluation method
used by Wang et al. and incorporating the changes suggested by Wang [24], so
that we can compare our results with the ones they obtained [22]

In Wang’s open-world classification, they consider one class for each of the
monitored pages and one single class for all the non-monitored pages. Then, the
attacker aims to identify the exact monitored pages the user visits and to classify
all the visits to non-monitored pages into the non-monitored class regardless of
the actual page.

We observe that even though the accuracy initially increases as the world
grows and saturates to 95% at the maximum considered world size, the F1-Score
decreases and levels off to 50%. This is because even though the FPR rapidly
drops to zero, the TPR decreases below 40%. The accuracy is so high because
the classifier reaches almost perfect classification for the non-monitored class.
This high accuracy is due to the stringent threshold used in the k-NN which
requires all neighbors to vote to the same class and reduces the FPR.

0K 5K 10K 15K
2 · 10−3

0.31

0.47

0.95

World size

F1-score Accuracy TPR FPR

0

1

R
a
te

Fig. 7: Performance metrics for the classification of a k-NN classifier with k = 4
neighbors for an open world up to 15K pages [24].

We observe that the TPR and FPR after applying the defense are dramatically
lower than the rates shown in Figure 7. However, due to the skew between the
positive and the negative classes, the ROC curves of the k-NN are biased towards
the negative class and do not reflect well the performance of the classifier. For
imbalanced datasets, it is recommended to use the Precision-Recall ROC (P-ROC)



instead of the ROC [6]. Similarly to the standard ROC, P-ROC represents the
interaction of TPR (recall) and PPV (precision), instead of FPR, with respect
to variations on the discriminant of the classifier. Precision in the open-world
scenario conveys the fraction of monitored pages that were correctly detected by
the k-NN. Precision is invariant to the size of the negative class and thus gives
a more accurate estimation of the classifier’s performance in the open-world.

In the P-ROC graph, the perfect classifier has a curve that coincides with the
top-right corner and the random classifier is calculated as the number of positives
divided by the total number of instances, i.e., the probability of selecting a positive
instance uniformly at random. This random curve is used as a baseline because
no classifier can have lower precision than it. As in the standard ROC, classifiers
can be bench-marked by comparing their area under the curve (AUC).

1

0.19

0.56

0.95

0

1

Recall

P
re

ci
si

o
n

Unprotected WTF-PAD Random

0K 5K 10K 15K

0.13

0.74

0.07

World size

0

1

A
U

C

Fig. 8: The figure on the left shows the P-ROC curves for the k-NN attack on the
protected and unprotected datasets for 5,000 pages. On the right, a comparison
of P-ROC AUC with respect to the world size.

Figure 8 (left) shows the P-ROC curve of the k-NN when applied on the
set of traces before and after WTF-PAD. Again, we observe that the AUC for
the unprotected case is reduced significantly (from 0.79 to 0.27) and is close to
random. However, this graph is a snapshot of the performance of the classifier
for a fixed world size (5,000 pages). In order to evaluate how the size of the world
affects the attack for the unprotected and protected data, we plot in Figure 8
(right) the AUC estimates while varying the size of the world. The first data point
represents a closed world where all pages are monitored and, as expected, all
classifiers perform as in perfect classification (AUC=1). However, as we increase
the size of the world, the baseline classification tends to zero because a random
guess is less likely to succeed. The k-NN levels off to AUC 0.74, which means
that it is not heavily affected by the size of the world. Notably, when we apply
the defense on the traces, all AUC values are close to random even for the largest
world size that we have considered (15K pages). WTF-PAD steadily decreases
the attack’s success at the same rate as the random classifier does.



5.2 Multi-tab evaluation

The objective of the experiments in this section is to evaluate the efficacy of the
WTF-PAD defense when the user is browsing with multiple tabs open. For this
evaluation, we considered two scenarios and in both, the goal of the attacker is
to identify one of the pages that compose the traffic trace.

Table 2: TPR for protected and unprotected traces in Scenarios 1 and 2.

TPR

Unprotected WTF-PAD

Scenario 1 14% 8%
Scenario 2 68% 22%

In Scenario 1, we trained the k-NN attack on a single-tab dataset and tested
on a mixed dataset of single tab traces and multi-tab traces generated by a crawl
with two simultaneous tabs. The first tab was loaded following the Alexa top 100
sequentially. The second tab was open with a delay from 0.5 to 5 seconds and
was chosen uniformly at random from the same list. Table 2 shows the result of
Scenario 1 for traces with and without the protection offered by WTF-PAD.

Since the accuracy of the k-NN is already low when training on single-tab
and testing on multi-tab (Scenario 1 in Table 2), the defense does not impact
significantly the TPR of the classifier.

Table 3: TPR with respect to each traffic type. Each cell shows the number of
background pages (the first tab) detected among truly detected multi-tab traces.

Scenario 1 (TP/Total) Scenario 2 (TP/Total)

Single Multi First Single Multi First

Unprotected 233/300 901/8100 544/901 263/300 482/810 449/482

WTF-PAD 95/300 598/8100 333/598 108/300 137/810 103/137

In Scenario 2, we trained and tested k-NN on a dataset that includes multi-
tab and single-tab traces. In this scenario, the attack achieves 68% TPR on
unprotected multi-tab traces, much higher than the 14% found in Scenario 1.
However, the success rate on protected traces drops to 22%.

In Table 3 we group the detection rates by traffic type (single or multi tab) as
used to build the test set. k-NN can successfully classify unprotected single-tab
traces with an accuracy of 87%, which is close to the accuracy rate of k-NN in
the closed-world setting. The accuracy decreases to just 36% when we protect
the traces with WTF-PAD.



6 Discussion and Future Work

WF attacks fall within the Tor threat model [7], as it only requires one point of
observation between the client and the bridge or guard, and the attack potentially
de-anonymizes users by linking them with their browsing activity. Even with
the challenges of open-world and multi-tab browsing [11], some websites may
exhibit especially unique traffic patterns and be prone to high-confidence attacks.
Attacks may observe visits to the same site over multiple sessions and gain
confidence in a result.

Protecting Tor users from WF attacks, however, must be done while maintain-
ing the usability of Tor and limiting costs to Tor relay operators. Delay is already
an issue in Tor, so adding additional delay would harm usability significantly.
The BuFLO family of defenses add between 145-200% additional delay to the
average website download, i.e. up to three times as long to get a webpage, which
makes them very unlikely to be adopted in Tor.

The main overhead in WTF-PAD is bandwidth, which was under 80% over-
head in all scenarios we tested. We do not know the exact percentage that is
acceptable for use in Tor, but we note the following points. First, approximately
40% of Tor traffic is bulk downloads (from 2008, the last data we know of) [14].
To the extent that this holds today, only the remaining 60% of traffic needs to
be covered by this defense. Second, the bottleneck in Tor bandwidth today is
exit nodes. WF defenses do not need to extend to exit nodes, stopping at the
bridge (in our framework) or at the guard or middle node when fully implemented.
Thus, the bandwidth overhead only extends to one or two relays in a circuit and
crucially not to the most loaded relay, making the overhead cost much less in
practice. Third, given our findings for the open-world setting, it may be possible
to tune WTF-PAD further to lower the bandwidth and maintain useful security
gains in realistic use cases.

The construction of the histograms HB and HG is critical for the correct
performance of the defense. First, since these distributions depend on the client’s
connection, we cannot estimate them a priori and ship them with WTF-PAD.
A solution is to consider groups of clients with similar connections and have a
precomputed configuration for each group. Then, the clients will estimate the
properties of their network and only download the configuration that best matches
their connection. Future work in developing WTF-PAD could explore the use of
genetic algorithms to find the optimal histogram for each specific situation. A
genetic algorithm could optimize a fitness function composed by the bandwidth
overhead and the accuracy of the WF attack. Under mild assumptions on the
distribution, histograms can be represented efficiently to reduce the search space.

7 Conclusion

In this paper, we described the design of WTF-PAD, a probabilistic link-padding
defense based on Adaptive Padding. We studied the effectiveness and overheads
of WTF-PAD, and compared it to existing link-padding-based defenses, showing



that it offers reasonable protection with lower overhead costs. In particular, our
results show that WTF-PAD does not introduce any delay in the communication
while introducing moderate bandwidth overheads, which makes it especially
suitable for low-latency communications such as Tor. Additionally, we have
evaluated the effectiveness of WTF-AP in open-world and multi-tab scenarios.
The results show that the defense reduces the performance of the classifier to
random guessing.

Acknowledgments

We thank the anonymous reviewers for their constructive comments. A special
acknowledgement to Gunes Acar, Ero Balsa, Filipe Beato and Stijpan Picek for
reviewing the draft version of the paper. We appreciate the interesting discus-
sions with Yawning Angel, Rishab Nithyanand, Jamie Hayes, Giovanni Cherubin,
Tao Wang, Oscar Reparaz and Iraklis Symeonidis that helped developing this
paper. This material is based upon work supported by the National Science
Foundation under Grants No. CNS-1423163, CNS-0954133, CNS-1111539, CNS-
1314637 and CNS-1520552. In addition, this work was supported by the Euro-
pean Commission through KU Leuven BOF OT/13/070, H2020-DS-2014-653497
PANORAMIX and H2020-ICT-2014-644371 WITDOM. Marc Juarez is funded
by a PhD fellowship of the Fund for Scientific Research - Flanders (FWO).

References

1. Alexa. Alexa Top 500 Global Site. http://www.alexa.com/topsites, 2015.
2. Cai, X., Nithyanand, R., and Johnson, R. CS-BuFLO: A Congestion

Sensitive Website Fingerprinting Defense. In Workshop on Privacy in the Electronic
Society (WPES) (2014), ACM, pp. 121–130.

3. Cai, X., Nithyanand, R., and Johnson, R. Glove: A Bespoke Website
Fingerprinting Defense. In Workshop on Privacy in the Electronic Society (WPES)
(2014), ACM, pp. 131–134.

4. Cai, X., Nithyanand, R., Wang, T., Johnson, R., and Gold-
berg, I. A Systematic Approach to Developing and Evaluating Website Finger-
printing Defenses. In ACM Conference on Computer and Communications Security
(CCS) (2014), ACM, pp. 227–238.

5. Cai, X., Zhang, X. C., Joshi, B., and Johnson, R. Touching from
a Distance: Website Fingerprinting Attacks and Defenses. In ACM Conference on
Computer and Communications Security (CCS) (2012), pp. 605–616.

6. Davis, J. , and Goadrich, M. The relationship between precision-recall
and roc curves. In Proceedings of the 23rd international conference on Machine
learning (2006), ACM, pp. 233–240.

7. Dingledine, R., Mathewson, N., and Syverson, P. Tor: The
Second-Generation Onion Router. In USENIX Security Symposium (2004),
USENIX Association.

8. Dyer, K. P., Coull, S. E., Ristenpart, T., and Shrimpton, T.
Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures Fail.
In IEEE Symposium on Security and Privacy (S&P) (2012), IEEE, pp. 332–346.

http://www.alexa.com/topsites


9. Herrmann, D., Wendolsky, R., and Federrath, H. Website Finger-
printing: Attacking Popular Privacy Enhancing Technologies with the Multinomial
Näıve-Bayes Classifier. In ACM Workshop on Cloud Computing Security (2009),
ACM, pp. 31–42.

10. Hintz, A. Fingerprinting Websites Using Traffic Analysis. In Privacy Enhancing
Technologies (PETs) (2003), Springer, pp. 171–178.

11. Juarez, M., Afroz, S., Acar, G., Diaz, C., and Greenstadt, R.
A Critical Analysis of Website Fingerprinting Attacks. In ACM Conference on
Computer and Communications Security (CCS) (2014), ACM, pp. 263–274.

12. Lu, L., Chang, E., and Chan, M. Website Fingerprinting and Identifica-
tion Using Ordered Feature Sequences. In European Symposium on Research in
Computer Security (ESORICS) (2010), Springer, pp. 199–214.

13. Luo, X., Zhou, P., Chan, E., and Lee, W. HTTPOS: Sealing Infor-
mation Leaks with Browser-side Obfuscation of Encrypted Flows. In Network &
Distributed System Security Symposium (NDSS) (2011), IEEE Computer Society.

14. McCoy, D., Bauer, K., Grunwald, D., Kohno, T., and Sicker,
D. Shining light in dark places: Understanding the Tor network. In Privacy
Enhancing Technologies Symposium (PETS) (July 2008).

15. Miller, B., Huang, L., Joseph, A. D., and Tygar, J. D. I know
why you went to the clinic: Risks and realization of https traffic analysis. In
Privacy Enhancing Technologies (2014), Springer, pp. 143–163.

16. Panchenko, A., Lanze, F., Zinnen, A., Henze, M., Pennekamp,
J. , Wehrle, K., and Engel, T. Website fingerprinting at internet scale. In
Network & Distributed System Security Symposium (NDSS) (2016), IEEE Computer
Society.

17. Panchenko, A., Niessen, L., Zinnen, A., and Engel, T. Web-
site Fingerprinting in Onion Routing Based Anonymization Networks. In ACM
Workshop on Privacy in the Electronic Society (WPES) (2011), ACM, pp. 103–114.

18. Shmatikov, V., and Wang, M.-H. Timing analysis in low-latency mix
networks: Attacks and defenses. European Symposium on Research in Computer
Security (ESORICS) (2006).

19. Sun, Q., Simon, D. R., and Wang, Y. M. Statistical Identification of
Encrypted Web Browsing Traffic. In IEEE Symposium on Security and Privacy
(S&P) (2002), IEEE, pp. 19–30.

20. The Tor project. Users statistics. https://metrics.torproject.org/

users.html. (accessed: July 20, 2015).
21. The Tor project. Pluggable Transports. Tor spec: ”https://gitweb.

torproject.org/torspec.git/tree/pt-spec.txt”, 2012. (accessed: December
15, 2015).

22. Wang, T., Cai, X., Nithyanand, R., Johnson, R., and Gold-
berg, I. Effective Attacks and Provable Defenses for Website Fingerprinting. In
USENIX Security Symposium (2014), USENIX Association, pp. 143–157.

23. Wang, T., and Goldberg, I. Improved Website Fingerprinting on Tor.
In ACM Workshop on Privacy in the Electronic Society (WPES) (2013), ACM,
pp. 201–212.

24. Wang, T., and Goldberg, I. On realistically attacking tor with website
fingerprinting. In Proceedings on Privacy Enhancing Technologies (PoPETs)
(2016), De Gruyter Open, pp. 21–36.

25. Wright, C. V., Coull, S. E., and Monrose, F. Traffic morphing:
An efficient defense against statistical traffic analysis. In Network & Distributed
System Security Symposium (NDSS) (2009).

https://metrics.torproject.org/users.html
https://metrics.torproject.org/users.html
https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt
https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt


A WTF-PAD Histograms

A histogram is defined as a disjoint partition of the support of the inter-arrival
time distribution [0,+∞). Each sub-interval, that we call bin, is a half-closed
interval Ii = [ai, bi) with 0 ≤ ai, bi ≤ +∞ for all i = 1, . . . , n, where n ≥ 2 is the
total number of bins in the partition. The bin lengths used in the AP histogram
increase exponentially with the bin index, namely, the intermediate bins have
the following endpoints:

ai =
M

2n−i
, bi =

M

2n−i−1
,

for i = 2, . . . , n − 1. M > 0 is the maximum inter-arrival time considered in
practice. The first bin is I1 = [0, M

2n−2 ) and the last bin is In = [M,+∞).
An exponential scale for the bins provides more resolution for values in a

neighborhood of zero, which is convenient to represent distributions with heavy
positive skew, such as the distribution of inter-arrival times in network traffic.

When we sample from a bin, AP returns a value sampled uniformly from
[ai, bi), except for the last bin [M,+∞), in which case AP returns “∞”.

In Figure 9, we show a simplified version of the histograms we used in the
WTF-PAD instance at the client. The histograms that we actually used have 20
bins.

Fig. 9: Example of WTF-PAD histograms at the client. The histogram on the
left is the HB and the one on the right is HG.

Each bin contains a number of tokens ki. We denote K the sum of tokens in
all the bins except the infinity bin, i.e.:

K :=

n−1∑
i=1

ki.

If we assume the probability of selecting a token is uniform over the total
number of tokens, then the probability of sampling a delay from that bin can be
estimated as:



Pi :=
ki

K + kn
. (1)

We assume that all the bins Ii for i < n are already filled as explained in
Section 3.3. In the following we describe how to set the number of tokens in In,
the infinity bin, for both histograms, HB and HG.

Infinity bin in HB. According to the notation introduced above, Pn in HB is
the probability of falling into the infinity bin and thus defines the probability of
not sending padding (and not starting a fake burst) when we draw a sample from
it. To express kn in terms of the probability of sampling from In and the current
sum of tokens in the histogram, we clear the expression of Pn in Equation 1 for
kn:

kn =
Pn

1− Pn
K.

For instance, if we decide on setting the probability of generating a fake burst
to 0.9, then we need to set Pn = 0.1. Assuming K = 300 tokens, using the
equation above we obtain kn ≈ 34.

Infinity bin in HG. The number of tokens we will sample from HG until we
hit the infinity bin is the number of dummy messages we will send within a fake
burst. Since the probability of drawing a token is uniform, we can think the
histogram as one single bucket that contains tokens from In and tokens from the
other bins. Then, the expected number of draws without replacement, L, until
we draw the first token from the infinity bin is a known result one can find in
any probability textbook:

E[L] =
K + kn + 1

kn + 1
.

We know the expected value of the length of a burst from our estimations
on a large dataset of web traffic. Let µL be the mean burst length. In order
to make sure fake bursts have the same mean length as real bursts, we must
impose the expected number of tokens we sample until we hit the infinity bin to
be: E[L] = µL. Then, we only need to clear kn from the equation:

kn =
K − µL + 1

µL − 1
.

This equation is well defined because, typically, the mean length of a burst
is small: K >> µL.


	Toward an Efficient Website Fingerprinting Defense

