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Abstract

Anonymity protocols are a privacy-enhancing tech-
nology for Internet-based communication. Two im-
portant characteristics of anonymity protocols are the
strength of anonymity provided, and the overhead re-
quired for anonymous communication. In this paper,
we focus on the latter characteristic, and develop sim-
ple performance models for two anonymous communi-
cation protocols: Practical Buses and Taxis. We show
that the message latency of the Practical Buses proto-
col scales quadratically with the number of participants,
while that of the Taxis protocol scales linearly with the
number of participants. Both models are validated with
experimental measurements from prototype implemen-
tations of the protocols. We show that the Taxis proto-
col provides more scalable anonymous communication,
without compromising the strength of anonymity pro-
vided.

1 Introduction

Anonymity protocols provide privacy for Internet-
based communication, by protecting the identities of
communicating parties from internal and external at-
tackers.

There are numerous applications that require
anonymity. For example, a Web server that provides
controversial documents, such as democratic doctrine
in a totalitarian regime, requires anonymity for free-
dom of speech and to prevent unjust prosecution. Mil-
itary communication requires anonymity on the bat-
tlefield so that attackers cannot gain a tactical advan-
tage by gleaning identity information from communica-
tions. Similarly, Internet-based counseling for victims
of abuse requires anonymity in the early stages of the
healing process. In general, anonymous communica-
tion enables freedom of speech, by eliminating the fear
of retribution, risk, or ridicule that could occur if iden-

tities are compromised.

Anonymity can be classified into data anonymity
and connection anonymity. Data anonymity [6] re-
moves identifying data in messages, such as the sender
address in an e-mail. Connection anonymity [6] ob-
scures the traffic communication patterns. This pre-
vents traffic analysis that traces a message through the
network from the initiator to the responder. This pa-
per focuses on connection anonymity.

Connection anonymity can be further divided
into sender anonymity, receiver anonymity, mutual
anonymity, and unlinkability. Sender anonymity [15]
hides the identity of the initiator, while receiver
anonymity [15] conceals the identity of the responder.
Mutual anonymity [10] keeps the identities of both the
initiator and responder anonymous. Unlinkability [15]
prevents the linking of a message sent by an initiator to
its responder, and vice versa. The type of connection
anonymity required depends upon the application.

Two important characteristics of anonymity pro-
tocols are the strength of anonymity provided, and
the overhead required for anonymous communication.
There is typically a trade off between these two prop-
erties. For example, strong anonymity can be provided
by aggregating many messages into batches (mixes) be-
fore forwarding them, but this adversely affects mes-
sage delay. Similarly, anonymity can be strengthened
with dummy cover traffic (i.e., fake messages) on the
network, but this increases the bandwidth consump-
tion as well as the processing overhead for each par-
ticipating node. Reducing the volume of cover traffic
may compromise anonymity, but it makes the protocol
vulnerable to identity-discerning attacks. Finding a
low-overhead anonymous communication scheme with
provably strong anonymity is a challenge.

In this paper, we focus on the performance of
anonymity protocols. In particular, we consider the
Buses protocol from the literature: a known protocol
with provably strong anonymity properties. We de-
velop a simple performance model for the Practical
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Buses protocol, an extension to the Buses Protocol,
and show that the message latency scales quadrati-
cally with the number of participants in the network.
We then propose an improved protocol called Taxis,
and show that its message latency scales linearly with
the number of participants. Both models are validated
with experimental measurements from a prototype im-
plementation of each protocol. Furthermore, we show
that Taxis provides more scalable anonymous commu-
nication than Practical Buses, without compromising
the anonymity provided.

The rest of this paper is organized as follows. Sec-
tion 2 provides background information on anonymity
protocols and related work. Section 3 discusses the
Practical Buses protocol and presents an analysis of its
average message latency. Section 4 describes the new
Taxis protocol, while Section 5 shows that its average
message latency scales linearly. Section 6 presents ex-
perimental results, while Section 7 shows that Taxis
retains the strong anonymity guarantees of Practical
Buses. Finally, Section 8 concludes the paper.

2 Background and Related Work

2.1 Anonymity Techniques

Anonymous communication is a vibrant research
field with many proposed anonymous communication
schemes [1]. Applications such as e-mail have incorpo-
rated strong anonymous communication schemes, since
they are delay-tolerant [7]. However, interactive appli-
cations, such as Web browsing and SSH, require lower
latency. Designing a strong anonymous communication
scheme with low overhead is an open research prob-
lem [8]. As an interim solution, low-latency anony-
mous communication schemes, such as Crowds [17] and
Tor [8], have been used for interactive applications, de-
spite being vulnerable to known attacks [8].

The three basic anonymity techniques are broad-
casting, mixes, and buses. Anonymous communica-
tion protocols inherit their performance and anonymity
strength from these underlying techniques.

The broadcasting technique requires each partici-
pant to broadcast to all the other participants the pari-
ties of its secret coin flips [5]. Since this overhead scales
quadratically, the broadcasting approach is no longer
mainstream in the literature [1], and thus is not con-
sidered further in this paper.

The mixes and buses techniques can be measured
by their performance and the strength of anonymity
provided. The performance metric considered in this
paper is the average message latency, and how it scales
with the number of participants. The measure of

anonymity is how well an initiator or responder is hid-
den among the participants.

To measure the strength of anonymity, the nomen-
clature anonymity set, sender anonymity set, and re-
ceiver anonymity set are used [14]. The anonymity set
consists of all of the participants in an anonymous com-
munication scheme. The sender anonymity set is a sub-
set of the anonymity set that contains all of the partici-
pants that could have been an initiator for a particular
message. Similarly, the receiver anonymity set is a sub-
set of the anonymity set that contains all of the partic-
ipants that could have been a responder for a message.
A desirable characteristic of strong anonymity is that
both the sender anonymity set and receiver anonymity
set are equal to the anonymity set.

2.2 Mixes

In 1981, Chaum published his landmark paper on
mixes. This was the first anonymity technique pub-
lished and it provides very strong anonymity. The idea
is to re-route a multiply encrypted message through a
sequence of mixes. Each mix collects a batch of inputs,
peels away a layer of encryption from each input, and
randomly re-orders the outputs.

The goal is to prevent an attacker from correlating
an input to its corresponding output, assuming that
the mix’s private key is kept confidential. However,
the events of an initiator sending a message and a re-
sponder receiving a message also need to be hidden.
The only solution proved to be secure requires each
initiator to send at least one message to each respon-
der in every single batch. This full cover traffic hides
legitimate messages among the dummy messages. Uni-
form message size and replay protection must also be
provided to preserve anonymity [4].

The problem with mixes is that the cover traffic
scales quadratically with the number of participants.
There is some debate as to how much anonymity is sac-
rificed by reducing the cover traffic [8]. Some schemes
use no cover traffic, partial cover traffic, or almost full
cover traffic. However, none of these solutions are 100%
secure against a dedicated adversary, and few are suit-
able for interactive applications.

Anonymous communication schemes such as Tor [8]
and Crowds [17] use no cover traffic at all. As a re-
sult, no batches are collected for input-output mixing.
The authors of both these schemes acknowledge that
they achieve their low overhead at the cost of being
vulnerable to known attacks [8, 17].

Schemes such as JAP [3] and MorphMix [18] use par-
tial cover traffic. JAP has each client send a constant
stream of dummy traffic through a cascade of mixes,
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but no dummy traffic is sent to the receivers. Thus, the
intersection attacks discussed in [3] can be expedited
with a traffic confirmation attack. An adversary cor-
rupts each suspected sender’s stream of traffic before
the mix cascade, one at a time, and looks for a cor-
responding lack of traffic at the receiver. MorphMix
is based on a peer-to-peer design that creates partial
cover traffic through the construction of its anonymous
tunnels. However, colluding peers can circumvent its
collusion detection mechanism and defeat anonymity
for a significant fraction of the communications [19].

Mixmaster [13], Mixminion [7], and Tarzan [9] use
almost full cover traffic. Mixmaster and Mixminion
only use internal dummy traffic among the mixes, but
not between the initiators or responders. Both are suit-
able only for delay-tolerant applications such as e-mail
because of their high overhead in collecting batches of
sufficient size. Tarzan has mimics exchange cover traf-
fic with a subset of the network (e.g., with six other
peers). However, it requires each peer to have accurate
knowledge of the entire topology. With dynamic mem-
bership, such as on the Internet, the routing protocol
can be quickly overwhelmed with updates.

2.3 Buses

In 2003, Beimel and Dolev introduced the buses
anonymity technique [2]. The optimal buffer version is
based upon a metaphorical city bus, which traverses all
of the participants in the anonymity network. The key
idea is that messages can travel in the seats of a bus, ap-
propriately obscured by layers of encryption. The bus
traverses the network, passing from one node to the
next. When in possession of the bus, a node replaces
the bus with its decryption and retrieves messages in-
tended for it, replacing the message’s seat with random
data. In addition, the node places layered encrypted
messages on the bus to be delivered to other nodes. By
encrypting the message, only the intended recipient can
recover its messages. By having each node decrypt the
bus, an adversary cannot tell if a node replaces a seat
with its decryption or inserts a new message to be sent.

3 The Practical Buses Protocol

3.1 Protocol Overview

The Practical Buses protocol [11, 12] extends
buses [2] to improve its security and performance in
practice. Each participant owns a ‘row’ of bus seats,
which it uses to send and forward messages. To hide
the event of a node replacing a seat with a message
to send or forward, each node replaces all of its owned

seats each time it receives the bus with either random
data or a valid hybrid encrypted message (using RSA-
OAEP and AES-CBC). There are no known techniques
that an adversary can use to distinguish valid messages
from random data, unless it possesses the correspond-
ing decryption key.

When a participant receives the bus, it copies the
bus, modifies the bus, and forwards the bus. The bus
is copied for off-line processing, which can take place
after the incoming bus has been forwarded. The main
component of the off-line processing is to decrypt the
bus, removing a layer of encryption from any nested
messages with the correct OAEP redundancy. A par-
ticipant modifies the bus by inserting any messages to
forward, then any messages to send, and finally replac-
ing any unused owned seats with random data, before
forwarding the bus to the next participant on the route.

A new nested encrypted message is created by (hy-
brid) encrypting a message with the responder’s key,
selecting a random set of up to l indirection partic-
ipants (e.g., l = 2), and then recursively encrypting
the message with each indirection participant’s corre-
sponding key. This resulting indirection path requires
at least one and at most l +1 complete bus tours of all
the participants to deliver the message to the respon-
der (the 1 arises from the fact that the recipient could
be at the end of the bus tour).

Practical Buses improves both the performance and
security of Buses [2] (see [11, 12] for details). Perfor-
mance is improved by using expired seats, persistent
TCP connections, and multi-threading. Security is im-
proved via anonymous acknowledgements, seat signa-
tures, and replay protection.

In Buses and Practical Buses, the bus path creates
an artificial re-routing path for a message, just like
mixes. However, unlike Mixes, they do not require
quadratic cover traffic for strong anonymity, nor do
they require mixing. In addition, a participant that
handles a nested encrypted message can only identify
the predecessor in the indirection path, while the suc-
cessor is unknown.

Practical Buses provides strong mutual anonymity.
It is not vulnerable to any known attacks, except DoS
attacks [11]. The sender anonymity set and receiver
anonymity set both consist of the full anonymity set.

3.2 Message Latency Analysis

The goal of our analysis of the Practical Buses pro-
tocol is to model the average message latency: the
elapsed time from when a message is entered to when
the anonymous acknowledgement is received and pro-
cessed. On average, the time until the responder re-
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ceives the message is half the average message latency.
For simplicity, we assume that the network is reliable,
and messages do not have to be resent.

The average message latency, E[LB] is calculated as:

E[LB ] = 2(dIR + h (dnet + dproc)
︸ ︷︷ ︸

per hop

) (1)

where dIR denotes the sending delay to construct a
nested encrypted message (I) and the delay to process
a received message offline (R), h denotes the average
number of bus hops to deliver a message, dnet denotes
the average bus network delay per hop, and dproc de-
notes the average bus processing delay per hop. The
factor of 2 accounts for the message being sent and the
anonymous acknowledgement being received.

The average number of bus hops between a mes-
sage being sent and received depends on how far away
the bus is from the initiator when it wants to send a
message (hw), the number of hops (hIR) along the bus
route between the initiator and the responder, the loca-
tion of the bus nodes for each of the l indirection nodes,
and the offline processing for each of the l indirection
nodes that causes a forwarded message to be delayed
an entire bus tour. Let the bus path consist of n nodes.
On average hw = (n−1)/2 and each layer of encryption
requires an additional bus tour with probability 1/2
due to the location of the forwarding node/responder.
For simplicity, assume that a message to send/forward
is not delayed by other messages to send or forward.
The average number of hops to deliver a message is:

h = hw + n ∗

(
hIR

n
+

l

2
+ l

)

︸ ︷︷ ︸

# of bus tours

=
3nl + 2n − 1

2
. (2)

The average network delay per bus hop depends on
the transmission delay (dxmit), propagation delay, pro-
cessing delay, queueing delay, and TCP delay. For
simplicity, let propagation delay, processing delay, and
queueing delay be approximated by a constant c. In
addition, assume that TCP setup delay can be ignored
since persistent connections make this delay a one-time
cost. If r denotes the transmission rate in bits per sec-
ond, k the number of seats per node, n the number
of nodes, s the seat size in bits, then dxmit = kns/r.
Thus, the average network delay can be calculated as

dnet =
kns

r
+ c . (3)

The average processing delay per bus hop depends
on the total number of seats on the bus (kn) and the
average delay to process a seat (dseat) :

dproc = kndseat . (4)

Substituting (2), (3), and (4) into (1) and simpli-
fying yields the average message latency for Practical
Buses. E[LB ] equals

2

(

dIR +

(
3nl + 2n− 1

2

) ((
kns

r
+ c

)

+ kndseat

))

(5)
where dIR is the average delay to construct a new
nested encrypted message or anonymous acknowledge-
ment (I) plus the average delay caused by the offline
processing of a received message or anonymous ac-
knowledgement (R), l is the average number of indi-
rection participants, n is the number of participants in
the Practical Buses network, k is the number of seats
owned by each participant in the Practical Buses net-
work, s is the size of each seat on the bus, r is the
transmission rate, c represents the sum of the queue-
ing, processing, and propagation network delays, and
dseat is the average delay to process a seat.

According to our analysis, the message latency of
the Practical Buses protocol is O(n2), scaling quadrat-
ically with the number of participants. Experimental
results from a prototype implementation confirm this
observation (see Section 6).

4 The Taxis Protocol

4.1 Motivation

Quadratic scalability of the message latency makes
the ‘Practical’ Buses protocol impractical. Equa-
tion (5) shows that the quadratic dependency arises
from the number of hops to deliver a message multi-
plied by the processing delay and network delay, each of
which are O(n). However, the analysis of the Practical
Buses protocol provides the insight required to develop
a better protocol, which we call Taxis.

The key idea in Taxis is to reduce both the process-
ing and network delay per tour. Instead of a bus with
rows of owned seats, each participant owns a single taxi
that contains only its owned seats. This allows a par-
ticipant to separate the taxis into owned or unowned
taxis. The unowned taxis require no on-line processing,
and can simply be forwarded, resulting in a metaphor-
ical ‘fast lane’. In this way, a taxi is only delayed once
per tour for on-line seat processing at the participant
that owns the taxi. To provide further insight into the
taxis, the message life cycle and taxi processing steps
are discussed next.

4.2 Message Life Cycle

The creation of the initial nested encrypted message
involves choosing a random indirection path of random
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but bounded length. The inner core holds the actual
message, an anonymous public key (required for the
receiver to send an anonymous acknowledgement) and
a message tag field. When adding a layer of encryption
either for the receiver or an indirection node, a random
AES key in the salt field and a forward flag (true for
every layer except the inner core) are prepended to the
current message content. The salt is encrypted with
RSA-OAEP and the rest of the message is encrypted
with AES using the salt field value as the key.

Encapsulation in a seat consists of prepending the
nested encrypted message with the seat owner’s public
key, seat tag (unique seat identifier), and seat times-
tamp, and appending random data to make the seats
uniform in size. Then a signature, calculated on the
public key, seat tag, timestamp, encrypted nested mes-
sage, and random data, is appended to the seat.

A node processing a nested encrypted message first
tries to extract the AES key by decrypting the salt
field with both its RSA-OAEP private and anonymous
private key. This decryption is successful if the result
has the prescribed redundancy, in which case the node
removes the outermost encryption layer by decrypting
the rest of the data with the extracted AES key. Af-
ter decrypting, the forward field is extracted. If the
forward flag is true, then it removes the salt (and the
forward fields) and forwards the rest of the decrypted
inner layer. If the forward flag is false, the node ex-
tracts the actual message from the inner core.

4.3 Taxi Processing

The processing of a taxi consists of receiving, modi-
fying, and forwarding the taxi. The taxi that a partici-
pant does not own is always received and then immedi-
ately forwarded using the ‘fast lane’, with the taxi pro-
cessed off-line thereafter. On the other hand, an owned
taxi is received, modified, and then forwarded. An
owned taxi always has a lower priority so that the fast
lane is not delayed by the processing delay of owned
seats. The receiving, modifying, and forwarding of the
taxi are now discussed in further detail.

Receiving a taxi consists of copying it for the off-
line extraction of messages. For each decrypted salt
field with the prescribed redundancy, the AES key is
extracted and the rest of the seat is decrypted. The sig-
nature for the seat is checked. If it fails, then the con-
tents of the decrypted seat are not further processed;
otherwise, it is processed. If the forward flag is true,
then the contents of the decrypted message are inserted
into the send queue for transmission at the next avail-
able opportunity. If the forward flag is false, then the
contents of the decrypted seat are passed up to the ap-

plication layer. Incoming messages trigger an anony-
mous acknowledgement, which is created and placed in
the send queue.

Modifying an owned taxi with k seats consists of re-
placing all of the seats with either new messages being
sent, message forwarding, the sending of anonymous
acknowledgements, messages being resent, or random
data.

Forwarding a taxi consists of sending it to the next
node in the taxi path. A participant sends and forwards
messages only in its owned taxi. Nested encrypted mes-
sages are inserted into the seats of a taxi in an identical
manner as Practical Buses, with an indirection path
and recursive hybrid encryption.

5 Analysis of Taxis Protocol

5.1 Performance Advantages

Separating taxis into owned or unowned taxis has
two important performance advantages:

• Improved parallelism. O(n) participants send
a taxi each time unit, so the network is fully
pipelined. This effectively reduces network delay
to that of the slowest link on the bus path. Un-
owned taxis have a higher precedence over owned
taxis. This creates a metaphorical fast lane for un-
owned taxis, which can be forwarded immediately
after they are copied for local off-line processing.

• Reduced processing delay. Due to the segregation
of taxis into two classes, the processing delay is
reduced by a factor of O(n). As a result, the pro-
cessing delay is reduced to the time it takes for the
slowest participant to modify its taxi.

The improved parallelism can be explained the fol-
lowing way. If there is a ‘train’ of q taxis that arrives
at a participant, then the size of the departing train
is q − 1 if the participant owns one of the taxis, and q
otherwise. To see this, observe that if a node owns a
taxi in the train, all of the unowned taxis have higher
priority and are forwarded first. Then the owned taxi is
then processed before it is forwarded, which separates
it from the train of unowned taxis.

The main result is that Taxis reduces the network
delay of Practical Buses by a factor of n. To understand
this, let one time unit represent the time it takes for a
taxi to traverse one link, pi denote the ith participant,
pi+1 denote the next participant in the static round-
robin taxi path, ti denote the taxi owned by pi, and n
denote the total number of participants.
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Consider the worst case scenario, where one of the
participants has had all of the taxis arrive at the same
time to form one long train at pi. Without loss of gen-
erality, assume that this train arrives at p1 at time 1.
Since n taxis arrived at p1, the owned taxi t1 must also
be received by p1. By the earlier argument, the outgo-
ing train has a length of n − 1, and taxi t1 is delayed.
Thus, a train is sent containing the taxis t2, t3, . . . , tn
in the order they arrived. By the second time unit, p2

receives the taxi train. Again, p2 delays its taxi t2, and
forwards the taxi train containing the taxis t3, t4, . . . , tn
in the order they arrived. In addition, the delayed taxi
t1 is sent during time unit 2. Using the same argument
and induction, pi receives a train of size (n− i+1) con-
taining the taxis ti, ti+1, ..., tn at time unit i. It delays
the taxi ti, forwards a train of size (n − i), and (i − 1)
taxis are forwarded by previous participants that de-
layed their taxis. The average number of taxis E[T ]
sent per time unit (not including the train) over one
full tour i = 1, 2, . . . , n is:

E[T ] =

∑n

i=1(i − 1)

n
=

n − 3

2
,

which is O(n). Therefore, the network delay of Taxis is
reduced by a factor of n compared to Practical Buses.

Taxis reduces the processing delay of Practical Buses
by a factor of O(n). Consider Practical Buses where
there are n participants and a bus makes one full tour,
visiting all the participants exactly once. The bus is
delayed at each participant so that the participant can
process its row of owned seats. Thus, each row of
owned seats is delayed

∑n

i=1 dproci
per bus tour, where

dproci
is the delay induced by a participant pi process-

ing its owned seats. This has the unfortunate conse-
quence that each participant delays the unowned seats
unnecessarily.

Taxis does not delay unowned seats unnecessarily.
Recall that taxis are segregated into two classes, owned
and unowned taxis. Consider the full tour of a taxi
starting at its owner pi. Before pi forwards its taxi, the
taxi is first modified. Then pi forwards the taxi to com-
plete a full tour of the network. Since no other partic-
ipant owns the taxi, it will travel through a metaphor-
ical ‘fast lane’ during this full tour, and is only copied
for offline processing by each participant. The taxi is
able to complete a full tour of the network very quickly,
and is only delayed by the owner for dproci

for process-
ing. Similarly, all the other taxis incur one processing
delay per full tour. As a result, all the taxis tour the
network with a processing delay of dproci

. Therefore,
the processing delay of Taxis is reduced by a factor of
O(n) compared to Practical Buses.

5.2 Message Latency Analysis

The formula to model the average message latency
of Taxis is built upon the formula to model that of
Practical Buses in Section 3.2. The average number
of hops required to deliver a message is still the same
as in the Practical Buses model (see Equation (2)).
However, the average time it takes a participant to send
all the taxis and process all the taxis on average per
hop has changed.

Recall that the network delay is reduced by a factor
of n, and that the processing delay is reduced by a
factor of O(n). Dividing the respective Practical Buses
model Equations (3) and (4) by n yields:

dnet =
ks

r
+

c

n
(6)

and
dproc = kdseat . (7)

Substituting Equations (2), (6), and (7) into the
message latency model for the Practical Buses proto-
col Equation (1) yields the following model for Taxis.
E[LT ] equals

2

(

dIR +

(
3nl + 2n − 1

2

) ((
ks

r
+

c

n

)

+ kdseat

))

(8)
using the same notation as defined previously.

The number of hops required is still O(n), but the
network and processing delay are both reduced by
O(n). Therefore, Taxis’ average message latency scales
linearly with the number of participants.

6 Experimental Results

6.1 Experimental Methodology

We developed prototype implementations of the
Practical Buses protocol and the Taxis protocol, and
evaluated them experimentally. The protocols are
tested on a LAN consisting of a Beowulf cluster of
14 identically configured machines. Each machine is
a dual-processor 2.4 GHz machine with 2 GB RAM
and a 512 KB cache. The machines are connected by
a 1 Gbps Ethernet switch. The software used is Linux
2.4.20-19.7, POSIX threads with libc-2-2.5, GMP Ver-
sion 4.1.1, and g++ version 3.2. To simplify the analy-
sis, a statically-configured round-robin tour of the par-
ticipating nodes is used with persistent TCP connec-
tions. In addition, only a single CPU is used on the
dual-processor machines.

A Practical Buses or Taxis peer program is run on
each participating node in the LAN. The peer program
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uses a TCP overlay to provide anonymous communica-
tion for a chat application written specifically for test-
ing. The chat program uses pre-defined workload files,
so that the exact same workload (i.e., message sizes
and timings) is used for each anonymity protocol.

For consistency, the experimental results for the
Taxis protocol and the Practical Buses protocol used
the same basic implementation. The design of the
Taxis protocol is very similar to the design of the mod-
ified Practical Buses in Section 2.3. The changes con-
sisted of dividing the bus into taxis, incorporating a
fast lane, and adding in the handling of taxis.

The primary performance metric is message latency.
It is extracted from trace files recorded by the peer pro-
gram and calculated by taking the difference between
when the bus or taxi peer first receives a message from
the chat application and when the chat program re-
ceives the corresponding anonymous acknowledgement.

The testing consisted of scaling from 2 to 14 partic-
ipants. For each number of participants, a total of 360
messages with a random length between 1 byte and 2
KB are exchanged. A Poisson message arrival process
with an aggregate average of 30 messages per minute
is used. The initiators and responders of messages are
randomly chosen. A Zipf distribution is approximated
by having two “elephant” participants generate 50% of
the traffic when there are more than four participants.
The seat size is 3 KB, and each participant owns a two-
seat taxi. The number of indirection nodes is randomly
chosen as either 1 or 2.

6.2 Model Validation Results

Figure 1 shows the experimental results for round-
trip message latency, for both Practical Buses and
Taxis. The average message latency increases from
about 0.5 seconds to several seconds as the number
of participants increases from 2 to 14. The Taxis pro-
tocol exhibits lower latency than the Practical Buses
protocol.

Based on our earlier analysis, the message latency
for Practical Buses scales quadratically with the num-
ber of participants. The experimental results confirm
this analysis (see Figure 2). The curve fitting is done
using the non-linear least-squares (NLLS) Marquardt-
Levenberg algorithm in gnuplot. The fitting parameter
values for dIR and dseat are also shown in Figure 2. The
model fits the experimental results well.

For the Taxis protocol, the average message latency
scales linearly with the number of participants. The
modeling results for the Taxis protocol are fit to the
experimental results in Figure 3. The linear model fits
the experimental results well.
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Figure 1. Experimental results for average
message latency for Practical Buses and
Taxis

7 Security Analysis of Taxis

While the foregoing experimental results demon-
strate that the Taxis protocol is significantly faster
than the Practical Buses protocol, we still need to ver-
ify that anonymity has not been compromised. That
is, due to the significant changes in the Taxis protocol,
it is necessary to re-evaluate its security.

The Practical Buses protocol is analyzed in [12], and
shown to be secure against all attacks, except DoS at-
tacks. The threat model used for the analysis consists
of an eavesdropper, passive adversary, or active adver-
sary. In particular, an eavesdropper can view anything
exchanged between two participants on the network. A
passive adversary can corrupt one or more participants
to relate incoming messages to their corresponding out-
going messages, as well as view the routing tables and
decryption keys of the corrupted participants. An ac-
tive adversary has all the powers of a passive adversary,
plus the ability to create, modify, and delete messages.

The goal of an eavesdropper, passive adversary, or
active adversary is to collect observable events in order
to reduce anonymity. An active adversary also tries to
create additional observable events that can be used to
reduce anonymity.

The Practical Buses protocol is not vulnerable to
any known attacks including local eavesdropper be-
fore/after proxy, size/time correlation, low load, full
compromised path, marker, passive traceback timing,
replay, spam, mob, filter, and intersection attack [11].
The Taxis protocol is also not vulnerable to any of these
attacks. A simple analysis shows that the Taxis pro-
tocol has the necessary counter-measures listed in [11]
that are required to defeat the attack.

However, the Taxis protocol may be vulnerable to
new types of attacks, and warrants further analysis.
Recall that the adversary’s goal is to collect or create
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Figure 2. Quadratic fit of Buses model to experimental results.
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observable events in order to reduce anonymity. Thus,
the focus of this analysis is based upon identifying and
analyzing any new information observable within the
threat model.

The new observable event in Taxis is the sending
and receiving of individual taxis. An adversary can try
to glean information from passively observing the taxis
that circulate the network under normal conditions, or
can create observable events by delaying, modifying, or
deleting messages or taxis.

7.1 Passive Attacks

The adversary monitors the taxis that circulate the
network, recording when they stop at each of the par-
ticipants. It can then try to leverage this information
to reduce either sender or receiver anonymity.

An adversary can try to reduce sender anonymity
by observing when a participant sends a valid message
through an adversary to forward. The adversary has
to then determine if the predecessor is an initiator to
defeat sender anonymity. This requires that the adver-
sary eliminate the possibility that no other participant
sent the suspected initiator a message to forward. As
a result, any participants who exchange taxis with the
suspected initiator could have forwarded the message
through the suspected initiator. Clearly, if the taxis
are regularly circulating the network, the sender and
receiver anonymity sets are not reduced.

An adversary can also try to reduce receiver
anonymity. However, this is not feasible since an ad-
versary cannot determine the predecessor in the indi-
rection path.

7.2 Active Attacks

An active adversary could try to add, modify, or
delete taxis in order to reduce anonymity. The modi-
fying and adding of taxis requires the adversary to steal
the corresponding private key(s). Otherwise, the sig-
natures on the seats will be invalid, and the spoofed
seats will be ignored.

Adding a taxi does not defeat anonymity. The only
noticeable events that occur are at the corrupted par-
ticipants, who may receive the added message(s), re-
move a layer of encryption, and forward it or poten-
tially receive it. However, this does not create any new
events that reduce anonymity.

Modifying a taxi does not defeat anonymity. Any
subsequent layers of encryption will not decrypt suc-
cessfully, since the required redundancy for an OAEP
decryption to succeed is destroyed. The only notice-
able events occur at the corrupted participants, who

may receive the message, attempt to remove a layer
of encryption, and then give up when the OAEP re-
dundancy check fails. As a result, no new events are
created that help to reduce anonymity.

The deletion of a taxi does create an observable
event, since a participant does not receive the taxi on
a regular schedule. Thus, the sender anonymity sets
for all the participants are reduced when the taxi is
not circulating. However, this is analogous to a tem-
porary DoS attack and all anonymous communication
schemes either have their anonymity set reduced under
such conditions or stop sending messages. Thus, the
attacker can effectively reduce anonymity. The par-
ticipants are quickly made aware of this attack, since
the lack of anonymous acknowledgements generated by
messages being sent or forwarded on the deleted taxis
are noticeable by the participants, in addition to the
owner timing out on its own taxi being received.

Thus, the only attack that an active adversary can
use to defeat anonymity is to try to delete multiple
taxis and reduce the anonymity sets. In the best case,
the adversary must repeatedly delete all of the taxis
before they are received by any other participant, ex-
cept the initiator’s taxi, the responder’s taxi, and the
indirection participants’ taxis that are used to forward
the message. This reduces the anonymity set to its
minimum (l + 2), where l is the number of indirection
nodes. However, this presents a paradox for the adver-
sary, who must successfully guess the initiator, respon-
der, and indirection participants within a short time
window before being detected. (Note that the attacker
does not know the random indirection path before the
attack is launched.) The number of indirection paths
for Taxis with n participants and l indirection nodes is
nl. Thus, as the size of the network grows, it becomes
difficult for the adversary to guess the indirection path
successfully. The same paradox arises when the at-
tacker uses a combination of corrupted participants,
and deleted taxis.

Thus, the Taxis protocol maintains the same
anonymity strength as Practical Buses.

8 Conclusions

In this paper, we focus on the performance of anony-
mous communication protocols, and develop latency
models for Practical Buses and Taxis. We show that
the message latency of the Practical Buses protocol
scales quadratically with the number of participants,
while that of the Taxis protocol scales linearly with
the number of participants. Both models are validated
with experimental measurements from prototype im-
plementations of the protocols. Furthermore, we show
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that the improved performance of the Taxis protocol
does not compromise the strength of anonymity pro-
vided by the Practical Buses protocol.

While the Taxis protocol is promising, possible ex-
tensions could further reduce its overhead. Currently,
the number of hops to deliver a message scales lin-
early because each taxi visits every participant in the
anonymity network. This linear dependence could be
reduced by transferring seats between taxis that only
traverse a subset of the network; such a hierarchy could
result in logarithmic scalability. The processing de-
lay of the Taxis protocol could also be significantly re-
duced. One possible solution is to use (slow) public-
key cryptography taxis to exchange symmetric keys
with potential indirection participants, enabling (fast)
symmetric-key cryptography taxis for actual messages.
We are currently implementing these extensions, and
plan to test them on a larger scale using PlanetLab [16].
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observability, and pseudonymity: A proposal for
terminology. Draft, version 0.31, February 2008.

[15] A. Pfitzmann and M. Waidner. Networks with-
out user observability. Computers & Security,
2(6):158–166, 1987.

[16] Planetlab, 2006. http://www.planet-lab.org.

[17] M. Reiter and A. Rubin. Crowds: Anonymity for
web transactions. ACM Transactions on Informa-
tion and System Security, 1(1):66–92, 1998.

[18] M. Rennhard and B. Plattner. Introducing mor-
phmix: Peer-to-peer based anonymous internet
usage with collusion detection. In Proceedings of
the Workshop on Privacy in the Electronic Society
(WPES 2002), Washington, DC, USA, November
2002.

[19] P. Tabriz and N. Borisov. Breaking the col-
lusion detection mechanism of Morphmix. In
G. Danezis and P. Golle, editors, Proceedings of
the Sixth Workshop on Privacy Enhancing Tech-
nologies 2006, pages 368–384. Springer, June 2006.

10


