
HisTorε: Differentially Private and Robust
Statistics Collection for Tor

Akshaya Mani
Georgetown University

am3227@georgetown.edu

Micah Sherr
Georgetown University

msherr@cs.georgetown.edu

Abstract—A large volume of existing research attempts to
understand who uses Tor and how the network is used (and
misused). However, conducting measurements on the live Tor
network, if done improperly, can endanger the security and
anonymity of the millions of users who depend on the network
to enhance their online privacy. Indeed, several existing mea-
surement studies of Tor have been heavily criticized for unsafe
research practices.

Tor needs privacy-preserving methods of gathering statistics.
The recently proposed PrivEx system demonstrates how data
can be safely collected on Tor using techniques from differential
privacy. However, as we demonstrate in this paper, the integrity
of the statistics reported by PrivEx is brittle under realistic
deployment conditions. An adversary who operates even a single
relay in the volunteer-operated anonymity network can arbitrar-
ily influence the result of PrivEx queries. We argue that a safe
and useful data collection mechanism must provide both privacy
and integrity protections.

This paper presents HisTorε, a privacy-preserving statistics
collection scheme based on (ε, δ)-differential privacy that is robust
against adversarial manipulation. We formalize the security
guarantees of HisTorε and show using historical data from the
Tor Project that HisTorε provides useful data collection and
reporting with low bandwidth and processing overheads.

I. INTRODUCTION

Tor [9] is an anonymity network composed of approx-
imately 6000 volunteer-operated relays with an estimated
1.75 million daily users [31]. Like the Internet, it is both a
production network with live users and a research platform
on which researchers experiment with new protocols and
implementations.1 Unlike the Internet, however, Tor has several
characteristics that make it a particularly unfriendly platform
for conducting (ethical) empirical studies:

1This dual-use is sometimes the source of conflict. To “minimize privacy
risks while fostering a better understanding of the Tor network and its
users”, the Tor Project recently established a Tor Research Safety Board [32]
that maintains guidelines and offers feedback to researchers concerning the
potential risks of experimenting on the live Tor Network.

These characteristics include: (1) dynamics—Tor is a
highly dynamic network that is known to be affected by
world events. For example, uprisings in undemocratic nations
tend to be followed by more advanced attempts to block
Tor from within those countries [31]. Entire countries are
periodically blocked and then allowed to access the network.
Comprehensive statistics gathering efforts must consider both
short-term and more longitudinal trends; (2) privacy—Tor is
designed to protect the privacy of its users. Experiments that
capture users’ communications are thus antithetical to the
goals of the anonymity network and can potentially endanger
users who depend on the network to hide their identities;
(3) integrity—unlike the Internet, the core of Tor’s network is
operated by volunteers. It is far easier to operate a malicious
Tor relay than a core Internet router, and hence measurement
studies should consider a threat model in which the adversary
attempts to manipulate measurements to further its goals;
and (4) security—similarly, a privacy-preserving measurement
system should not provide a new attack surface for disrupting
or otherwise manipulating Tor.

We posit that the above challenges contribute to the lack of
understanding of actual Tor users. We know surprisingly little
about who uses the network, what they are using it for, and
how they are using it. We discuss the lack of information about
how people are using Tor in more detail in the next section.

While our lack of knowledge about how Tor is used in
practice may at first blush signal a strength of Tor (that is, that
it successfully conceals its users’ behavior), it also limits our
ability to analyze the actual privacy properties of the network.
For example, attempts to empirically measure the anonymity
offered by the Tor network are predicated on maintaining
accurate models of real Tor users’ behavior [2, 14, 17, 19, 33].
To date, these models have been largely best guesses.

The core contribution of this paper is the introduction
of HisTorε, a differential privacy scheme for Tor that is
scalable, incurs low overheads, preserves users’ privacy, and
provides strong integrity guarantees2. The goal of HisTorε is
to provide researchers with a platform for conducting accurate
measurement studies on Tor without endangering the network’s
users and while incurring only low overheads.

Importantly, HisTorε is not the first differentially private
statistics gathering scheme for Tor. Elahi et al. [15] recently
proposed a differential privacy solution for Tor called PrivEx.
PrivEx has significantly raised the bar for safe Tor measure-
ments. Indeed, the Tor Research Safety Board cites PrivEx

2HisTorε is pronounced as “history.”

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23411

as an example of exciting research towards conducting safe
measurements on the live network [32].

A key distinguishing feature of HisTorε is its robustness
to manipulation. PrivEx raises the bar on Tor experimentation
by providing privacy. We show, however, that PrivEx is not
immune to manipulation. In particular, we demonstrate that a
malicious relay operator can drive the aggregate statistic being
calculated towards an arbitrary value of its choosing. While
such an attack may be outside of the threat model envisioned
by Elahi et al., the attack points to the need for statistics
gathering mechanisms that are both privacy-preserving and
resilient to manipulation.

HisTorε’s robustness is mostly achieved by forgoing gen-
eral counting queries (as supported by PrivEx) in favor of
supporting only binning queries. Although we support more
general binning, a useful example of the type of queries
that HisTorε supports is a histogram. In HisTorε, each data
contributor (for example, exit relays) must contribute either “0”
or “1” to the total count in a bin. For instance, an analyst can
query HisTorε to provide a histogram that shows the number
of connections observed by the different guard relays, or the
number of connections to Hidden Service Rendezvous Points
as observed by relays, etc. To provide robustness guarantees,
HisTorε uses Goldwasser-Micali (GM) encryption [16] to
ensure that encrypted values are either treated as 0 or 1,
restricting the influence of a malicious relay. Put another
way, all relays (malicious or not) are strictly bounded in
their influence over the total aggregate. In the sections that
follow, we demonstrate both analytically and empirically that
HisTorε’s binning strategy supports a wide range of queries
useful for Tor researchers while enforcing strong integrity
guarantees and imposing low communication and computation
overheads.

HisTorε also provides resistance to so called “compulsion
attacks” in which a relay operator is compelled to release
information to a (potentially totalitarian) government. Statistics
gathering requires, obviously, gathering statistics, which itself
poses a privacy risk since these statistics would not otherwise
be collected. For example, Tor does not currently log client
connections to guards; queries which ask for a histogram of
the number of guard connections thus may impose additional
privacy risks. We design HisTorε to mitigate such risks through
the use of encrypted data structures we call oblivious bin
counters. Simply put, we use efficient cryptographic techniques
and data structures to maintain counters that the relay operators
cannot read on their own.

II. BACKGROUND

Tor. Tor is a network of volunteer-operated routers that
enhances privacy by separating network identity from network
location [9]. The Tor client proxies a user’s TCP connections
through a series of randomly selected relays, which collectively
form a circuit. Several TCP connections may be multiplexed
over the same circuit. The first hop on this circuit—the ingress
point to the Tor network—is usually a Tor guard relay, a Tor
relay that is relatively stable and is deemed to have sufficient
bandwidth for the task. As a notable exception, traffic may also
enter the Tor network through bridge nodes, which are similar
to guards but are not publicly advertised. Traffic exits the Tor

network through exit relays, which establish TCP connections
to the intended destination. Along the Tor circuit, cryptography
helps conceal the actual sender and receiver—relays know only
the previous and next hop along the anonymous path.

Tor is designed to be robust against a non-global adversary,
meaning that it provides protections against an adversary who
cannot view all traffic on the network. It is known to be
vulnerable against traffic correlation attacks [20] in which an
adversary can observe an anonymous connection as it enters
and leaves the anonymity network. Here, using timing and
flow analysis, the adversary can correlate the ingress and
egress traffic and determine that they belong to the same
traffic stream, thus de-anonymizing both endpoints of the
communication.

Our current understanding of Tor’s usage is limited.
The information we do have about Tor’s real-world usage
is unfortunately incomplete, outdated, and sometimes even
contradictory.

The study by McCoy et al. [24] is perhaps the earliest
attempt at understanding how Tor is used, but its findings are
now almost a decade old and reflect a historical Tor network
that had one fifth of the relays and fewer than half of the
number of daily users as the network does today [31]. More
importantly, the surreptitious capturing and analysis of real
users’ anonymized traffic flows is now viewed as ethically
ambiguous and even potentially harmful; indeed, the work
is sometimes cited as being an exemplar of unsafe security
research [30].

The ongoing debate [28] between supporters of the Tor
network and the CloudFare CDN further highlights the lack of
a clear understanding of how Tor is used. Briefly, CloudFare
forced Tor users to complete user-unfriendly CAPTCHAs
before accessing any of the vast number of CloudFare’s
hosted sites. The CTO of CloudFare cited the large portion
of attack traffic originating from Tor exit relays as the prin-
ciple motivation of the CAPTCHAs. The Tor Project publicly
responded [27] by questioning the accuracy of CloudFare’s
measurements, and pointed to a report by Akamai [1] showing
that Tor traffic had a similar proportion of attack traffic as the
regular (non-anonymized) Internet.

Similarly, researchers have published measurement studies
that show that an enormous percentage of connections to Tor
Hidden Services go to hidden service sites that serve child
pornography [4]. This is again disputed by the maintainers of
the Tor Project [23].

Background on differential privacy. Differential pri-
vacy [10] seeks to minimize the privacy risk of participating in
a database while maximizing the accuracy of statistical queries
against that database. Although several notions of differential
privacy exist, this paper considers (ε, δ)-differential privacy as
introduced by Dwork et al. [11]: a computation F gives (ε, δ)-
differential privacy if, for all data sets D1 and D2 that differ
on only one row, and all S ⊆ Range(F),

Pr[F(D1) ∈ S] ≤ exp(ε)× Pr[F(D2) ∈ S] + δ

Crucially, differential privacy’s formal guarantees are about the
properties of the database mechanism rather than the computa-
tional capabilities or auxiliary knowledge of the adversary. In

2

practice, differential privacy is achieved by adding noise to the
result of some aggregate query. The parameter ε controls the
tradeoff between privacy and utility: a larger ε provides weaker
privacy but more accurate results. The inclusion of δ relaxes
the more rigid notion of ε-differential privacy and allows for
more practical implementations.

In this paper, we adopt the distributed (ε, δ)-differential
privacy scheme of Chen et al. [6]. In their work, an analyst
poses a question to a fixed set of c clients. Each client
ci contributes a bit vector3 vi = {vi,1, . . . , vi,q}, encrypted
using Goldwasser-Micali (GM) bit cryptosystem [16] with the
analyst’s public key. GM encryption enforces the property
that ciphertext can only encode 0 or 1. To provide privacy,
a proxy adds in n encrypted random noise vectors, where n is
calculated as

n = b64 ln(2/δ)

ε2
c+ 1 (1)

The GM-encrypted c + n client and noise vectors are then
shuffled by the proxy and returned to the analyst. The analyst
uses its private key to decrypt the bit vectors. Letting di,j be
the jth element of vector i (where 1 ≤ i ≤ c+n), the analyst
obtains the (noised) aggregate result aj as

aj =

c+n∑
k=1

dj,k −
n

2
(2)

for all 1 ≤ j ≤ q (the number of elements in a bit vector) [6].

In the work by Chen et al. [6], the authors set δ < 1/c in
Eq. 1. However, Dwork et al. [13] prove that such a value of δ
is very dangerous, as it permits compromising the privacy of
“just a few” number of clients. Therefore, we set δ to a much
lower value, typically on the order of 10−6/c.

Also, we use ε = 1 for our experiments, unless otherwise
noted. We note that this offers more privacy than the experi-
mental setting (ε = 5) used by Chen et al. [6].

III. MANIPULATING PRIVEX

PrivEx [15] is the first system for private data collection
on the live Tor network. It has (justifiably) garnered significant
attention from the privacy-enhancing technologies community
and has been promoted as an example of a technology that
enables safe data collection on Tor [32].

In comparison with HisTorε, which we introduce in the
next section, PrivEx has a similar system model, but differs
in that relays individually contribute their own noise. This
has the advantage that malicious proxies cannot break privacy
guarantees by not following the protocol. However, PrivEx
makes implicit trust assumptions that allow any malicious relay
to manipulate the results of a differentially private query.

Briefly, Elahi et al. introduce two PrivEx variants for
private collection of traffic statistics on Tor. In both their secret-
sharing and distributed decryption schemes, an invariant is that
relays contribute their own individual value, and the system
computes the sum of those values. That is, PrivEx supports
summation queries. Importantly, there is no protection against
an attack on the integrity of the statistics. This enables a

3We use a bold typeface to represent vectors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Website No.

0

150

300

450

600

750

900

1050

No
. o

f C
lie

nt
 C

on
ne

ct
io

ns

Actual
Noised

Fig. 1. The number of client connections (y-axis) for 15 different websites
(x-axis) as actually occurred (“Actual”) and as reported by PrivEx (“Noised”).
A single malicious relay falsely reports that it observed 1000 connections to
website #2.

malicious contributor (e.g., a relay) to submit an arbitrary value
that can significantly impact the aggregate result.4

To demonstrate this type of manipulation, we made a trivial
modification to the PrivEx source code (as provided by Elahi
et al. [15]) to include a single malicious relay. Consistent with
their work, we consider a query that aggregates the number of
visits destined to 15 particular websites. Such a query could be
useful to answer the question: which websites are most popular
among Tor users? In our experiment, we use the same default
parameters as is included in the PrivEx source code. However,
we modify the behavior of a single relay to falsely claim that
it has observed 1000 visits to website #2.

Figure 1 shows the result of this manipulation. The actual
distribution of website visits is shown in red, and indicates that
website #6 is, by far, the most popular site visited via Tor. The
noised distribution as reported by PrivEx, shown in patterned
blue, paints a different picture: according to the results of the
query, website #2 appears to similarly be popular amongst Tor
users.

The above example is of course one of many possible
manipulations. More generally, a single malicious relay that
participates in PrivEx can supply any (false) count to manipu-
late the aggregated result, and do so without risking detection.

We emphasize that the above “attack” falls entirely outside
of the threat model considered by Elahi et al. [15]. That is, we
are not disclosing errors in their design or implementation.

This paper makes the argument that while PrivEx provides
strong privacy guarantees, its lack of integrity guarantees is
problematic for many types of queries that would be useful
for Tor. Since Tor is a volunteer-operated network, the barrier
to entry for operating a relay is very small. Indeed, there
have been several instances [34] in which relay operators have
been found to behave maliciously. While we view PrivEx as

4Elahi et al. posit that range proofs could potentially be added to PrivEx
to bound the impact of untrue statistics. However, as the authors admit, such
techniques lead to significant computation and communication overheads [15].

3

a significant step forward in private data collection, we argue
in this paper that privacy must be combined with integrity
protections to provide a useful statistics gathering service.

IV. HISTORε OVERVIEW

HisTorε’s goal is to provide differentially private data
collection for Tor that is robust against manipulation. We intro-
duce HisTorε by describing its participants and system model
(§IV-A), threat model (§IV-B), query capabilities (§IV-C), and
operation (§IV-D).

A. Participants and System Model

There are three types of participants in HisTorε:

Data collectors (DCs) [15] are relays that collect statistics
that will later be aggregated. Example of DCs and the data
that they collect include guard relays that count the number
of client connections, middle relays that count requests to Tor
Hidden Service introduction points, and exit relays that keep
track of exit bandwidth. Developing a comprehensive list of
possible queries is beyond the scope of this paper. Our aim
is rather to provide a secure and private statistics gathering
technique for Tor that is sufficiently general to be adapted for
many types of queries.

As with vanilla Tor, HisTorε relies on secure communica-
tion via TLS, and we use Tor’s existing directory infrastructure
as a trust anchor to locate public keys and authenticate mes-
sages. Since relays are already heavily burdened in Tor, we aim
to keep both the computation and communication overheads
of HisTorε low for the DCs.

The analyst is a party that issues queries to the data
collectors and receives noised query responses. We envision
that, at least initially, the analyst will be the maintainers of
Tor.

Finally, we introduce three mixes that are third parties that
provide the required amount of differentially private noise.
Mixes are dedicated servers responsible for enabling HisTorε
queries. We assume that all parties can obtain the mixes’
public keys, which for example, could be attested to by the
Tor directory authorities.

Also included in the HisTorε ecosystem are the Tor users
who use the Tor client software to communicate via Tor, the
destinations that the users are visiting, and the Tor directory
servers and mirrors. Since HisTorε imposes no changes to
the normal operations of Tor, we mostly omit discussing
these components unless they are pertinent to the security and
privacy properties of HisTorε.

B. Threat Model and (Informal) Security Guarantees

We consider both internal and external threats to privacy
and data integrity:

Internal adversaries. DCs are volunteer-operated relays
and can be malicious. A malicious DC is a Byzantine adversary
that can, for example, disobey HisTorε protocols, submit
false statistics, and/or refuse to participate. Malicious DCs
may also collect and leak sensitive information (e.g., the IP
addresses of clients or destination addresses); such leakage is

also possible with existing Tor relays, and we do not consider
defenses against such behavior here. HisTorε ensures that no
colluding group of DCs can reveal more information than
would otherwise be available by pooling their knowledge.

Malicious DCs may attempt to manipulate query results
by reporting erroneous data, as in §III. If c is the number of
DCs that participate in a query and f is the fraction of the
participating DCs that are malicious, then HisTorε guarantees
that the maximum influence over the aggregate result is ±fc.
This is a direct consequence of applying the (ε, δ)-differential
privacy scheme of Chen et al. [6]: each relay (malicious or
not) can contribute at most 1 to each element in its supplied
vector. If a DC refuses to participate in a query or submits
a malformed vector, its bit vector is considered to be all 0s.
Consequently, malicious DCs cannot disrupt (i.e., cause denial-
of-service) HisTorε queries by submitting false or malformed
data.

Malicious mixes may also behave arbitrarily. HisTorε
provides strong privacy guarantees when (1) no more than
one of the mixes is malicious and (2) a malicious mix does
not collude with a malicious analyst. HisTorε employs secret
sharing techniques to ensure that non-colluding mixes cannot
learn un-noised query results.

Mixes can attempt to manipulate query results by adding
false values, improperly constructing noise vectors, or modi-
fying or discarding the encrypted vectors it receives from the
DCs. HisTorε’s integrity guarantees ensure that the analyst can
detect manipulated query results as long as one of the mixes
is honest.

In HisTorε, the analyst issues queries and receives noised
results from the mixes. We consider a malicious analyst that
colludes with other parties to attempt to learn non-noised
answers to queries. HisTorε achieves (ε, δ)-differential privacy
when no more than one mix is malicious and no malicious
mix colludes with the analyst. If a malicious DC colludes with
either a mix or the analyst, no information that is not already
available to the malicious DC is revealed.

External adversaries. HisTorε is robust against an external
adversary that observes all HisTorε-related communication. All
HisTorε exchanges are secured by TLS. We assume that public
keys can be reliably retrieved—for example, by leveraging
Tor’s existing directory infrastructure—and that all properly
signed messages can be authenticated.

We also consider an external adversary that applies pressure
(e.g., through a subpoena or threat of violence) to an honest
DC to reveal its individual counters. We argue that papers
(such as this one) that propose collecting information that
would otherwise not be gathered by anonymizing relays have a
responsibility to evaluate such compulsion attacks. We describe
in §V techniques that limit the amount of information that can
be “handed over” by a pressured honest relay to an adversary.

C. Queries

In HisTorε, for each query, each DC i contributes a bit
vector vi of length b, where b is a parameter of the query. For
ease of exposition, we refer to each vector position as a bin.

The result of the query is the noised aggregate vector
described in Eq. 2. Essentially, the query returns a vector of

4

summations
∑c
i=1 vi plus the added noise. The data and noise

are shuffled to provide indistinguishability.

HisTorε supports two types of queries: class queries and
histogram queries.

Class queries. In a class query, each bin j is assigned a
class label Cj . For Tor, potentially useful class labels include
(but are not limited to) protocols/ports seen by exit relays and
client version numbers seen by guards. The semantics of class
queries allow the analyst to ask for all j ∈ [1, b]: how many
relays have witnessed the event described by the label Cj?

The analyst specifies the semantic meaning for each bin.
For example, in the case of reporting which ports have been
seen by exit relays, the analyst can specify a query such that
the first bin in DCs’ bit vectors indicates whether the exit has
witnessed http traffic, the second bin indicates whether it has
seen ssh traffic, etc. By examining the aggregated and noised
results, the analyst learns approximately how many exit relays
have seen the specified traffic types.

Histogram queries. Histogram queries allow the analyst
to learn the distribution of some value, taken over the DCs.
As examples, histogram queries can inform the analyst of
the distribution of client connections seen by guards or the
bandwidth seen by exit relays.

For histogram queries, each DC maintains an encrypted
counter of the relevant statistic (e.g., observed bandwidth).
Each bin j is assigned an interval [Lj , Uj) where Lj , Uj ∈ Z
such that Lj ≥ Uj−1 when j > 1. When a bin bj = 1, this
indicates that the encrypted counter is in the range [Lj , Uj).
Note that at most one bin belonging to a DC is set to 1; all
other bins are set to 0. (This is unlike a class query; there,
multiple bins/classes can be set to 1.)

The vector sum over all DCs’ bin vectors (i.e.,
∑

vi) yields
the distribution of the DCs’ counters. As explained next, mixes
add random noise vectors to apply differential privacy to this
distribution.

D. Operation

HisTorε operates in loosely synchronized hour-long
epochs. At the beginning of each epoch, each DC zeroes all of
its bins. As with PrivEx, HisTorε ensures that data sets do not
carry over between queries; that is, no more than one query
within an epoch can cover a given bin. Extending HisTorε
to support differential privacy when data must be continually
observed [5, 12] is left as an interesting area of future work.
Currently, as with PrivEx, we enforce independence between
different epochs by zeroing all counters. (We include discus-
sions of the absoluteness of this independence and the effect
of a privacy budget for differentially private queries in §XI.)

HisTorε’s workflow begins when the analyst issues a query
to the DCs and mixes. Currently, this is manual process
that requires configuring Tor relays to report the statistic of
interest (e.g., connection counts, observed bandwidth, etc.).
We envision that future versions of HisTorε will support
SQL-like semantics to automate this process. Our prototype
implementation, described in more detail in §IX, uses Tor’s
existing statistics module and can be easily configured to

aggregate the data that Tor already collects. We have already
added hooks for bandwidth and connection counting.

Figure 2 shows how queries are processed in HisTorε.
DCs maintain three redundant copies of encrypted counters
(encrypted binary vectors). Each copy is encrypted using the
public key of one of the three mixes.

At the end of the epoch, these encrypted vectors are further
obfuscated by xor’ing with a random binary vector R. Xor’ing
with the random vector ensures that mixes cannot learn the
plaintext of the DCs’ binary vectors, even after decrypting
with their private GM key. (Recall that GM is a homomorphic
cryptosystem with respect to xor [16].) The DCs send one copy
of its GM-encrypted and xor’d vector to each mix, as shown
in Figure 2. Additionally, the DCs communicate secret shares
of R across the three mixes.

Each mix then decrypts the GM encryption, yielding the
original binary vectors xor’d with a random vector. Each such
vector is added to a matrix; that is, this matrix contains the xor-
encrypted vectors from the DCs. Mixes then add n randomly
generated rows to the vector, where n is computed according
to Eq. 1 (where, δ = 10−6/c). Finally, the vector is randomly
shuffled columnwise. Both the addition of the n rows of
noise and the shuffling is performed using cryptographically
secure random seeds, which are shared amongst the mixes.
Consequently, the three mixes add identical noise vectors and
perform the identical shuffle.

Finally, the mixes communicate the resultant matrices to
the analyst as well as the shuffled secret shares of the R
random vector. The analyst then combines the shares to obtain
the shuffled R, and uses it to decrypt both the shuffled data
and noise records (which are indistinguishable) in the matrix.
To obtain the aggregate, the analyst then subtracts the expected
noise value according to Eq. 2.

V. OBLIVIOUS COUNTERS

To mitigate compulsion attacks, HisTorε minimizes the
amount of information that DCs need to maintain through the
use of oblivious counters. In this section, we assume that the
DCs are honest. A malicious DC (relay) need not use oblivious
counters and can trivially leak sensitive statistics, regardless of
whether HisTorε is used.

Each DC maintains three binary vectors of length b, where
b is determined by the query. Each binary element of the
first binary vector is GM-encrypted using the public key of
the first mix; the second vector is GM-encrypted using the
public key of the second mix, and so on. For ease of notation,
we focus below on one such GM-encrypted vector which we
denote as

e
v = 〈E+(v1), . . . , E+(vb)〉, where E+(·) denotes

encryption using the public key belonging to the pertinent mix.
The scheme is identical for the three encrypted binary vectors
maintained by each DC.

A. Oblivious class counters

Class queries allow the analyst to discover how many
DCs encountered an event (see §IV-C). Recall that each vj
corresponds to a class label Cj , which for example could
denote a particular protocol or type of event. When vj = 1,

5

Mix1
Mix2
Mix3

DCs

Mix 2

Mix 3

Mix 1

Decrypt Add Noise Shuffle

+
1
2

n

:
:

DC1:
DC2:

DCc:

:
:
:
:

C
ol

um
n-

w
is

e C
olum

n-w
ise

Mix1
Mix2
Mix3

Mix1
Mix2
Mix3

Mix1
Mix2
Mix3

Mix1
Mix2
Mix3

Analyst

Aggregate

Fig. 2. An overview of HisTorε query processing. Each mix receives an encrypted vector from each DC. The mixes then add noise and perform a column-wise
shuffle. The resulting vectors are then sent to the analyst, who in turn can compute the aggregate result.

0

V5V1 V2 V3 V4

1 0

0 0 0 0

00 00

00 1 0 0

Fig. 3. Maintaining an oblivious class counter. Top: The counters (b = 5) are
initialized to GM-encryptions of 0. Middle: An event corresponding to class
C3 is observed, and E+(v3) is replaced with E+(1). Bottom: The resulting
encrypted binary vector.

we say that the event has been observed by the DC; otherwise
vj = 0 indicates that the event was not witnessed.

At the beginning of each epoch, each DC zeroes its vector
e
v by GM encrypting the bit 0, b times. Since the GM
cryptosystem is a probablistic cryptosystem [16], we have
that ∀x, y ∈ [1, b], x 6= y ⇒ E+(vx) 6= E+(vy) with high
probability. That is, without knowledge of the corresponding
private key, GM encryption guarantees that an adversary can-
not determine whether vx

?
= vy when x 6= y.

When a DC observes an event corresponding to a class
label Cj , it replaces the value of E+(vj) in

e
v with a new GM

encryption of the bit 1. Note that if vj was already 1, then
the operation effectively replaces the old encryption of 1 with
a new encryption of 1. This process is depicted in Figure 3.

Crucially, DCs do not store the plaintext vector elements
v1, . . . , vb, and instead maintain only the encrypted binary
values E+(v1), . . . , E+(vb). Since the DCs also do not have
the private key for decrypting the elements of

e
v, it trivially

holds that an honest DC that does not know either vj or the
mix’s private key cannot provide vj to an adversary. That is, the

above scheme trivially achieves resistence to the compulsion
attack.

B. Oblivious histogram counters

In the case of histogram queries, recall that the analyst’s
query maps each vector element vj to a range [Lj , Uj) such
that Lj ≥ Uj−1 when j > 1. When vj is 1, this indicates that
the statistic of interest as measured by the DC is in the range
[Lj , Uj). Hence, at most one vj is set to 1. As a special case,
we set Ub =∞.

Let wj be the bin width of vector element vj ; i.e.,
wj = Uj − Lj . We do not require that ∀x, y ∈ [1, b], wx = wy ,
but we denote this special case as equal width bins.

As explained below, our oblivious histogram counter
scheme requires equal width bins. Since we do not require
that wx = wy for all x, y ∈ [1, b]—that is, the histogram
query need not use equal width bins—we use an auxiliary
binary vector with equal width bins, where the bin width
is set to the greatest common divisor (GCD) of w1, . . . , wb.
More formally, we define

e
ν = 〈E+(ν1), . . . , E+(νβ)〉, where

each element νj covers the range [(j − 1)g, jg) and g is the
GCD of w1, . . . , wb. As a special case, νβ covers the range
[(β−1)g,∞). In practice, to reduce the size of

e
ν, we carefully

choose bin widths such that β < 15000. In the special case
that the histogram query species equal width bins, we have
that b = β and

e
v =

e
ν.

At the beginning of each epoch, each DC initializes its
encrypted vector as

e
ν = 〈E+(1), E+(0), . . . , E+(0)〉 (all but

the first element are encryptions of 0). It also maintains a
counter t, initialized to 0.

When the DC observes the statistic of interest (number of
connections, a KB of consumed bandwidth5, etc.), it executes
the IncrHistCounter procedure.

The IncrHistCounter procedure works by shifting the posi-
tion of the encrypted 1 in the

e
ν vector whenever the counter

5IncrHistCounter can be easily adapted for statistics that increase in
increments greater than 1 (e.g., observed bandwidth). In particular, if k is
the increase in the statistic, then

e
ν is right shifted b(t+ k)/gc positions and

t is reset to (t+ k) mod g.

6

[0,6)
1 0

[6,9)
0

[9,12)
0

[12,18)
0

[18,∞)

t = 01
[0,3)

0
[3,6)

0
[6,9)

0
[9,12)

0
[12,15)

0
[15,18)

0
[18,∞)

Initialization of auxiliary vector !

t = 1 t = 2 t = 3t = 0

t = 01
[3,6)

0
[0,3)

0
[6,9)

0
[9,12)

0
[12,15)

0
[15,18)

0
[18,∞)

Right shift

w5 = ∞w4 = 6w3 = 3w2 = 3w1 = 6

0
[0,6)

0
[6,9)

0
[9,12)

0
[12,18)

0
[18,∞)

Invocation of
IncrHistCounter()

Mapping to
vector v

Initialization of vector v

0 ⊕ !6 !7 = 0

Fig. 4. Maintaining an oblivious histogram counter. Top: The analyst defines
bin widths for

e
v. The GCD (g) is 3. Second from top: The initialization of

e
ν.

Second from bottom: After three observations (t = 3), the bins in
e
ν are right

shifted. Bottom: At the end of the epoch, the values of
e
ν are mapped to

e
v.

1 t← t+ 1
2 if t = g // g is GCD and bin width
3 then
4 tmp← E+(νβ−1)⊕ E+(νβ)

5
e
ν ← e

ν � 1 // Right shift, no wrap
6 E+(νβ)← tmp // GM is xor homomorphic
7 E+(ν1)← E+(0)
8 t← 0
9 end

Procedure IncrHistCounter

reaches the bin width. Line 6 handles the special “overflow”
case: when the last bin is set to a 1, it always retains that 1
(recall that the last bin represents the range [(β−1)g,∞)). An
example invocation of IncrHistCounter is shown in Figure 4.

Since an honest DC does not maintain the plaintext values
of ν1, . . . , νβ and does not know the decryption key, it cannot
reveal which bin contains the 1, even if compelled to do
so. Importantly, unlike oblivious class counters, oblivious
histogram counters leak information—in particular, the counter
t. More formally, we leak blog2 gc + 1 least significant bits
of the DC’s measured value, (

∑
vi∈v vi · Li) + t, when a

compulsion attack takes place (since t ∈ [0, g)).

At the end of the epoch, the encrypted values of
e
ν need

to be mapped back to
e
v. Since the width of the ranges

covered by
e
ν are defined by the GCD of the ranges cov-

ered by
e
v, it holds that each E+(νj) ∈

e
ν maps to a

single E+(vk) ∈ e
v. For example, in Figure 4, we have

E+(ν1) 7→ E+(v1), E+(ν2) 7→ E+(v1), E+(ν3) 7→ E+(v2),
E+(ν4) 7→ E+(v3), E+(ν5) 7→ E+(v4), E+(ν6) 7→ E+(v4),
and E+(ν7) 7→ E+(v5), where 7→ signifies the mapping be-
tween

e
ν and

e
v. Let M(vk,

e
ν) denote the set of elements of

e
ν that map to a given vk ∈

e
v. We can therefore compute

E+(vk) =
⊕

E+(νj)∈M(vk,
e
ν)

E+(νj) (3)

Eq. 3 holds since at most at one element in M(vk,
e
ν) is 1

and GM is homomorphic with respect to xor (⊕).

VI. ROBUST DIFFERENTIAL PRIVACY

In this section, we describe how the DCs, mixes, and
analyst interoperate to provide robust differential privacy. We
explain how each DC tallies the statistic of interest using
oblivious counters, and present the details of our HisTorε
protocol for aggregating these statistics into a differentially
private aggregate.

Let Mix1, Mix2, and Mix3 be the three mixes. Mix1 is
referred as the master mix and the other two mixes (Mix2 and
Mix3) are referred to as the slave mixes. All communication
is assumed to be through secure TLS channels. The process
of aggregating the individual DC counters is as follows:

Parameter initialization. At the beginning of every epoch,
Mix1 generates five cryptographically secure random seeds: the
common shuffling seed s, the common random vector seeds p
and q, and the pairwise mix seeds x2 and x3. It transmits
〈x3, p, q, s〉 to Mix2 and 〈x2, p, q, s〉 to Mix3. Then, Mix2

generates a cryptographically secure random pairwise mix seed
x1 and transmits 〈x1〉 to Mix3.

Query initialization. The analyst formulates a query, and
transmits it to the master mix. It specifies the privacy parameter
ε and, in the case of a histogram query, a set of b bins
〈[L1, U1), . . . , [Lb, Ub)〉. We discuss the practical aspects of
selecting an appropriate value for ε in §XI.

Query forwarding. The analyst then transmits the query to
the master mix Mix1, which in turn forwards the query to the
DCs. The master mix maintains a list, Lc, of the DCs that
acknowledged the request.

DC statistics gathering and response. For each query, each
data collector D collects statistics during the course of the
epoch using three sets of oblivious counters (see §V). There
is one set of oblivious counters for each of the three mixes.

At the conclusion of the epoch, the DC performs the
following operations:

(i) D maintains a series of encrypted oblivious counters
e
vi = 〈E+(vi,1), . . . , E+(vi,b)〉 for 1 ≤ i ≤ 3, where each
element of

e
vi is encrypted with Mixi’s GM public key.

To ease notation, we refer to the non-encrypted bit vector
vi,1, . . . , vi,b as M .

(ii) D chooses b-bit random binary vectors R,R1, R2, R3 ∈r
{0, 1}b, where ∈r denotes uniformly random selection.

(iii) D computes R′i = R⊕Ri, 1 ≤ i ≤ 3.

7

(iv) D encrypts the bits of R with Mixi’s GM public key
and multiplies them individually with bits of

e
vi to obtain

e
pi = 〈pi,1, . . . , pi,b〉 for 1 ≤ i ≤ 3.

(v) Finally, D sends the four-tuple of ciphertext
〈 ep1, R

′
1, R2, R3〉 to Mix1, 〈 ep2, R1, R

′
2, R3〉 to Mix2 and

〈 ep3, R1, R2, R
′
3〉 to Mix3.

Note that
e
pi is the GM encryption of the DC response M

xor’ed with R, as GM is a homomorphic encryption scheme.
Also, R is computed such that R = R1 ⊕ R′1 = R2 ⊕ R′2 =
R3 ⊕ R′3. Crucially, each Mixi receives an encrypted copy
of M ⊕ R, but does not have enough information to unmask
(decrypt) M .

In summary, during this phase, each DC xor-encrypts its
oblivious counters with a random value, and transmits that
ciphertext plus shares of the xor’d random value to each of
the mixes.

Mix noise addition and forwarding. Each mix on receiving
the four-tuple ciphertext CT = 〈C1, C2, C3, C4〉 from a DC
(see step (v) above), checks the legitimacy of C1. A legitimate
GM encrypted value must have its Jacobi symbol equal to ‘+1’,
so a mix can easily and efficiently detect malformed responses.
If the DC’s response is not legitimate, a mix discards it.
Otherwise, it decrypts C1 using its GM private key and obtains
the DC response M masked with R. The three mixes then
synchronize the list of DCs that have responded. The master
mix removes DCs that are not in list Lc. Let the total number of
common DCs that have responded be c. To preserve the privacy
of the DCs, the mixes collaboratively add n noisy four-tuples,
where n is derived using Eq. 1 (where, δ = 10−6/c).

In order to make a noisy tuple and the DC responses
indistinguishable, mixes use an efficient xor encryption:

Mix 1:

(i) Chooses random b-bit binary strings P using seed p, Q
using seed q, R2 using pairwise common seed x2 and R3

using pairwise common seed x3.
(ii) Computes R′1 = P ⊕R2 ⊕R3.

Mix 2:

(i) Chooses random b-bit binary strings P using seed p, Q
using seed q, R1 using pairwise common seed x1 and R3

using pairwise common seed x3.
(ii) Computes R′2 = P ⊕R1 ⊕R3.

Mix 3:

(i) Chooses random b-bit binary strings P using seed p, Q
using seed q, R1 using pairwise common seed x1 and R2

using pairwise common seed x2.
(ii) Computes R′3 = P ⊕R1 ⊕R2.

Now, Q is indistinguishable from decrypted C1, as Q is of
the form M ⊕ R for some random M and R = P ⊕ R1 ⊕
R2 ⊕R3. Note that, each mix exactly knows only two of the
three random vectors R1,R2 and R3. Therefore, each mix
does not know R and hence, the noise that is being added. In
other words, mixes add noise, but do not know the values of
the noise that they contribute.

Each mix repeats steps (i) and (ii) until all n noisy tuples
are generated. Each mix Mixi then arranges the c DC four-
tuples and the n noisy four-tuples, row-wise into four matrices
〈Mi,1,Mi,2,Mi,3,Mi,4〉. Let Mi = 〈Mi,1,Mi,2,Mi,3,Mi,4〉,
1 ≤ i ≤ 3. The mixes then shuffle the columns of each matrix
in Mi independently, using common shuffling seed s. This
shuffling prevents a DC from being identified, and eliminates
a potential covert channel. Finally, each Mixi forwards Mi to
the analyst. The master mix in addition forwards the list Lc
of DCs that had taken part.

Aggregate calculation. Upon receiving Mi =
〈Mi,1,Mi,2,Mi,3,Mi,4〉, 1 ≤ i ≤ 3, the analyst first
checks whether the mixes have tampered any DC responses
by verifying if:

M1,1
?
= M2,1

?
= M3,1 (4)

M2,2
?
= M3,2 (5)

M1,3
?
= M3,3 (6)

M1,4
?
= M2,4 (7)

M1,2 ⊕M2,2
?
= M2,3 ⊕M3,3

?
= M3,4 ⊕M1,4 (8)

If any of the equalities in Eqs. 4 through 8 does not hold,
the analyst rejects the response. In such a case, attribution can
be performed if exactly one of the mixes is malicious—the
mix that does not agree on the equalities with the other two
mixes is malicious.

If the equalities hold, then the analyst computes:

M̄ = M1,1 ⊕M1,2 ⊕M2,2 (9)

Finally for every bin j, 1 ≤ j ≤ b, the analyst computes the
noisy aggregate aj as follows:

aj =

c+n∑
k=1

M̄ [k, j]− n/2 (10)

VII. PRIVACY AND SECURITY ANALYSIS

We next argue that HisTorε does not reveal any DC
statistics to an adversary. We then discuss the privacy guar-
antees offered by HisTorε and evaluate the efficacy of various
potential attacks.

A. Security Sketches

We argue the security of the protocol in parts: at the DC,
at the mixes and at the analyst. The communication between
any two participants (the DCs and the mixes, or the mixes
and the analyst) are through TLS channels and are assumed
to be secure against eavesdropping. Therefore, we consider
the security of the statistics while they are stored on the
participants and not while they are in transit on the network.

Claim 1. Oblivious counters guarantee both confidentiality
and integrity of the statistics being collected.

Proof Sketch. An oblivious counter
e
v is encrypted with a

mix’s GM public key. By the security of GM encryption, the

8

oblivious counter cannot be decrypted without knowledge of
the mix’s private key. Moreover, a legitimate GM-encrypted
value must have its Jacobi symbol equal to ‘+1’, and hence
a counter cannot be malformed by flipping random bits. In
other words, GM encryption ensures that the values will only
be decrypted as either a 0 or a 1.

Therefore, the only way the counters can be tampered
is by encrypting them to random legitimate GM-encrypted
values. This scenario is equivalent to a malicious DC reporting
erroneous data. Even in this case, each malicious relay can
contribute at most 1 to each bin in its counter. The maximum
influence over the aggregate is therefore bounded by the
number of malicious DCs. Thus, it follows that the oblivious
counters guarantee both confidentiality and integrity of the
statistics being collected.

Claim 2. A mix cannot learn DC statistics or manipulate them
without detection.

Proof Sketch. Each Mixi knows 〈M ⊕R〉 from the DCs. The
M ⊕ R is a one-time pad with secret key R, where R is
a random vector that can be obtained from any of the three
pairs of random shares: R1⊕R′1, R2⊕R′2 or R3⊕R′3. Here,
each Mixi has exactly one random share from each pair—
R′1, R2, R3 in case of Mix1, R1, R

′
2, R3 in case of Mix2 and

R1, R2, R
′
3 in case of Mix3. Therefore, each mix does not have

enough information to unmask M and cannot learn any of the
DCs’ statistics.

A malicious Mixi, 1 ≤ i ≤ 3 can tamper any of the
four-matrices Mi,1,Mi,2,Mi,3 or Mi,4 it receives. We use a
tainting technique to prove that the mixes cannot modify any
of the matrices without detection. We say that a matrix is
tainted with an non-zero impurity if a mix modifies it. Without
loss of generality, let us assume that Mix1 is malicious. Let
W,X, Y , and Z be the non-zero impurities used to taint
M1,1,M1,2,M1,3, and M1,4, respectively. All matrices from
Mix2 and Mix3 are tainted with zero, as only Mix1 is assumed
to be malicious. If suppose, Mix1 can manipulate the matrices
without detection, then all the equalities in Eq. 4 - 8 hold.
Therefore, Eq. 4, 6, 7 and 8 are tainted with W,X, Y , and Z
as follows:

W = 0 (11)
Y = 0 (12)
Z = 0 (13)

X ⊕ 0 = 0 = 0⊕ Z (14)

From Equations 11 through 14, we can conclude that
W = X = Y = Z = 0. This is a direct contradiction to our
assumption that W,X, Y , and Z are non-zero impurities.
Therefore, a mix cannot manipulate the DC responses without
detection.

Claim 3. An analyst cannot learn any DC statistics.

Proof Sketch. The analyst can compute M̄ from the mixes.
M̄ contains the DC responses and differentially private noise,
and is shuffled column-wise using a cryptographic random
seed s that is not known to the analyst. The differentially

private noise is indistinguishable from a DC response by the
way it is generated: A noise vector Q is of the form M ⊕ R
for some random M , and R = P ⊕ R1 ⊕ R2 ⊕ R3. Also
the random vectors R′1,R′2 and R′3 are generated such that
R1 ⊕ R′1 = R2 ⊕ R′2 = R3 ⊕ R′3 = R. Therefore, the
analyst sees a pseudorandom permutation of the DC responses
and differentially private noise in the columns of M̄ . By
the security of pseudorandom permutation, the columns of
M̄ cannot be distinguished from a random permutation with
practical effort. Therefore, the analyst cannot learn any DC
response from M̄ .

Claim 4. A mix cannot learn the actual aggregate by subtract-
ing the noise from the published aggregate.

Proof Sketch. A mix adds a noise vector Q of the form M⊕R
for some random M , and R = P ⊕ R1 ⊕ R2 ⊕ R3. A mix
exactly knows only two of the three random vectors R1,R2,
and R3. So, a mix does not know R and hence the noise that is
being added. Therefore, a mix cannot learn the actual aggregate
by subtracting the noise from the published aggregate.

B. Privacy Analysis

Data collector. The DCs can be malicious and report
“junk” statistics. The maximum absolute distortion in the final
aggregate result is bounded by the number of malicious DCs.
This bound is much more lenient than PrivEx: the adversary
needs to compromise many DCs to substantially distort the
result provided by HisTorε; in PrivEx, a single malicious
data collector can significantly influence the aggregate result
(see §III).

When two or more DCs collude, they learn no more
information by pooling their oblivious counters. This follows
from the guarantees offered by the differential privacy mech-
anism [6]. HisTorε protects a single honest DC’s statistics
even when all other DCs are malicious. Also, the statistics
collected at the honest DCs are preserved from the actions of a
misbehaving DCs as long as the security of the GM encryption
scheme remains intact.

Even when a DC colludes with a mix or an analyst, it
learns no more information than what is already known to it.

Mixes. The mixes can be malicious and can report “junk”
statistics or refuse to add noise. However, as long as at
least two of the three mixes are honest, we can identify the
malicious mix. Moreover, the malicious mix cannot learn any
DC statistics as shown in §VII-A.

Even when two non-colluding mixes are malicious, we can
still detect such an attack, but cannot attribute it. Also, in either
of these cases, the mixes do not know the noise added and
cannot learn the actual aggregate.

However, when two or more malicious mixes collude, they
can trivially learn all DC responses without detection. We
discuss this threat in more detail in §XI.

Analyst. The analyst cannot learn any DC’s response as
shown in §VII-A. However, a malicious mix can share the
shuffling seed s with the analyst. This allows the analyst to
learn all the DC responses.

9

C. Attack Resilience

To complete our security analysis, we consider three types
of attacks against HisTorε: compulsion attacks, denial-of-
service (DoS) attacks, and correlation attacks.

Compulsion attacks. A DC can be compelled to reveal
its counters through a legal order or extra-legal compulsion.
HisTorε mitigates this threat by encrypting the counters with
the mixes’ public key. A DC cannot decrypt its own oblivious
counters.

The adversary can also compel the mixes to decrypt the
DCs’ statistics. However, each mix receives the client response
masked with the random vector R, and does not have enough
information to unmask it (each mix has either Ri or R′i for
1 ≤ i ≤ 3, but not both Ri and R′i).

To successfully conduct a compulsion attack, the adversary
would have to first compel the DC to release its oblivious
counters, and then further compel a mix to perform the decryp-
tion. While such an attack is technically feasible, we imagine
that compelling a mix to perform a decryption would garner
significant attention; as a rough equivalent, this is analogous
to compelling a Tor directory authority to release its signing
keys.

The adversary may compel the analyst to release statistics
before the analyst aggregates the result. However, this attack
is fruitless since the analyst has only the noised data, with
differentially private guarantees.

DoS attacks. A DC can refuse to participate in a query or
submit a malformed vector. This is easily mitigated by dis-
carding the particular DC’s response. Consequently, malicious
DCs cannot cause denial-of-service in a round of HisTorε.

Mixes may also DoS HisTorε queries. The availability of
the aggregate is guaranteed as long as at least two of the three
mixes participate.

Correlation attacks. An attacker can combine the collected
statistics with some auxiliary information such as observations
of a target user’s network traffic and perform a correlation at-
tack. However, the differential privacy mechanism [6] provides
strong privacy guarantees against such a threat.

VIII. A PRACTICAL CONSIDERATION: GUIDED BINNING

When posing a histogram query, an analyst needs to define
the bin widths. Determining useful bin widths for a histogram
is highly subjective, and can be difficult if the analyst does not
have an intuition as to the overall shape of the histogram.

Here, as a more practical contribution, we present a simple
algorithm for partially automating this process. Conceptually,
the algorithm operates by modifying the definition of bin
widths (that is, by splitting and joining bins) in a sequence of
epochs until a useful histogram is obtained. Since each epoch
lasts one hour, our goal is to quickly converge on a useful bin
width definition.

The analyst runs the guided binning algorithm until it
gets a “satisfactory” histogram of the noised results. In our
experiments, we find that we achieve a useful histogram after
three or four epochs. Importantly, once a useful definition of

1 // w - New Bin Width List
2 // cur_w - Current Bin Width
3 // max - UB of Last Bin in Previous
Iteration

4 proc gcdBinWidth(w, cur w, max)
5 if !w then
6 g ← cur w // List Empty
7 else
8 minw ← min(w)
9 g ← gcd(minw, cur w)

10 if g = 1 or g < min(minw, cur w) then
11 i← 1

12 sqrt←
√
minw + 1

13 /* compute greatest factor of minw
lesser than or equal to cur_w */

14 while i ≤ sqrt do
15 if minw % i = 0 and minw / i ≤ cur w then
16 g ← minw/i
17 break
18 end
19 i← i+ 1
20 end
21 // g is 1 or auxiliary bins > 15000
22 if i = sqrt+ 1 or max/g > 15000 then
23 g ← minw
24 end
25 end
26 end
27 return g

Procedure GCDBinwidth

1 // g - GCD returned by gcdBinwidth()
2 // cur_w - Current Bin Width
3 proc adjustBinWidth(g, cur w)
4 if cur w < g then
5 cur w ← g
6 else
7 // cur_w not a multiple of g
8 if cur w % g 6= 0 then
9 // make cur_w a multiple of g

10 if (cur w % g) < (g − (cur w % g)) then
11 cur w ← cur w − (cur w % g)
12 else
13 cur w ← cur w + (g − (cur w % g))
14 end
15 end
16 end
17 return cur w

Procedure AdjustBinwidth

bin widths is achieved for a given query—e.g., the number
of connections seen by guard relays—this definition tends to
hold over time. That is, the guided binning algorithm is most
useful when issuing a new type of query or when the results
of a query indicate unexpected results.

We refer to each run of the guided binning algorithm as
an iteration.

The first iteration takes two parameters as input: b, the
number of bins; and e, the total estimate of the statistics
(e.g., total bandwidth, total number of client connections, etc.)
being collected. Equal width bins are assigned for this first
iteration—the lower bound of first bin is set to 0, a bin-width

10

of be/bc is used for the first b − 1 bins and the upper bound
of last bin is set to e.

If more iterations are needed, the next iteration uses the
bin width distribution and the noised result of the previous
iteration to obtain a more optimal bin width distribution. The
guided binning algorithm first computes the mean value, k
of the noised distribution. Then, in the lexical ordering of
bins, starting from bin 1, it splits all bins that have a value
ri greater than k into bri/kc bins. The algorithm also merges
all consecutive bins that have a value less than k until their
combined value does not exceed k.

When a bin is split or when bins are merged, the algorithm
executes the GCDBinwidth procedure. The GCDBinwidth pro-
cedure chooses an optimal GCD value g (of the bin widths up
to that point) such that the total number of auxiliary bins (see
§V-B) is less than 15000. Then the guided binning algorithm
executes the AdjustBinwidth procedure that makes the current
new bin width a multiple of the optimal GCD g.

The algorithm can be terminated during any iteration in
which the analyst obtains a “satisfactory” histogram of the
noised results.

IX. IMPLEMENTATION AND EVALUATION

We constructed an implementation of HisTorε in Python
to verify our protocols’ correctness, assess the utility of the
noised aggregates, and measure the system’s overheads. We
implement GM encryption using the Python libnum library6

with a modulus size of 1024 bits. Our PRF is based on AES in
CFB mode, supported by the PyCrypto cryptographic library.
Mixes perform shuffle operations by applying the Fisher-
Yates algorithm, using the AES-based PRF as its source of
randomness.

As a system-wide parameter, we set ε = 1 for all exper-
iments unless otherwise indicated. We note that this offers
more privacy than the experimental setting (ε = 5) used by
Chen et al. [6]. For histogram queries, we semi-automate the
process of selecting appropriate bin widths using the human-
guided bin splitting algorithm described in §VIII.

Experiments were carried out on a 16-core AMD Opteron
machine with 32GB of RAM running Linux kernel 3.10.0.
Our implementation of HisTorε is currently single-threaded.
Although HisTorε’s computational costs are insignificant (see
§IX-D), certain operations are embarrassingly parallel—in
particular, encrypting and decrypting the elements of the

e
v

vectors—and could likely further benefit from parallelization.

We instantiated three HisTorε mix instances, one HisTorε
analyst instance, and all DCs on our 16-core server. In a real
deployment, these instances would all be distributed. Google
Protocol Buffers [29] were used for serializing messages,
which were communicated over TLS connections between
HisTorε components. We use Python’s default TLS socket
wrapper for securing communication. All communication took
place over the local loopback mechanism (localhost).

Our experiments do not run actual Tor relay or client code.
As explained in more detail next, we derive our unnoised

6https://github.com/hellman/libnum

statistics from existing published data sets7. This data is used
as input to our DC instances, which then run HisTorε protocols
to enable the analyst to obtain (noised) aggregate results.

A. Queries and Data Sets

We evaluate HisTorε by considering three histogram
queries: the number of client connections as observed by Tor
guards, the amount of bandwidth used by Tor guards, and the
amount of exit bandwidth used by Tor exit relays. As our
ground truth, we use data from both the Tor Compass and
the Tor Metrics Portal.

Number of client connections. For the number of client
connections, each Tor guard acts as a DC. In total, we
instantiate 1839 DCs—the total number of guards reported by
the Tor Compass with a non-zero selection probability.

We derive our “ground truth” by considering the total
number of direct users (T) connecting to Tor as reported by
the Tor Metrics Portal over the period of July 26th through
July 30th, 2016. We assign pi · T client connections to each
guard relay i, where pi is the guard selection probability for
guard i as reported by the Tor Compass.

Bandwidth used by guards/exits. Similarly, as our ground
truth for the bandwidth observed by guards (resp. exits), we
consider the total guard (resp. exit) bandwidth (B) reported by
the Tor Metrics Portal over the same five-day time period. Each
guard (resp. exit) acts as a DC, and is assigned a bandwidth
cost of (pi · B), where pi is the selection probability of the
guard (resp. exit). We instantiate 1839 DCs when measuring
guard bandwidth, and 924 DCs in the case of exit bandwidth.
The latter is the number of exits reported by the Tor Compass
that have a non-zero selection probability.

We do not argue that the above procedures yield perfect
ground truth. We apply them to derive a gross approximation
of the distributions of client connections and bandwidths which
can then be used to test the efficacy of HisTorε under near-real-
world conditions. When deployed, HisTorε allows for much
more accurate and fine-grained statistics reporting than offered
by the Tor Metrics Portal.

B. Accuracy

Figure 5 shows the returned histograms for the three
queries when applied to the Tor datasets. The Figure plots
the results of the histogram query after three iterations of the
guided binning algorithm (see §VIII). Other iterations exhib-
ited similar accuracy (as measured by the difference between
the noised and unnoised distributions), but had arguably less
useful bin definitions.

HisTorε reports the “Noised” values shown in Figure 5. As
is clear from the Figure, these noised values closely resemble

7Note on ethical considerations: We evaluate HisTorε using only already
published data from the Tor Compass and Tor Metrics Portal. This data,
by its nature, is derived from the activities of human subjects. Because
the data has already been published and contains no personally-identifiable
information (PII), IRB approval was not required by our institution(s). Much
more importantly, the data itself is carefully collected by the Tor Project in
a manner that protects the privacy and anonymity of Tor’s users. The Tor
Compass and Tor Metrics Portal publish only aggregate information (e.g., at
the granularity of a country) that is unlikely to expose information about any
particular user. This paper advocates for even stronger privacy protections.

11

https://github.com/hellman/libnum

0
 -

 2
5

1

2
5

2
 -

 5
0

2

5
0

3
 -

 7
5

3

7
5

4
 -

 1
0

0
4

1
0

0
5

 -
 1

2
5

5

1
2

5
6

 -
 1

5
0

6

1
5

0
7

 -
 1

7
5

7

1
7

5
8

 -
 2

0
0

8

2
0

0
9

 -
 2

2
5

9

2
2

6
0

 -
 2

5
1

0

2
5

1
1

 -
 2

7
6

1

2
7

6
2

 -
 3

0
1

2

3
0

1
3

 -
 3

2
6

3

3
2

6
4

 -
 3

5
1

4

3
5

1
5

 -
 3

7
6

5

3
7

6
6

 -
 4

0
1

6

4
0

1
7

 -
 4

2
6

7

4
2

6
8

 -
 4

5
1

8

4
5

1
9

 -
 4

7
6

9

4
7

7
0

 -
 1

8
1

7
9

9
3

No. of Client Connections

0

50

100

150

200

250

300

350

400

450

500
N

o
.

o
f

G
u
a
rd

s

Actual
Noised

0.00%

2.72%

5.44%

8.16%

10.88%

13.59%

16.31%

19.03%

21.75%

24.47%

27.19%

P
e
rc

e
n
ta

g
e
 o

f
G

u
a
rd

s

0
 -

 1

2
 -

 3

4
 -

 4

5
 -

 6

7
 -

 8

9
 -

 9

1
0

 -
 1

1

1
2

 -
 1

3

1
4

 -
 1

4

1
5

 -
 1

6

1
7

 -
 1

7

1
8

 -
 1

9

2
0

 -
 2

1

2
2

 -
 2

2

2
3

 -
 2

4

2
5

 -
 2

6

2
7

 -
 2

7

2
8

 -
 2

9

3
0

 -
 3

1

3
2

 -
 5

5
9

5
6

0
 -

 1
1

8
1

2

GuardBandwidth (MB)

0

50

100

150

200

250

300

350

400

450

500

550

600

N
o
.

o
f

G
u
a
rd

s

Actual
Noised

0.00%

2.72%

5.44%

8.16%

10.88%

13.59%

16.31%

19.03%

21.75%

24.47%

27.19%

29.91%

32.63%

P
e
rc

e
n
ta

g
e
 o

f
G

u
a
rd

s

0
 -

 1
1
9

1
2
0
 -

 2
3
9

2
4
0
 -

 3
5
9

3
6
0
 -

 4
7
9

4
8
0
 -

 5
9
9

6
0
0
 -

 7
1
9

7
2
0
 -

 8
3
9

8
4
0
 -

 9
5
9

9
6
0
 -

 1
0
7
9

1
0
8
0
 -

 1
1
9
9

1
2
0
0
 -

 1
3
1
9

1
3
2
0
 -

 1
4
3
9

1
4
4
0
 -

 1
5
5
9

1
5
6
0
 -

 1
6
7
9

1
6
8
0
 -

 1
7
9
9

1
8
0
0
 -

 1
9
1
9

1
9
2
0
 -

 2
0
3
9

2
0
4
0
 -

 4
0
7
8

4
0
7
9
 -

 1
8
3
5
1

1
8
3
5
2
 -

 7
3
4
0
5
7

ExitBandwidth (KB)

0

50

100

150

200

250

300

350

400

450

N
o
.
o
f

E
x
it

s

Actual
Noised

0.00%

5.41%

10.82%

16.23%

21.65%

27.06%

32.47%

37.88%

43.29%

48.70%

P
e
rc

e
n
ta

g
e
 o

f
E
x
it

s

Fig. 5. The aggregate histogram results returned by HisTorε when the analyst issues a query for the number of client connections as observed by guards (left),
the amount of bandwidth used by guards (center), and the amount of bandwidth used by exit relays (right). Also shown is the unnoised distribution (“Actual”).

TABLE I. DISTANCES BETWEEN THE “ACTUAL” AND “NOISE”
DISTRIBUTIONS SHOWN IN FIGURE 5.

Distance function No. Client Conn GuardBW ExitBW
R2 0.98466 0.98290 0.96970

Bhattacharyya 0.01820 0.01179 0.02542

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00.000

0.023

0.046

0.069

0.092

0.115

Bh
at

ta
ch

ar
yy

a
Di

st
an

ce

BD

0.65

0.72

0.79

0.86

0.93

1.00

R2

R2

Fig. 6. The distance between the actual and noised distributions, as measured
by the Bhattacharyya distance (left y-axis) and R2 (right y-axis).

those of the unnoised (“Actual”) ground truth data. Looking at
just the “Noised” values, an analyst can clearly obtain useful
information about the distributions of client connections, guard
bandwidths, and exit bandwidths.

As a more quantifiable indicator of the closeness between
the noised and unnoised distributions, we consider both the co-
efficient of determination (also called the R2 distance) and the
Bhattacharyya Distance [3]. The latter measures the divergence
between two probability distributions and ranges from 0 (iden-
tical distributions) to ∞. An R2 value of 1 indicates perfect
prediction. When no correlation exists, R2 = 0. Table I reports
the distances between the actual and noised distributions. Our
results highlight that even with a conservative setting of ε = 1,
HisTorε produces highly accurate aggregates.

The tradeoff between accuracy and security is governed by
the choice of ε. We explore this space by varying ε between 0.2
and 2.0 for the connection count query. As shown in Figure 6,
we find that varying ε has little effect on accuracy. The overall
variation in R2 (resp. Bhattacharyya) distance between ε = 0.2
and ε = 2.0 was only 0.315 (resp. 0.098).

C. Bandwidth Overhead

HisTorε incurs communication overhead by transmitting
encrypted counters between the DCs and the mixes, and

10 20 40 80 16
0

32
0

64
0

12
80

No. of Bins

101

102

103

104

105

106

107

Co
m

m
un

ic
at

io
n

Co
st

 (K
B)

Mix
Analyst
Client

Fig. 7. HisTorε’s communication cost per epoch (y-axis) as a function of the
number of bins (b; shown on the x-axis). Both axes are plotted in log scale.

encrypted matrices between the mixes and the analyst. To be
practical, a statistics gathering system should impose a low
communication overhead for the DCs, since relays are already
a bandwidth-limited resource in Tor [8]. We envision that
mixes and the analyst are dedicated resources for HisTorε, and
our goal is to not incur unreasonable bandwidth requirements
for these components.

We explore HisTorε’s bandwidth costs by varying the
number of bins b in a query. The values of the bins for the type
of query (class vs. histogram) do not affect the communication
cost, as the DCs only transmit

e
v (and not

e
ν) for both query

types. In our bandwidth measurements, we fix the number of
DC relays at 1839.

Figure 7 shows the average communication costs for a DC,
mix, and analyst. For up to 80 bins, the communication cost
for each DC is fairly modest and is approximately 150 KB per
hour (or about 42 Bps). Generally, we anticipate the number
of bins to be around 20, although this can vary depending
upon the analyst’s query. As a potential point of interest, the
histograms shown in Figure 5 were derived using the guided
binning process, and resulted in 20, 21, and 20 bins (from left
to right).

Even when the number of bins is quite large (1280), a
DC’s communication cost is only 2.4 MB over the course of
the hourlong epoch—or 0.67 KBps.

The communication costs are greater for the mixes and
the analyst. With 40 bins, each mix consumes 47.8 MB of
bandwidth per hour, while the analyst uses 3.1 MB. In our

12

Initialization Time
1.170

1.175

1.180

1.185

1.190

1.195

1.200

1.205

1.210

1.215
Ti

m
e

(S
ec

on
ds

)

Incrementing Time
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m

e
(

s)

Mapping Time
700

705

710

715

720

725

730

735

740

745

750

Ti
m

e
(m

s)

Random Vector Gen Time
5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

7.2

Ti
m

e
(m

s)

Decryption Time
50.0

50.5

51.0

51.5

52.0

52.5

53.0

53.5

54.0

54.5

Ti
m

e
(S

ec
on

ds
)

Noise Gen Time
640

650

660

670

680

690

700

710

720

730

740

Ti
m

e
(m

s)

Shuffle Time
1.80

1.85

1.90

1.95

2.00

2.05

2.10

Ti
m

e
(S

ec
on

ds
)

Aggregation Time
13.9

14.2

14.5

14.8

15.1

15.4

15.7

16.0

16.3

16.6

Ti
m

e
(m

s)

Unmask Time
570

580

590

600

610

620

630

640

650

660

670

Ti
m

e
(m

s)

Verification Time
2.15

2.20

2.25

2.30

2.35

2.40

2.45

2.50

Ti
m

e
(S

ec
on

ds
)

Fig. 8. Microbenchmark results for the DSes (left), mixes (center), and analyst (right). Boxes denote the lower and upper quartile values, with a line at the
median. The “whiskers” show the range of the data within 1.5xIQR from the lower and upper quartiles. Outliers are indicated with triangles.

largest binning scenario with 1280 bins, each mix consumes
1.5 GB of bandwidth each hour, or 424.7 KBps; the analyst
requires 27.7 KBps.

In summary, we find that for modest number of bins (20-
40), HisTorε incurs very little bandwidth overhead, and can
thus support multiple concurrent queries.

D. Computation Overheads

To understand the computation costs of HisTorε, we per-
form a series of microbenchmarks. In our measurements, we
consider the connection counting histogram query with twenty
bins and 1839 DCs.

The left side of Figure 8 shows the distribution of the
processing overheads for the DCs. The operations involved
in maintaining the oblivious counters are initialization, incre-
menting, and mapping (from

e
ν to

e
v). The total costs of these

operations is, in the worst case, less than two seconds per hour
(on a single core). Additionally, the DCs generate the random
vectors Ri and R′i (such that R = Ri⊕R′i), incurring a worst
case processing overhead of approximately 7.2 ms per hour.

The performance overheads for a mix are shown in the
center of Figure 8. To explore the range in overheads, we
repeat our query 100 times and plot the range of processing
costs incurred by the mix over all runs. Here, the operations
consist of GM decryption, the generation of noise records,
and shuffling the matrices. Each hour, in the worst case, a mix
spends approximately one minute of computation for a single
query. Using a single core, a mix could thus support at worst
60 simultaneous queries per hour.

The analyst’s processing times are shown in the right side
of Figure 8. As with the mix, we show the results over 100
iterations of the query. The most burdensome operation is
verification of the three matrices. This consumes less than three
seconds of processing, in the worst case, per hour.

Overall, the processing costs of operating HisTorε is neg-
ligible for the relays (DCs) and analyst, and manageable for
the mixes.

X. RELATED WORK

Loesing et al. [22] motivate the need for performing
statistical analysis of the Tor network. The authors promote
privacy-preserving statistics gathering as a means to identify

trends in the network, to detect performance bottlenecks, to
discover attacks against the network, and to better understand
how Tor is being blocked and censored in various regions of
the Internet [22].

We are not the first to propose using differential privacy to
collect sensitive statistics on Tor. Elahi et al. [15] introduce two
variants—one based on secret sharing and another that uses
distributed decryption—to privately collect traffic statistics for
Tor. PrivEx provides strong, measurable privacy protection
even against compromised participants. However, PrivEx does
not provide integrity guarantees, and as we demonstrate in
§III, even a single malicious DC can cause inaccurate results.
In comparison, HisTorε also applies differential privacy tech-
niques to privately collect data, but in addition provides strong
integrity guarantees about the influence of malicious DCs.

PrivCount [18] extends the PrivEx secret-sharing variant
to make it suitable for a small-scale research deployment. It
allows multi-phase iterative measurements and expands the
privacy notion of PrivEx to simultaneously handle multiple
and diverse Tor statistics with an optimal allocation of the
ε privacy budget. However, even in PrivCount, there are no
protections for the integrity of the statistics (see §III).

We use a slight modification of the (ε, δ)-differential pri-
vacy scheme of Chen et al. [6]. They use a single mix, which
they call a proxy. This allows a malicious proxy to undetectably
alter the data and cause the analyst to reach an inaccurate
aggregate result. We detect such manipulation in HisTorε by
adding redundancy across three mixes. As we prove in §VII,
HisTorε detects such tampering if at least one of the mixes is
honest, and can attribute the misbehavior if two of the three
mixes are honest. Additionally, the scheme of Chen et al.
is vulnerable to compulsion attacks. HisTorε uses oblivious
counters to mitigate such risks.

HisTorε is partially inspired by SplitX, which executes
differentially private queries over distributed data [7]. Like
HisTorε, SplitX uses the (ε, δ)-differential privacy scheme
of Chen et al. and uses xor-based encryption to distribute
secret shares to separate mixes. In SplitX, both the mixes
and the aggregator are assumed to be honest-but-curious. In
HisTorε, we are able to tolerate a malicious mix by redundantly
encoding information in secret shares.

McSherry and Mahajan [25] apply differential privacy
techniques to the PINQ programming interface [26] in order

13

to support privacy-preserving network trace analysis. They
show that performing trace analysis in a differentially private
setting is technically feasible, but do not offer a distributed
solution. Combining their network trace analysis techniques
with HisTorε could potentially allow network operators to
identify patterns of misbehavior in Tor. We leave synthesizing
these techniques as an exciting avenue of future research.

XI. DISCUSSION AND LIMITATIONS

In this section, we discuss practical aspects of deploying
HisTorε, as well as some of the system’s limitations.

Detectability, attribution and suitability of the threat
model. A malicious mix may attempt to manipulate the
results of a query by modifying the inputs it receives from
the DCs. As we discuss in §VI and §VII, an analyst can
detect that misbehavior occurred if at least one of the mixes is
honest. Since data is replicated across all three mixes, we can
additionally attribute the misbehavior to a specific malicious
mix if exactly two of the three mixes are honest—the malicious
mix will be revealed through its non-conforming output.

The difficulty with performing attribution is that the cases
of one malicious mix vs. two malicious mixes can be in-
distinguishable if, in the latter case, the two mixes perform
identical manipulations. Unless it is readily apparent through
some other mechanism which mix(es) has been compromised,
a reasonable solution once misbehavior is detected is to re-
evaluate the security of all three mixes.

More generally, mixes should be carefully selected, since
collusion between two or more dishonest mixes compromises
data privacy. This is, to some degree, similar to Tor’s existing
quasi-centralized notion of trust: if a majority of the Tor
directory authorities are compromised, then Tor offers no
anonymity protections since the directories could advertise
only the existence of malicious relays.

Like directory authorities, mixes must therefore be chosen
carefully. We envision that the maintainers of the Tor Project
could selectively grant permission to operate HisTorε mixes
to parties. Or, to keep the existing level of trust, the directory
authorities could additionally operate mixes.

From the perspective of integrity, it may at first blush
seem that HisTorε and PrivEx offer similar guarantees—that
is, certain nodes must behave honestly to ensure integrity
of the query results. We argue that the integrity guarantees
offered by HisTorε are significantly stronger, since in PrivEx,
a single relay can significantly perturb the results of a query.
Successfully compromising PrivEx statistics gathering is thus a
fairly simple operation since there are no barriers to operating
a relay. In contrast, HisTorε removes the necessity to trust the
data collectors, and instead relies on a much smaller set of
nodes (i.e., mixes). Additionally, so long as a single mix is
honest, query tampering can be trivially detected.

Selection of ε. A consistent problem in schemes that apply
differential privacy is selecting an appropriate value of ε. In
our experimentation, we apply the same conservative value as
existing work [25] and set ε = 1.

Since ε is a relative and not an absolute measure of
privacy, an interesting area of future work is to derive per-
query values of ε that are guaranteed to protect individuals with

some fixed probability. Lee and Clifton [21] provide one such
construction for ε-differential privacy. Incorporating this se-
lection process into HisTorε (which provides (ε, δ)-differential
privacy) is an exciting potential future research direction.

In the current implementation of HisTorε, the analyst
communicates its choice of ε to the mixes. Since the number of
noise records is proportional to ε−2, large values of ε offer little
security while too small values of ε have little benefit to privacy
while incurring potentially enormous communication costs. To
provide a simple sanity-check, a real-world deployment of
HisTorε could establish system-wide parameters εmax and εmin
that bound the analyst’s choice.

Privacy budget. (ε, δ)-differential privacy schemes impose
a privacy budget whose balance is decremented as a function
of δ and ε for each issued query. This budget is defined in
terms of a static database D over which queries are issued.
In HisTorε, counters are zeroed after each epoch, effectively
resulting in a new database. This thus significantly reduces the
risk of exceeding the privacy budget.

Unfortunately, for certain query types, there may be depen-
dencies in the statistic of interest between epochs that violates
this assumption of independence. This further motivates a
careful selection of ε to minimize this privacy risk.

XII. CONCLUSION

This paper presents HisTorε, a distributed statistics collec-
tion system for Tor. Unlike existing work, HisTorε provides
strong integrity guarantees for collecting data on Tor. In
particular, we demonstrate that the influence of a colluding
group of malicious data collectors is tightly bounded by the
fraction of nodes that they control in the network. More
practically speaking, HisTorε ensures that a small colluding
group of malicious data collectors has negligible impact on
the results of statistics queries.

In addition to ensuring integrity, HisTorε provides strong
privacy guarantees as long as malicious mixes do not collude
with a dishonest analyst. HisTorε also achieves resistance to
compulsion attacks through use of novel oblivious counters.

We demonstrate using real-world data sets and realistic
query workloads that HisTorε enables highly accurate statistics
aggregation, with small bandwidth and computational over-
heads. Our performance experiments and microbenchmarks
indicate that dozens of simultaneous HisTorε queries could
be supported on a single CPU core. To encourage its use by
privacy researchers, we are planning an open-source release of
HisTorε in the near future.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
comments. We also thank Aaron Johnson, Henry Tan, and
Sridhar Venkatesan for the valuable discussions. This paper
is partially funded from National Science Foundation (NSF)
grants CNS-1149832 and CNS-1527401. The findings and
opinions expressed in this paper are those of the authors and
do not necessarily reflect the views of the NSF.

14

REFERENCES

[1] Akamai’s State of the Internet Q2 2015 Report,
2015. Available at https://www.akamai.com/
us/en/multimedia/documents/state-of-the-internet/
2015-q2-cloud-security-report.pdf.

[2] K. Bauer, M. Sherr, D. McCoy, and D. Grunwald. Ex-
perimenTor: A Testbed for Safe and Realistic Tor Ex-
perimentation. In USENIX Workshop on Cyber Security
Experimentation and Test (CSET), August 2011.

[3] A. Bhattachayya. On a Measure of Divergence between
two Statistical Population Defined by their Population
Distributions. Bulletin Calcutta Mathematical Society,
35:99–109, 1943.

[4] A. Biryukov, I. Pustogarov, F. Thill, and R.-P. Weinmann.
Content and Popularity Analysis of Tor Hidden Services.
In International Conference on Distributed Computing
Systems Workshops (ICDCSW), 2014.

[5] T.-H. H. Chan, E. Shi, and D. Song. Private and Continual
Release of Statistics. ACM Transactions on Information
and System Security (TISSEC), 14(3), 2011.

[6] R. Chen, A. Reznichenko, P. Francis, and J. Gehrke.
Towards Statistical Queries over Distributed Private User
Data. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2012.

[7] R. Chen, I. E. Akkus, and P. Francis. SplitX: High-
performance Private Analytics. In Conference on Ap-
plications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM), 2013.

[8] R. Dingledine and S. Murdoch. Performance Improve-
ments on Tor, or, Why Tor is Slow and What We’re Going
to Do About It. https://svn.torproject.org/svn/projects/
roadmaps/2009-03-11-performance.pdf, March 2009.

[9] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In USENIX Security
Symposium (USENIX), August 2004.

[10] C. Dwork. Differential Privacy. Automata, Languages
and Programming, pages 1–12, 2006.

[11] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor. Our Data, Ourselves: Privacy via Distributed
Noise Generation. In Advances in Cryptology (Euro-
crypt), 2006.

[12] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum.
Differential Privacy under Continual Observation. In
ACM Symposium on Theory of Computing (STOC), 2010.

[13] C. Dwork, A. Roth, et al. The algorithmic foundations
of differential privacy. Foundations and Trends in Theo-
retical Computer Science, 9(3-4):211–407, 2014.

[14] T. Elahi, K. Bauer, M. AlSabah, R. Dingledine, and
I. Goldberg. Changing of the Guards: A Framework for
Understanding and Improving Entry Guard Selection in
Tor. In ACM Workshop on Privacy in the Electronic
Society (WPES), 2012.

[15] T. Elahi, G. Danezis, and I. Goldberg. PrivEx: Private
Collection of Traffic Statistics for Anonymous Commu-
nication Networks. In ACM Conference on Computer and
Communications Security (CCS), November 2014.

[16] S. Goldwasser and S. Micali. Probabilistic Encryption.
Journal of Computer and System Sciences, 28(2):270–
299, 1984.

[17] R. Jansen and N. Hopper. Shadow: Running Tor in
a Box for Accurate and Efficient Experimentation. In

Network and Distributed System Security Symposium
(NDSS), 2012.

[18] R. Jansen and A. Johnson. Safely Measuring Tor. In ACM
Conference on Computer and Communications Security
(CCS), 2016.

[19] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syver-
son. Users Get Routed: Traffic Correlation on Tor By
Realistic Adversaries. In ACM Conference on Computer
and Communications Security (CCS), November 2013.

[20] D. Kedogan, D. Agrawal, and S. Penz. Limits of
Anonymity in Open Environments. In Information Hiding
Workshop (IH), 2002.

[21] J. Lee and C. Clifton. How Much is Enough? Choosing
ε for Differential Privacy. In International Conference
on Information Security, 2011.

[22] K. Loesing, S. J. Murdoch, and R. Dingledine. A
Case Study on Measuring Statistical Data in the Tor
Anonymity Network. In Financial Cryptography and
Data Security (FC). 2010.

[23] N. Mathewson. Some Thoughts on Hidden Services (Tor
Blog Post), 2014. Available at https://blog.torproject.org/
blog/some-thoughts-hidden-services.

[24] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and
D. Sicker. Shining Light in Dark Places: Understanding
the Tor Network. In Privacy Enhancing Technologies
Symposium (PETS), 2008.

[25] F. McSherry and R. Mahajan. Differentially-private
Network Trace Analysis. ACM SIGCOMM Computer
Communication Review, 41(4):123–134, 2011.

[26] F. D. McSherry. Privacy Integrated Queries: An Exten-
sible Platform for Privacy-preserving Data Analysis. In
ACM SIGMOD International Conference on Management
of Data (SIGMOD), 2009.

[27] M. Perry. The Trouble with CloudFlare (Tor Blog Post),
March 2016. Available at https://blog.torproject.org/blog/
trouble-cloudflare.

[28] M. Prince. The Trouble with Tor (CloudFlare Blog Post),
March 2016. Available at https://blog.cloudflare.com/
the-trouble-with-tor/.

[29] Protocol Buffers. https://developers.google.com/
protocol-buffers/.

[30] C. Soghoian. Enforced Community Standards For Re-
search on Users of the Tor Anonymity Network. In Work-
shop on Ethics in Computer Security Research (WECSR),
2011.

[31] Tor Project, Inc. Tor Metrics Portal. https://metrics.
torproject.org/.

[32] Tor Research Safety Board. Available at https://research.
torproject.org/safetyboard.html.

[33] C. Wacek, H. Tan, K. Bauer, and M. Sherr. An Empirical
Evaluation of Relay Selection in Tor. In Network and
Distributed System Security Symposium (NDSS), Febru-
ary 2013.

[34] P. Winter, R. Köwer, M. Mulazzani, M. Huber, S. Schrit-
twieser, S. Lindskog, and E. Weippl. Spoiled Onions: Ex-
posing Malicious Tor Exit Relays. In Privacy Enhancing
Technologies Symposium (PETS), 2014.

15

https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/2015-q2-cloud-security-report.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/2015-q2-cloud-security-report.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/2015-q2-cloud-security-report.pdf
https://svn.torproject.org/svn/projects/roadmaps/2009-03-11-performance.pdf
https://svn.torproject.org/svn/projects/roadmaps/2009-03-11-performance.pdf
https://blog.torproject.org/blog/some-thoughts-hidden-services
https://blog.torproject.org/blog/some-thoughts-hidden-services
https://blog.torproject.org/blog/trouble-cloudflare
https://blog.torproject.org/blog/trouble-cloudflare
https://blog.cloudflare.com/the-trouble-with-tor/
https://blog.cloudflare.com/the-trouble-with-tor/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://metrics.torproject.org/
https://metrics.torproject.org/
https://research.torproject.org/safetyboard.html
https://research.torproject.org/safetyboard.html

	Introduction
	Background
	Manipulating PrivEx
	HisTor Overview
	Participants and System Model
	Threat Model and (Informal) Security Guarantees
	Queries
	Operation

	Oblivious Counters
	Oblivious class counters
	Oblivious histogram counters

	Robust differential privacy
	Privacy and Security Analysis
	Security Sketches
	Privacy Analysis
	Attack Resilience

	A Practical Consideration: Guided Binning
	Implementation and Evaluation
	Queries and Data Sets
	Accuracy
	Bandwidth Overhead
	Computation Overheads

	Related Work
	Discussion and Limitations
	Conclusion

