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Abstract—In this paper, we explore traffic analysis attacks
on Tor that are conducted solely with middle relays rather
than with relays from the entry or exit positions. We create a
methodology to apply novel Tor circuit and website fingerprinting
from middle relays to detect onion service usage; that is, we
are able to identify websites with hidden network addresses
by their traffic patterns. We also carry out the first privacy-
preserving popularity measurement of a single social networking
website hosted as an onion service by deploying our novel circuit
and website fingerprinting techniques in the wild. Our results
show: (i) that the middle position enables wide-scale monitoring
and measurement not possible from a comparable resource
deployment in other relay positions, (ii) that traffic fingerprinting
techniques are as effective from the middle relay position as prior
works show from a guard relay, and (iii) that an adversary can
use our fingerprinting methodology to discover the popularity
of onion services, or as a filter to target specific nodes in the
network, such as particular guard relays.

I. INTRODUCTION
Tor [8] network entry and exit points have received con-

siderable focus over the years through continuous research
activity because the entry and exit points directly connect to
the end-user and destination, respectively. However, potential
threats from middle relay positions have received far less
attention. We believe that this is because there is a common
misconception that malicious or compromised middle relays
are not a significant threat to end-users’ privacy since they do
not directly connect to either the end-user or the destination
and thus are unable to link both parties together. While middle
relays are not privy to the network addresses of the client
and destination, they can still passively yet directly observe a
plethora of other information including service access times,
transfer volumes and data flow directions, and the preceding
and succeeding relays chosen for connections. This informa-
tion leakage could be analyzed to discover client usage and
network patterns in the Tor network and thus yield potential
attack vectors, and we believe that such threats present a wide
gamut of possible avenues for research.

∗ Equally credited authors.

In this work we focus on the novel application of different
traffic analysis techniques such as circuit fingerprinting [22]
and website fingerprinting (WF) [4], [14], [26], [28], [29], [30]
performed from middle relays as opposed to the usual guard
relays. We design the first circuit and website fingerprinting
algorithms specifically for use at middle relays, and we are
the first to apply machine learning to detect from which of
many possible circuit positions a relay is serving. Using our
novel circuit purpose, relay position, and website fingerprint-
ing algorithms, we produce a classification pipeline (i.e., a
python library) that can identify which onion service websites
accessible through the Tor network are visited by Tor users. In
selecting this specific scope we are keen to focus on sensitive
usages of Tor (i.e., onion services) where assumption failures
may lead to high-stakes consequences. We are also specific
enough to yield a concrete methodology, tangible code, and
data artifacts, as well as empirical results that were thoroughly
analyzed with well understood limitations. We provide our
viable framework of tools1 so that future work may use them
as foundations for the study of attacks and their mitigation.

In the interest of real-world applicability, we deploy our
classification pipeline in the first real-world measurement
study using WF with real Tor users. For the sake of ethical
research and limiting the impact on user privacy, our pipeline is
augmented with PrivCount [19], a privacy-preserving statistics
collection suite designed to provide differentially-private [9]
results, hiding individual user activity. We use PrivCount to
measure onion services while focusing on the popularity of
only a single well-known social networking platform (SNS) to
further limit the impact on user privacy: the site we measure is
accessible through a single-hop onion service indicating that
the service itself does not require anonymity. Our measurement
not only yields useful information about this particular onion
service, but it also serves as a proof-of-concept that our
classification pipeline can be used at middle relays as a vector
for information leakage. We note that while we as ethical
researchers are constrained by the differentially-private (i.e.,
noisy) results, a malicious actor is not and would be able
to produce measurements of higher accuracy. Therefore, our
results represent a lower bound on the information leakage
potential of WF at middle relays.

We highlight that in this work we treat website finger-
printing techniques as general tools to identify websites. In
contrast, previous work on Tor website fingerprinting assumes
a malicious guard relay or a monitored node on the client-to-
guard network path; under this previous model, it is assumed
that an adversary already knows or can easily discover a

1https://github.com/onionpop
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target client’s IP address and all that remains in order to
mount a linking attack is to identify the website that the client
visits. In that setting it constitutes an attack to merely perform
WF successfully, whereas in this work we use WF to detect
revealing information about the Tor network and its usage. One
could then leverage that information, e.g., to perform wide-
scale monitoring of onion site usage or to mount an attack
linking client to destination (see Section IX-B).

Our results include: (i) our circuit purpose and relay
position classifiers achieve 92.41%± 0.07 and 98.48%± 0.01
accuracy respectively; (ii) our WF at the middle classifier
achieves more than 60% accuracy for a closed world of
1,000 onion services, which is competitive with classical
WF applications; (iii) our one-class classifier for real-world
deployment is bounded to 0.6% false positive rate at a cost
of decreasing the true positive rate to 40%; and (iv) our real-
world deployment shows that the social networking website’s
onion service accounts for 0.52% of all onion service circuits
created. These results are compelling and provide evidence
that WF is viable at the middle relay position, that we can
effectively target onion service traffic, and that real-world
deployments can yield actionable results.

We make the following contributions in this paper:
1) we design the first classifier to detect relay position,

and the first classifier to detect circuit purpose from a
middle relay position using a novel feature set that utilizes
internal Tor protocol meta-data;

2) we are the first to show that traffic fingerprinting tech-
niques are effective from a middle relay position for both
closed-world and one-class open-world problems;

3) we produce a classification pipeline that combines circuit
purpose, relay position, and WF classifiers for real-world
deployment; and

4) we perform the first measurement study that applies
traffic fingerprinting to discover Tor onion service
popularity, done ethically with privacy-preserving
statistics collection methods.

II. BACKGROUND
A. Tor

Clients use Tor by first telescoping a long-lived circuit
through a series of three volunteer relays: the client chooses a
persistent entry guard relay as its first relay (using this same
guard for three months before rotating to a new one), chooses a
new random middle relay, and chooses a last exit relay that will
allow it to connect to the intended Internet service external to
the Tor network. The relays forward traffic in both directions
through the circuit to facilitate communication between the
client and its communicating peer.

Tor’s popularity is partly due to the flexibility provided by
its design: the external peer need not run Tor or even be aware
that the client is connecting through the Tor network. However,
clients who connect to external peers must still rely on the
existing DNS and SSL/TLS certificate authentication systems,
and the external peers themselves are not anonymous. To
mitigate these issues, Tor also develops and maintains an onion
service protocol, a communication mode in which both the
user and its peer run Tor and build circuits that are connected
together. All communication is internal to the Tor network, and
therefore the user and its peer both enjoy anonymity and end-
to-end encryption without relying on external insecure name
and certificate authentication systems.

Fig. 1. Circuits built and relays used during an onion service connection. The
I-S-M2 relay serves as the introduction point, and the R-C-M2 relay serves
as the rendezvous point.

B. Onion Service Protocol
The protocol that Tor clients and onion services use to

establish a connection is as follows. In order to advertise them-
selves and be reachable by clients, onion services maintain a
few long-term circuits that last at least one hour. Relays at the
end of these long-term circuits play the role of Introduction
Points (IP). The addresses of IPs along with other onion service
information such as their public keys are stored as descriptors
in a distributed database formed by Tor relays that have been
assigned the HSDir flag. To create an IP circuit, the onion
service must create a regular three-hop circuit and send an
establish_intro cell to the last relay. The last relay
replies with an intro_established cell if it agrees to
act as the IP on this circuit.

To establish a connection with the onion service, the client
first selects a middle relay to serve as a Rendezvous Point (RP)
and builds a circuit ending at that relay. The client then sends
an establish_rendezvous cell to the RP which replies
with a redezvous_established cell. The client must
then inform the onion service of this RP using the service’s IP.
To learn the IP, the client builds a circuit to an HSDir, sends
the service’s .onion address that was communicated out-of-
band, and receives the onion service’s descriptor (including the
addresses of the service’s current IPs). The client then builds
a circuit to one of the IPs and sends it an introduce cell
which contains the RP’s address and a one-time secret, all
encrypted with the onion service’s public key. The IP relays
the cell to the onion service which acknowledges the receipt
by sending a introduce_ack back to the client.

The onion service decrypts the RP address, builds a circuit
to it, and sends it a rendezvous cell that contains the one-
time secret provided by the client for authentication. The RP
relays this cell to the client who will verify the one-time secret
and acknowledge receipt to the onion service. At this point, a
six-hop circuit exists between the client and the onion service
and can be used for application communication. Figure 1
depicts the four main types of circuits that have been created
(excluding the HSDir circuit): an onion service to IP, a client
to IP, a client to RP and an onion service to RP. Note that the
circuits created for this process are dedicated to the onion ser-
vice protocol and cannot be reused for other communications.

C. Stream Isolation
Applications tunnel peer connections, called streams,

through Tor circuits. The Tor software decides if a new stream
should be assigned to an existing used circuit, an existing
unused circuit, or if a new circuit should be built to handle the
stream. Tor would like to provide unlinkability of unrelated
traffic in order to reduce the exposure to honest-but-curious
exit nodes that may track unrelated visits by the same user.
However, completely isolating each stream to its own circuit
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would significantly degrade Tor’s performance while allowing
malicious servers to cause a client to create an arbitrary number
of circuits, which would increase the probability that a client
selects a compromised node for at least one of them. For
this reason, Tor prefers to isolate groups of streams to their
own circuit. In TorBrowser, a hardened fork of Firefox and
the recommended web browser to use with Tor, streams are
grouped by the first-party domain that appears in the URL
bar (across different tabs). This means that almost all streams
generated during a page download will go through the same
circuit, including requests to third parties. Note that, although
unlikely, Tor may create a new circuit while fetching a web
page; for example, a restrictive exit policy of a circuit may
cause Tor to create a new circuit with an exit that supports the
fetch of a particular resource (e.g., transitions from HTTP to
HTTPS and vice versa).

However, the rules for handling onion service traffic are
different. Since onion service circuits do not exit the Tor
network and require that a Rendezvous Point is agreed upon
between the client and the onion service, there is currently no
stream grouping by the first-party domain of the onion URL
in the address bar. Therefore, a user visiting an onion service
with mixed first-party onion service and third-party onion or
non-onion service content may create multiple circuits to fetch
the content; it will create a circuit to fetch all of the first party
content, a circuit to fetch all non-onion service third party
content (even if each third party is served from a different
domain), and a circuit for each third-party embedded resource
hosted from a unique onion service.

These peculiarities of the onion service protocol limit the
visibility of an adversary monitoring the traffic at the middle:
while an adversary at the entry or client-to-entry link is able
to capture all the traffic that a user generates during a visit
to an onion service, the adversary we consider would only be
able to record the traffic for the first-party content.

D. Traffic Fingerprinting
The traffic analysis techniques that we study in this

paper are based on applying supervised learning methods on
the encrypted and anonymized traffic traces that are captured
from middle relays we control. We study traffic fingerprinting
attacks such as circuit and website fingerprinting that use side-
channel information leaking from encrypted network packet
timing and lengths to discover patterns in the communication.
In particular, circuit fingerprinting allows an attacker to distin-
guish between visits to onion services from regular sites and
website fingerprinting enables one to identify the website being
accessed. To the best of our knowledge, all previous website
fingerprinting studies in Tor have been conducted either at the
entry guard or somewhere on the network path between the
client and the guard.

Most studies evaluate WF in a closed world model in which
it is assumed that the classifier could be trained on data for all
of the sites that the user was possibly going to visit. This as-
sumption is unrealistic because there are potentially billions of
websites and the resources necessary to collect, store, and pro-
cess the data for all such sites would be overwhelming. A more
realistic evaluation method uses an open world model in which
only a small fraction of the sites are available to the adversary
for training. However, the closed world has been considered
a realistic scenario if the adversary aims at detecting only
onion services [6]. It has been shown that a local and passive

Fig. 2. The adversary runs a middle relay and monitors the Tor messages
that it relays. The adversary will observe circuits carrying traffic for onion
services internal to Tor and regular web servers external to Tor.

adversary can effectively first detect onion service visits using
circuit fingerprinting, and then apply website fingerprinting
methods to infer to which website they belong [22], [27].

In this paper, we evaluate the effectiveness of traffic
fingerprinting from Tor middle relays under both open and
closed world models while focusing on onion services. WF is
particularly threatening for onion services for two reasons [6],
[25]: (i) there are fewer onion services than regular sites and,
since the adversary can filter out visits to regular sites, it needs
less resources to fingerprint onion services effectively; and (ii)
onion services hide their location on the network so that it is
difficult to censor them and may host sensitive content, and
therefore visitors of those sites are especially vulnerable if the
WF attack is successful.

III. REQUIREMENTS AND ETHICAL RESEARCH
We now describe the capabilities required to fingerprint

onion service websites from the middle relay position and
discuss ethical considerations.

A. Requirements
To apply the techniques described in the following

sections, we do not depend on the ability to break the
encryption of Tor but do depend on the ability to eavesdrop
on all network traffic to and from relays we control. We
can obtain a traffic trace or sample of both the encrypted
network packets and the Tor protocol messages (i.e., cells).
We are able to observe, decrypt, and read the headers and
payloads of Tor cells that are destined for the middle relays
we control, but we can only observe and read the headers of
cells intended for another destination and forwarded through
our relay (the payloads of such cells are encrypted).

We also need to deploy at least one middle relay that
contributes bandwidth to Tor. Our attacks become more sta-
tistically sound as we observe more circuits, and the fraction
of circuits that we will observe roughly correlates with the
amount of bandwidth that we contribute. Note that it is quite
affordable to run Tor relays in dedicated servers or as virtual
instances on the various low-cost cloud platforms available.

Furthermore, we only require local visibility of the network
because we can only observe circuits from clients that pick
our relays and cannot observe other activity. Figure 2 depicts
the position of the relay from which we perform the website
fingerprinting that is the focus of this paper.

We desire to be able to utilize the machine learning
techniques we propose on common desktop hardware. This
means that along with the ability to collect data (described
in more detail in Section VI-D), we can also perform the
pre-processing and data cleansing, the training, and finally
the classification tasks all on hardware commonly found on
desktop computers of today.
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B. Ethical Considerations
We have contacted the Tor Research Safety Board2 for

advice on the ethical implications of this research and have
followed their recommendations. We also contacted the SNS
that we have taken as use case for this study for responsible
disclosure but did not receive any response from them. Since
we investigate a number of settings with varying levels of
risk for real users, we provide additional details about ethical
research throughout the paper.

IV. ADVANTAGES OF THE MIDDLE OF THE PATH
In this section, we discuss the benefits of running middle

relays to analyze onion service traffic as compared to relays
that are at the ingress and egress points of the network.

A. Exit
Exit relays make connections outside of the Tor network,

and an exit relay will never be chosen by Tor’s default path
selection algorithm in non-exit positions or in onion service
positions due to exit relay bandwidth scarcity. An exit relay
will thus not be useful for our purposes, given that it will not
route any onion-service visit.

B. Guard
Each client chooses a relay from the set of all relays with

the guard flag and uses it as its first hop entry into the Tor
network for all circuits it builds. A guard relay may serve
in both the first-hop guard position and in the middle relay
positions, and its bandwidth is split among these two positions.
In order to be eligible to serve as a guard, a relay is required
to be stable and have high up-time relative to other relays.
Additionally, a guard relay will not be fully utilized when it
first becomes a guard, because clients only drop their current
guard and rotate to new ones after two to three months (there
exists a proposal to increase this time to nine months [7]). As
a result, it will take several months to reach steady state, and
during that time the relay will observe less traffic than in other
positions. A guard will observe many circuits, including onion
service circuits, from a smaller slowly churning set of clients.

C. Middle
A middle relay can be used for any circuit, and may

potentially observe the traffic of any Tor user in the network,
given that enough circuits are made over time. This is in
contrast to guard relays that can only observe the traffic of
users that have picked them as their first hop.

We are particularly interested in regularly visited onion
services. The following equation shows that the probability of
a particular middle relay observing a client’s circuit increases
as the client builds more and more circuits over time, where
l is the likelihood of picking that middle for a single circuit
and c is the number of circuits that the client has made so far.

P (observed) = 1− (1− l)c

We investigate how the frequency of visits to an onion site,
f = c

t where f is the fraction of the number of visits c in a
given unit of time t, affects the probability of being observed
by a middle relay. Let’s assume that a user visits onion services
just once every unit of time, for instance once per day. From
the line labeled f = 1 in the left plot of Figure 3 we see
that this client will have an almost 80% chance of making at

2https://research.torproject.org/safetyboard.html
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Fig. 3. Probability of a client making a circuit using a malicious node with
0.16% (2 MB/s) and 1.6% (20 MB/s), left and right plots respectively, of the
middle bandwidth. Plots are shown for various frequencies of visit within a
fixed time interval.

least one circuit through the malicious middle relay after 1,000
days, or two years and nine months. In contrast, a user that
visits onion services ten times per day has the same chances in
just a little over three months. As point of reference a similarly
provisioned guard relay, shown as the rightmost line labeled
f = 10, guard, reaches similar levels of probability only after
two orders of magnitude of time later, 10,000 days.

This time may be shortened, for instance, by operating ten
identical relays—which is not an onerous burden on resources
nor difficult to practically achieve—and then there is an 80%
chance that a user who connects to an onion service once per
day would take about 100 days and a user that connects ten
times per day will now only take about 10 days to create at
least one circuit through our middle relay (see lines labeled
f = 1 and f = 10 in the right plot of Figure 3). As reference,
a similarly provisioned guard in this setting, the rightmost line
labeled f = 10, guard, has the same probability of observing
that client only after two orders of magnitude later, 1,000 days.

The preceding illustrates that middle nodes can enumerate
more clients in a shorter time frame. We want to clarify that
both the guard relay and middle relay observe the same number
of circuits, but a different set of clients. The guard relay will
only observe circuits from a somewhat static subset of Tor
clients, but the guard observes all circuits from that subset.
In contrast, the middle relay will observe circuits from the
set of all clients but only some of the circuits built by those
clients (in the same time frame). However, when dealing with a
frequently visiting user, the middle relay will be able to obtain
a representative sample of these accesses, which provides it
qualitatively the same information as the guard. In this way
middles have a better overview of the entire onion service and
Tor userbase activity, albeit sampled at a known rate.

V. CIRCUIT PURPOSE AND POSITION FINGERPRINTING
We have argued that the middle relay position is advan-

tageous for obtaining a statistical sampling of client activities
across the Tor network. In this section, we show how machine
learning classification techniques can be used by the middle
relay to determine which middle position and which circuit
purpose (i.e., onion service or general) it is serving, enabling
it further analyze only circuits that carry onion service traffic.

A. Methodology
There are multiple middle onion service circuit positions

in which a middle relay could serve, and a middle relay will
also serve in non-onion service, general purpose circuits (see
Figure 1). To understand how a middle relay can detect its
position in a circuit and the circuit purpose, we first generate a
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large data set of circuits that were built using Tor. We modified
a Tor middle relay3 to log messages containing the information
necessary to perform the classification, and we incorporated
a new signaling mechanism that enables the client to send
ground truth to the relay for evaluation purposes. We run our
modified Tor code under simulation in Shadow [18] as well
as on the live Tor network. For the latter, we need to be sure
that we do not capture any information from circuits that are
not under our control in order to protect real Tor users.

1) Circuit Signaling: In order to perform classification, our
middle relay requires timing and flow information from Tor
circuits. A middle relay and client under our control will not be
directly connected, however, and therefore we need a signaling
mechanism with which our client can identify to our middle
relay the circuits that we control and that are safe to analyze.

We added a new signaling cell to the Tor protocol and a
mechanism to allow the client to pin a relay as its R-C-M1
middle on all circuits. The signaling cell is inserted by our Tor
client into new circuits that it creates through our middle. The
new cell is encrypted for and sent to our middle relay through
the Tor circuit, and no other relay in the circuit can read it.
The new cell identifies to our middle relay that the circuit on
which the cell is sent should be labeled as our own circuit
and therefore that it is safe to start tracing the circuit. The
signal cell may include an optional payload so that the client
can send ground truth information about the circuit (i.e., the
purpose and position of the relay), stream, and HTTP request
(i.e., the URL being fetched) to our middle relay.

2) Tracing Traffic Patterns at the Middle Relay: Once our
middle relay has identified that a circuit is initiated at our
client, it begins collecting information about the circuit and
the cells transferred through it. This information is exported
through the Tor control protocol, which provides a well-defined
interface [1] for other applications to request and consume
information about Tor (including information associated with
periodic events). For every circuit on which we receive a signal
from our client, the middle relay exports a unique circuit ID,
circuit creation time, as well as the IP address, fingerprint, and
relay flags of the previous and next hop relays. It also begins
logging information about each cell it sends and receives on
that circuit: it logs the direction of the cell (outbound or
inbound), how the cell was transferred (sent or received), the
time the cell was transferred, the unique ID of the circuit to
which the cell belongs, and the cell type and command (which
are used to instruct relays to, e.g., create, extend, and destroy
circuits or relay traffic).

3) Collecting Data with Shadow: We ran our customized
Tor software under simulation in Shadow [18] in order to
generate a large corpus of circuits suitable for analysis. Shadow
is a discrete-event network simulator that directly executes Tor,
and therefore faithfully executes all of the logic associated
with building Tor circuits. Shadow allows us to construct and
run a private Tor network, complete with directory authorities,
relays, clients, servers, and onion services, and gives us full
control over our network. We run Shadow experiments in a
private, local environment free of privacy risks to real users.

Our primary goal is to collect a large sample of circuits
from the perspective of a middle relay, which could be done
either by running many smaller experiments in parallel or
fewer larger experiments sequentially using the same amount

3We branched Tor at version 0.2.7.6

of RAM. We didn’t believe it was necessary to run a full-
scale Tor network because the features used by our purpose
and position classifiers are not sensitive to network congestion
or scale (we dont use any time-based features). Running
smaller networks means we can more effectively parallelize
our experiments, sample more initial random seeds, and more
quickly obtain results. Therefore, we generated a small private
Tor network configuration with 50 relays, 128 web clients,
42 bulk clients, and 100 servers. We ran 83 experiments with
distinct seeds for one simulated hour each (83 simulated hours
in total) on a machine with a total of 40 Intel Xeon 3.20GHz
CPU cores (80 hyper-threads) running the latest CentOS 7
version of Linux. We ran 4 multi-threaded experiments at a
time, and each experiment took roughly 3.5 hours to complete.

During our experiments, the clients behave as follows. The
bulk clients continuously download 5 MiB files. The web
clients request data according to an HTTP model where the
size of the first request and response, the number of embedded
objects per page, the size per embedded object request and
response, and the number of distinct domains per page are
all sampled from the HTTP Archive.4 Web clients pause for
a time drawn uniformly from 1 to 30 seconds after each full
web page has been downloaded before starting the download
of another page. Because HTTP Archive data is constructed
by downloading real websites from the Alexa top sites list, we
believe that the number of Tor circuits that are created when
clients use this model is representative of typical Tor circuit
usage. Finally, 8 of the web clients and 2 of the bulk clients
download their data from onion services, while the remainder
of each download their data over regular 3-relay-hop circuits.

We configured one middle relay to act as a middle mea-
surement relay. We enabled the signaling mechanism described
above on each client in the network, so that our measurement
middle relay would receive ground truth circuit information
and collect cell traces for all circuits built through it. A
significant advantage of using Shadow is that we are able to
inspect all such circuits without risking user privacy. During
our experiments our middle measurement relay collected trac-
ing information for 1,855,617 total circuits, 813,113 of which
were onion service circuits.

B. Feature Extraction
We extracted features from our large corpus of circuits

based on the observation that cell meta-data, such as cell type
and relay command, leaks information to a relay about its
position in the circuit and the circuit type (see Figure 4). We
also make the following observations: (i) a relay will send
a different number of cells during the circuit construction
process depending on its position in a circuit; (ii) different
relay positions may receive different cell types and relay com-
mands during circuit construction (e.g., guards and middles
will extend circuits while exits will not); (iii) relays may
or may not connect to other known relays on either side
of a circuit (iv) onion service introduction circuits transfer
much less data than rendezvous circuits used to download web
content; and (v) asymmetric web content downloads would
result in more cells traveling toward the circuit originator
on client-side rendezvous circuits but away from the circuit
originator on service-side rendezvous circuits. To incorporate
the previous observations, we use as features the counts of

4http://httparchive.org
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Fig. 4. Circuit establishment and data transfer involves various cell types and
commands, which in this example are labeled on the arrows and are readable
by the node to which the arrow points ({enc} denotes that the command is
unreadable). Cell meta-data leaks information to a relay about its position in
the circuit and the circuit type.

Fig. 5. A relay may send and receive a different number of cell types on
the inside and outside of a circuit.

the number of each possible (cell type, relay command) pair
that a relay handles. A relay may observe a cell on different
sides of a circuit (see Figure 5), so we also include counts of
the number of cells that a middle is sending and receiving on
both the inbound initiator side of the circuit (inside) and the
outbound extension side of the circuit (outside). Finally, we
include the total number of cells that the relay is sending and
receiving on either side of the circuit, and whether or not the
previous and next hops may serve as guard or exit relays.

Note that although it was recommended in previous
research [22], we do not include cell timing information in
order to be more robust to Tor relay congestion. Interestingly,
during the feature analysis we incorporated the circuit duration
and cell sequence features that Kwon et al. have shown to
be useful in distinguishing circuit purpose when classifying
circuits from the position of the guard-to-client link [22].
However, we found that these features reduced the accuracy
of our classifier, and therefore we ignore those features in the
remainder of our analysis.

C. Training
The goal of our classifier is to predict when a relay is

serving on a rendezvous purpose circuit and in the first middle
relay position (i.e., an R-C-M1 relay as shown in Figure 1).
Previous work by Kwon et al. [22] provides a decision-
tree driven classifier to perform purpose filtering but it was
designed for use by relays in the guard position or an eaves-
dropper on the client-to-guard path and not from middle relays.
We design a new random-forest driven classifier that performs

with comparable accuracy but is tuned for relays in positions
between the guards of the client and onion service. Random
forests generalize better than simple decision trees, which tend
to overfit the training data, thus random forests are more robust
against small differences between training and testing settings.
We followed prior work on model selection and tuning [14],
[22] and, after a search of the parameter space, we found that
30 trees for the random forest provide the highest accuracy.

We trained separate random forest classifiers for circuit pur-
pose and circuit position using the pyborist and sklearn
python APIs on our Shadow-generated circuit dataset and
the features we previously described. For both classifiers,
we assume no prior knowledge about the circuit purpose or
position, so the classifiers could be run independently of one
another without affecting the accuracy. To ensure that the
classifier does not overfit to our specific dataset, we used
standard machine learning procedures such as balancing the
dataset so that each class (i.e., rendezvous vs. other purpose,
and C-M1 vs. other position) has the same number of circuits.

We used k-fold cross validation (k = 10) to measure
how well the classifiers generalize to unseen data. During this
process, our original circuit sample is randomly partitioned
into k equally-sized subsamples. There are k phases in total:
in each phase, a distinct subsample is used as the testing set
while the remaining k−1 subsamples are used as the training
set. To train, we convert each circuit from the training set into
a feature set labeled with the true class (the true purpose or
position) and pass that into the classifier’s training function. To
test, we convert each circuit from the testing set into a feature
set (without the ground truth class label) and pass it into the
classifier’s prediction function to predict the class label. We
evaluate prediction performance by measuring true and false
positives and negatives and computing standard related metrics
such as accuracy and precision.

D. Results
The evaluation results are shown in Table I. As shown, the

accuracy for the purpose classifier is over 92 percent with a
standard deviation of 0.07 and the accuracy of the position
classifier is over 98 percent with a standard deviation of 0.01.
Table II shows the most important features as determined by
our analysis, i.e., the features that minimize the information
gain in every branch of the random forest. Not surprisingly,
cells associated with the circuit construction (create/created
type cells and relay type cells with extend/extended com-
mands) are often some of the top features for distinguishing
both purpose and position, and the total number of cells sent
and received are also useful for both classifiers.

Based on our results, we believe that our simple cell-based
counters serve as effective features for position and purpose
classification. They are simple and easy to compute and may
potentially be useful in other contexts such as onion service
fingerprinting when access to Tor cell meta-data is available.

VI. ONION SERVICE FINGERPRINTING
In this section, we explore the extent to which middle

relays can be effective at carrying out state-of-the art website
fingerprinting techniques on onion sites. We describe how
we modify and use the Tor and tor-browser-crawler
software to gather data from a middle relay position, explain
the fingerprinting techniques that we performed on these data,
and how we evaluated their efficacy.
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TABLE I. 10-FOLD CROSS-VALIDATED CIRCUIT CLASSIFICATION
RESULTS

Purpose (rendezvous vs other) Position (C-M1 vs other)

Accuracy 92.41± 0.07% 98.48± 0.01%

Precision 91.87± 0.11% 97.16± 0.03%

Recall 93.05± 0.09% 99.88± 0.01%

F-1 92.46± 0.07% 98.50± 0.01%

True Positives 396,615 (91.77%) 821,478 (97.08%)

False Positives 35,576 (8.23%) 24,689 (2.92%)

False Negatives 30,056 (6.95%) 984 (0.12%)

True Negatives 402,135 (96.05%) 845,183 (99.88%)

TABLE II. MOST IMPORTANT CIRCUIT CLASSIFICATION FEATURES*

Purpose (rendezvous vs other) Position (C-M1 vs other)

13.73% # (relay,{enc}) cells 23.22% next node is relay

11.11% # (create2,n/a) cells 11.23% # (relay,extended2) cells

09.10% # cells sent total 09.26% # (created2,n/a) cells

08.89% # cells received total 06.66% # cells sent total

08.31% # cells sent inside 06.61% # (create2,n/a) cells

07.78% next node is exit 06.12% # (relay early,extended2) cells

07.66% # (relay early,extended2) cells 05.75% # cells received outside

06.78% # cells received inside 05.32% # cells received total

05.83% # (relay early,{enc}) cells 05.25% previous node is guard

04.26% # (created2,{enc}) cells 04.06% # (relay,{enc}) cells

* Shown are the top 10 of 22 total features used (both classifiers used the same features).

A. Evaluating Website Fingerprinting
The website fingerprinting techniques that we chose for

this evaluation are the most scalable and successful known so
far in the literature. These are:

1) Wang-kNN [29]: presented by Wang et al., it achieves
over 90% accuracy for 100 non-onion sites. Wang et al.’s
features were actually families of features defined by a certain
parameter—for instance, the number of outgoing packets in the
first N (parameter) packets. By varying these parameters they
generated more than 3,000 features. The underlying learning
model they used was a k-Nearest Neighbors classifier (k-
NN). k-NN classifies an instance by averaging over the k
closest instances in the dataset according to a given distance
metric. In their case, they used a weighted euclidean distance
with a tuning mechanism that minimizes the distance among
traffic samples that belong to the same site, a property that is
especially suited for k-NN.

2) CUMUL [26]: presented by Panchenko et al., it is
based on an SVM with a Radial Basis Function (RBF) as
a kernel. Their evaluations show that CUMUL achieves 93%
accuracy for 100 non-onion sites. CUMUL’s main feature is
the cumulative sum of packet lengths. The cumulative sum of a
traffic trace is represented as a vector with as many components
as the number of packets in the trace. Recursively, the first
coordinate value is the length of the first packet and the i-th
coordinate is calculated by adding the length of packet i and
the value of coordinate i − 1. Since SVM expects fixed-size
feature vectors and the cumulative sums have varying sizes,
they interpolate 100 points for each cumulative sum.

3) k-Fingerprinting (k-FP) [14]: presented by Hayes and
Danezis, it is the most recent website fingerprinting technique.

It is based on Random Forests (RF) and k-NN and achieves
similar accuracy to CUMUL. Their feature sets are formed by
175 features that, among others, include most of the features
that have already been proposed in the website fingerprinting
literature to date. Their feature representation is novel: instead
of plugging the features directly into a classifier, they instead
use the leaves in a trained RF as the representation for
classifying with a k-NN with Hamming distance.

All of these attacks have also been evaluated in an open
world of websites where they perform with high accuracy. The
open world is a more realistic setting where the adversary
cannot train on all sites that can be visited by the victim.

B. Methodology
We gather data that enables us to analyze the effectiveness

of onion service website fingerprinting attacks from internal
circuit positions. We do this by running our modified Tor
software described in V-A1 and V-A2, crawling a set of known
onion sites, and tracing our client’s circuits from our own
middle relay.

We have automated our crawls using a web crawler that
visits a list of onion service URLs with the Tor Browser,
called tor-browser-crawler.5 We based our collection
methodology on previous studies on website fingerprinting. As
Wang and Goldberg proposed [30], we divided the crawls into
batches. In each batch, we iterate over the whole list of URLs,
visiting each URL several times. The rationale behind batched
crawls is that visits to a page in different batches allows the
capture of features that are invariant over time; and combining
visits within a batch reduces the time-independent noise due to
sporadic errors or per-visit variations such as advertisements.
We also disable the UseEntryGuards Tor option so that
we select a different entry guard for each circuit. As a result,
we significantly reduce the probability that our testing and
training instances are collected over a circuit with the same
entry guard, which would unrealistically improve the accuracy
of the attack [20].

To speed up the total crawling time, for every visit we
create a new identity using Tor Browser’s torbutton add-
on, and then signal the Tor controller to select a random entry
relay. This way we don’t restart Tor on every visit. In addition,
restarting the identity guarantees that we have a clean browser
state for the visit, as previous studies have pointed out that
keeping the browser state may create artificial dependencies
between consecutive visits [30].

The client logs TCP packet headers with tshark during
each visit to an onion page. We ignore the TCP payloads
because they are encrypted and thus not useful. By sniffing
network traffic, we can reproduce previous WF evaluation
techniques that do not allow access to cell-level information.
Because we are interested in cell-level information in this
work, we also use OnionPerf6 to collect Tor cell traces at the
client. For debugging and error detection purposes, we take
a screenshot of the page as rendered by the Tor Browser,
intercept and dump HTTP requests and responses with a
browser add-on that the crawler install on Tor, and dump the
index.html source code. Recall that we apply these tech-
niques only on our own circuits and not those of regular users.

As we described in V-A1, the client pins one of our middles
as the R-C-M1 relay (see Figure 1). Our middle relay collects

5https://github.com/onionpop/tor-browser-crawler
6https://github.com/robgjansen/onionperf
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the information from our custom signaling cells as described
in V-A2 using OnionPerf in monitor mode. OnionPerf will
produce a log file containing the data sent by the client as
well as other standard Tor events (e.g., bandwidth information).
Each circuit that is created by our own crawler will be labeled
as such in the OnionPerf log file. We later process these raw log
files as necessary to apply the website fingerprinting technique.

In addition, our crawler also flags the start of a visit and
sends a unique visit ID to the middle along with the ID of
the circuit used to carry the first HTTP request. When we
parse the logs, we discard all other circuits built to fetch that
onion site. We need these IDs so that we can parse only the
cells that go through that first circuit and discard cells to
other circuits. (Recall from Section II-C that our middle relay
would miss third party onion service circuits, whereas the entry
relay will be able to record all clients’ circuits.) In fact, due
to Tor’s stream isolation, the middle relay has the advantage
that traffic to the first-party onion service will not blend with
traffic to other sites, eliminating the need to use special parsing
techniques [31]. Note that our custom signaling cells will be
present in the client tshark logs, however, we filter out these
artificially added cells before classifier training.

The list of URLs that we crawl has been obtained from the
ahmia7 Tor onion service search engine maintainers. Before
starting the crawls, we used torsocks and curl to remove
from the list onion sites that were down. We have removed all
the screenshots after error detection to avoid keeping illegal
data on our hard drives. In total we ran four middle relays
to crawl 5,000 different onion websites in parallel. After
removing failed visits and thresholding so that all websites
had the same number of instances, the dataset ended up having
2,500 onion sites and 80 instances per site.

C. Ethics
1) Safety: We have tested our Tor source code modifica-

tions using Shadow [18]. However, Shadow does not run the
Tor browser crawler that we require to crawl onion services
in the website fingerprinting experiments. In order to capture
the complexities of the Tor Browser, and also to evaluate
our attacks under realistic background traffic and network
congestion conditions, we conduct our experiments in the live
Tor network.

The signaling mechanism described in V-A1 ensures that
we only collect traffic generated by our crawler. Using Onion-
Perf, we log only the events associated with the traffic gener-
ated by our client. Thus, analysis and potential attacks will be
applied only on traffic data generated by our own visits.

Following the principle of data minimization, our middle
relays only collect traffic data attributes strictly necessary for
applying traffic fingerprinting attacks. We ignore the payload
of network packets captured at our client, as they are encrypted
and are not useful for fingerprinting purposes. The HTML
sources and screenshots are also removed after the error
detection and outlier removal phases.

2) Benefits and Risks: Since we are not collecting any data
of regular Tor users, there is no de-anonymization risk from our
traffic datasets. There may be a small indirect risk of leaking
user personal data in the screenshots and HTML sources, but
they were deleted before publication, after being used for the
integrity checks of our traffic dataset.

7https://ahmia.fi/

TABLE III. 10-FOLD CROSS-VALIDATED ACCURACIES FOR THE THREE
STATE-OF-THE-ART ATTACKS ON OUR client-side TCP TRACES. THE

EVALUATIONS ARE CLOSED WORLDS OF 10, 50 AND 100 ONION SITES.

k-NN k-FP CUMUL
Num sites (%) (%) (%)

10 95%± 0.03 95%± 0.06 92%± 0.04

50 75%± 0.02 85%± 0.03 81%± 0.02

100 67%± 0.01 68%± 0.03 64%± 0.02

With respect to the impact of our experiments on Tor’s
performance, the volume of the traffic generated by our crawls
is comparable to that from a regular user actively browsing the
Web for a few hours. We do not expect a significant impact
on network performance.

Our methodology allows us to explore one of the main
research questions in this work: whether fingerprinting is
effective in the middle position of our circuits. In addition, it
will help us compare the effectiveness of these techniques at
different layers of the network stack (i.e., the application layer
and the transport layer). Previous studies only applied WF on
TCP packets and used heuristics to filter cell types that are
not useful for fingerprinting (e.g., SENDME cells). Our middle
relays have access to cell information and thus can directly
utilize or filter control cells that are not related to a website.

D. Results
1) Website Fingerprinting Effectiveness at the Middle:

Here we explore the following research question: how effective
is website fingerprinting at the middle with respect to the
client? Specifically, we design an experiment to determine
whether the accuracy of onion service fingerprinting is affected
by the position in the circuit (i.e., middle relay as compared
to the entry link).

We follow the methodology outlined in the previous section
to obtain two datasets: (i) TCP traces as collected between
the client and the entry guard and (ii) cell traces as collected
from the middle relay. Both sets of traces were collected at
the same time to avoid confounding variables like changes
of the website over time [20]. To evaluate the effectiveness of
website fingerprinting at the middle, we apply the state-of-the-
art techniques on both datasets and compare the success rates.

Table III shows the accuracy scores for three classifiers on
the network traffic data collected at the client. The accuracy
is defined as the number of True Positives—test instances that
have been correctly classified—over the total, also known as
True Positive Rate (TPR) or Recall.

As we see in the table, k-FP outperforms the other
techniques by a small margin followed by CUMUL and,
lastly, k-NN, the least accurate technique. These accuracies
are consistent with existing evaluations of these techniques
on onion service sites [6]. We also evaluated the techniques
on existing datasets [29] to make sure that we are able to
reproduce previous evaluations on regular sites and that we do
not introduce errors that stem from our methodology; we did
not find any major discrepancies from previous results.

On the other hand, Table IV shows the accuracies the
techniques achieved when applied on the cell traces collected
from our middle relay. In this table we see that the classifiers
are ranked in the same order as in the client: k-FP being the
most accurate and k-NN the least accurate. With respect to
the accuracies obtained at the client for the same classifier,
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TABLE IV. 10-FOLD CROSS-VALIDATED ACCURACIES FOR THE THREE
STATE-OF-THE-ART ATTACKS ON OUR DATASET OF CELL TRACES

COLLECTED AT THE middle relay

k-NN k-FP CUMUL
Num sites (%) (%) (%)

10 91%± 0.03 100%± 0.00 99%± 0.03

50 73%± 0.01 91%± 0.01 86%± 0.03

100 68%± 0.01 76%± 0.02 76%± 0.02

500 64%± 0.00 72%± 0.01 66%± 0.01

1,000 59%± 0.00 56%± 0.01* 63%± 0.01

* Due to RAM constraints we were not able to evaluate k-FP using the
optimal parameters for 1,000 sites which reduced classifier accuracy.

we see some interesting differences: while k-NN has a few
percent points decrease in accuracy with respect to the entry
link scenario, both k-FP and CUMUL perform a few percent
points better when they are applied at the middle. This is
plausible because each classifier uses different features that
may be more or less robust to timing and order differences
between both positions. The accuracy improvement can be
explained by the fact that we used TCP traces at the client,
whereas the middle dataset includes cell traces, conveying a
higher amount of information and including less noise than
TCP traces [30].

Another interesting observation is that discarding all third-
party circuits for training and testing does not impact classifier
accuracy. We attribute this result to the low prevalence of
third party embedded content in onion services (it has been
found on a large dataset of onion services to be less than 20%
overall [6]).

2) Open world scenario: The preceding analysis and re-
sults are applicable to an idealized closed-world scenario
where we try to identify known and trained-on onion websites.
We now consider a more realistic and challenging open-world
setting—one where unseen and unknown onion websites may
be introduced at testing time. We now present an enhancement
of our website fingerprinting techniques for this scenario.

In other recent open-world evaluations, the classifier is only
trained on a small fraction of the web pages in the world. In
this setting, the user may visit any page in the world, including
pages of which the classifier is not aware. These works define
the open world evaluation as a binary problem: the positive
class is formed by a set of monitored pages that the classifier
aims to identify and the negative class by the remaining
non-monitored pages [4], [15], [20], [21], [26], [29]. During
training, the classifier is shown examples of both monitored
and non-monitored pages; however, the majority of the pages
in the non-monitored set are not present in the training set.

In this paper we have approached the open world dif-
ferently. There is no strong support to believe that the non-
monitored samples used for training necessarily represent the
whole world of non-monitored pages because the sample that is
taken to train the classifier is small compared to the population,
i.e., all pages that could possibly be visited. This sample may
bias the classifier toward a specific choice of non-monitored
pages selected for training or not actually help the classifier
discriminate monitored from non-monitored sites. Instead, we
propose to model the open world as a one-class classification
problem: the classifier only takes instances for the monitored
class and draws a boundary between the monitored pages and
all other pages.

0 0.2 0.64 1

·10−2

0

0.4
0.5

ν = 0.2

FPR

T
PR

Fig. 6. ROC curve to optimize the ν parameter. We can see that ν = 0.2
makes a reasonable trade-off between TPR and FPR. To deal with extreme
base rates, it is possible to minimize the FPR at the expense of the TPR.

In particular, we have taken the monitored set to be
composed by one single web page—the best-case scenario for
the adversary in such an open world. We have collected 5,000
instances of a popular social network service (SNS) that is
deployed as an onion site and use 3,750 of the samples to
draw the decision boundary and 1,250 for testing. We have
used 200,000 instances of 2,500 different sites (80 instances
per site) for testing the one-class classifier for onion service
pages that are not the SNS.

For the one-class classifier we have used sklearn’s
implementation of one-class SVM with a radial basis function.
The one-class SVM is parameterized on ν which defines an
upper bound on the fraction of training errors; ν can be
used to adjust the trade-off between False Positives and True
Positives. We plotted the ROC curve to find a value of ν that
maximizes the number of True Positives while keeping a low
False Positive Rate. In Figure 6 we can see that ν = 0.2
achieves such a compromise, providing a FPR lower than 1%
while the TPR is slightly higher than 40%.

We have chosen a subset of CUMUL’s features because
they are also used in an SVM for the closed world prob-
lem [26]. After analyzing different subsets, we found that a
combination of the first and last interpolation points of the
cumulative sum can separate SNS instances from the rest. In
particular, we used the second interpolation point (CUMUL’s
5th feature), describing the first region of packets in the
original trace, and the 87th one (CUMUL’s 90th feature),
which described mid- and end-regions of the trace.

The results are presented in Figure 7 which shows a
projection of the classification space on these two features. The
orange plus marks are the SNS’s training instances, the purple
empty circles are the SNS’s testing instances, and black filled
dots are “Others” instances. The decision boundary learned by
the classifier is depicted by the black line.

As we observe in Figure 7, there are many testing samples
of SNS that fall outside the boundary. This is because we tuned
the classifier to minimize the number of False Positives—
instances of non-SNS pages that are classified as SNS. This
way we achieve a False Positive rate below 1%, but this
has a cost of a large number of False Negatives: the True
Positive rate is 40%. The reason we have optimized for low
FPR instead of TPR becomes is because we are interested in
realistic deployments where the base rate of the positive class
becomes relevant, as we discuss next in Section VI-E.

E. Precision is in the detail
The base rate is the probability that a site is visited,

and can also be interpreted as site popularity. Previous work
has discussed the importance of the effect of the base rate
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Fig. 7. Projection over two CUMUL features of the one-class classification
instances. The plus sign marks are instances used for training the classifier, the
circle marks are SNS instances used to test the positive class and the cross
marks are instances that belong to non-SNS sites used to test the negative
class. The black line shows the boundary that was learned by the classifier
that minimizes False Positives.

of the positive class (i.e., the SNS) on the Precision of the
classifier [20], [21]. Precision is proportional to the number of
samples that our classifier detected as SNS that are actually
SNS. In other words, Precision is an estimate of the probability
that the classifier was correct when it guessed SNS.

Prior work has pointed out that if the base rate of the
positive class (i.e., the SNS) is orders of magnitude lower than
the negative class (i.e., Others), the False Positive Rate (FPR)
has to be negligible so that the classifier can perform with
sufficient Precision [20]. Since we cannot estimate the base rate
of the SNS’s onion site directly for ethical and privacy reasons,
we have evaluated the Precision of our one-class classifier for
several hypothetical base rates.

In Figure 8, we show the Precision, the TPR, the FPR
and training error (i.e., ν). In the graph we see that all of the
metrics are fixed for the whole range of considered base rates,
while precision decreases exponentially when the base rate of
the SNS tends to zero. The vertical dashed line indicates the
base rate (1%) where Precision is 50%; the point where the
classifier is correct only half of the time. These results are
comparable to previous work that evaluated the precision of
the CUMUL classifier and achieved similar results [26].

We further analyzed the sites that the classifier misclas-
sified most often. The distribution of errors over the sites is
shown in Figure 9. We observe that 80% of the errors are
concentrated over 12 of the sites and only 3% of the total
number of sites are responsible for 100% the misclassification.
Based on this observation, we argue that it is possible that even
for 1% FPR (see Figure 8), the classifier may have greater
precision if those 12 sites that are responsible for most of
the errors are less popular. Note that we assumed a uniform
distribution of the sites that belong to the Others sites. Further,
it may be possible to design dedicated classifiers that learn
to distinguish between the SNS and each of these 12 sites
individually in order to reduce the number of False Positives
that the classifier incurs overall.

0.005 0.012 0.05 0.1 0.25 0.5
1 · 10−2

0.2

0.4

0.96

SNS’s base rate (log scale)

Train error TPR FPR Precision

0

0.5

1

R
at

e

Fig. 8. Performance metrics for one-class open world for the SNS’s base
rates ranging from 0.5% to 50%. The vertical dashed line shows the point in
which Precision is 50%.
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Fig. 9. Sites that were confused with the SNS at least once during the
classification (2,443 sites had zero errors). Note that the distribution is heavily
skewed and 80% of all the errors are concentrated in the 0.5% (12) of the
sites (see vertical dashed line) and 3% of the sites (75) include all the errors.

We manually checked the 12 sites that were misclassified
as the SNS some weeks after we crawled them. Five of the
sites were offline and one of them had been seized by the
German Federal Criminal Police. The remaining sites were
up and are of a diverse nature: one is a personal homepage,
two are movie streaming sites, another is a porn site, one is
a hacking page and, surprisingly, the last one is the download
page for the SecureDrop anonymous whistle-blowing software
(secrdrop5wyphb5x.onion) run by the Freedom of the
Press. We believe that they were confused with the SNS’s
onion service page due to similarities in page size.

VII. ONION SERVICE POPULARITY MEASUREMENT
We showed in Section V how a relay can predict that it

is serving as a middle (in the R-C-M1 position) and on a
rendezvous onion service circuit with high confidence, and we
showed in Section VI how website fingerprinting techniques
can be used to accurately predict which onion service webpage
is visited. In this section, we validate our previous results
and show the practicality of the techniques that we developed
through a privacy-preserving measurement of the popularity of
a social networking site (SNS) accessible as an onion service.

A. Measurement Goals and Methodology
Tor circuit and website fingerprinting techniques have

thus far been discussed in the literature in the context of
client deanonymization attacks. The goal of the measurement
study in this section is to show how to use the classification
techniques presented in the previous sections not for client
deanonymization, but to predict accesses to and safely measure
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the popularity of an onion service SNS. In this study, we
seek to: (i) develop a reusable framework for safe onion
service popularity prediction and measurement; (ii) validate
our classification techniques from the previous sections by
running them in real time in a realistic public Tor network
environment on live Tor traffic (something that has never been
done before to the best of our knowledge); and (iii) show how
our proof-of-concept measurement framework can be used to
discover the popularity of an onion service in the open-world.
Note that doing this measurement safely is a primary goal that
is further discussed below in Section VII-D.

Achieving these goals involves several components. First,
we run middle relays in the Tor network that provide resources
to Tor users. Second, our relays must predict which circuits in
which they are serving are onion service circuits (specifically,
rendezvous circuits since those are used to access web content).
Third, our relays must predict when they are in a middle
position of circuits in which they are serving (specifically,
the R-C-M1 position since our classifiers were trained for
that position). Finally, our relays must predict which of the
predicted rendezvous circuits in which they predict the R-C-
M1 position are used to access the SNS. We next explain the
tools that we built, modified, and used to realize these goals.

B. Measurement Tools
We enhance PrivCount [19], an existing privacy-preserving

Tor measurement tool,8 to use a new prediction library that we
developed to allow us to make predictions in real time on real
Tor relay traffic.

1) PrivCount Overview: PrivCount is a distributed mea-
surement tool, based on the secret-sharing variant of
PrivEx [11], that can be used to safely measure Tor. PrivCount
works by extracting events from a Tor process and then
counting the occurrence of those events across a set of relays.
PrivCount consists of a tally server, several share keepers,
and several data collectors (one for each relay in a set of
measurement relays). The tally server acts as a centralized,
but untrusted, entity that is primarily used as a proxy to
facilitate data transfer between the other nodes and as a single
aggregation point following a completed measurement phase.
Each data collector initializes each counter that it is configured
to count with differentially-private noise, and also with random
blinding values that are secret shared to each share keeper.
After initialization, each counter on each data collector and
share keeper will appear to hold a random value. The data
collectors each connect to their configured Tor relay, extract
events, and increment the configured counters when appropri-
ate. At the end of a measurement phase, the data collectors
and share keepers send their counter values to the tally server
for aggregation. After aggregation, the blinding values that
were stored on the share keepers during the measurement will
cancel out with the blinding values that were added at the
data collectors, and the final output will be the sum of the
true counter value and the differentially-private noise that was
added by the data collectors.

The noise that is added to each counter protects users
under differential privacy [9], and the blinding values provide
for secure aggregation across measurement relays. No data
collector can learn anything about the counters of other relays
not also controlled by the same operator, and individual data

8https://github.com/privcount

collector contributions to the final aggregated counter values
are hidden (by the random blinding values) as long as at
least one share keeper is honest. Jansen and Johnson provide
additional PrivCount details and proofs of PrivCount’s security
and privacy properties [19].

2) Enhancing PrivCount: PrivCount supports a wide range
of statistics (e.g., number of circuits, amount of data trans-
ferred, etc.), and we enhanced it to support counting the real-
time predictions of a circuit’s purpose, a relay’s position in
a circuit, and the onion page being accessed in a circuit. To
enable these predictions, we utilize a version of Tor that has
been modified to allow for circuit signaling as described in
V-A1, and to export the same circuit and cell meta-data that we
discussed in V-A2. We use circuit signaling to collect ground
truth during the measurement while separating ground truth
circuits that we created from regular circuits that we did not
(see Section VII-E for more details).

We developed a new library for PrivCount called
onionpop9 that implements the classifiers needed for pre-
diction. The onionpop library extracts the features we need
for each of the three classifiers from Tor circuits and cells,
and wraps the python sklearn and pyarborist APIs to
train the classifiers and predict purpose, position, and webpage.
We train our models to make binary predictions of when the
purpose is rendezvous, position is R-C-M1, and webpage is
the front page of our SNS of interest. We added new counters
to PrivCount to record the results of the predictions.

Due to its sensitive nature, we do not log any information
to disk from circuits that we did not originate ourselves.
Therefore, a significant concern during the development of our
prediction library is that PrivCount will need to process cell
information from fast Tor relays in real time. For safety, we
store circuit and cell meta-data in RAM only for the lifetime of
the circuit; when the circuit ends, we run our predictions, in-
crement counters to count the results, and then clear the corre-
sponding circuit and cell meta-data from RAM. This is consis-
tent with PrivCount’s data storage model, however, it requires
that we process and store a potentially large number of cells.
To mitigate potential memory and computational resource
bottlenecks, we implement a configurable hard upper limit on
the number of cells that we store per circuit (well above the
amount we need to distinguish the SNS) and only process
a subset of the circuits on our relays by sampling circuits
uniformly at random according to a configurable sample rate.

C. PrivCount Deployment
We set up a PrivCount deployment with 1 tally server,

3 share keepers, and 17 data collectors each connecting to
a distinct Tor relay. These nodes were distributed among 3
operators and hosted in 3 countries (Canada, France, and the
United States). Each of the relays ran our modified version
of Tor, and each of the tally server, share keepers, and data
collectors ran our modified version of PrivCount.10

1) Privacy: Our PrivCount deployment uses the parameters
and privacy budget allocation techniques set out by Jansen
and Johnson [19]. Specifically, we use differential privacy
parameters ε = 0.3 (which has also been used by Tor [13]), and
δ = 10−3 (which is an upper bound on choosing a noise value
that violates ε-differential privacy). Our deployment provides

9https://github.com/onionpop/onionpop
10All framework components are available at https://github.com/onionpop.
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TABLE V. DAILY ACTION BOUNDS FOR PRIVCOUNT DEPLOYMENT

Action Bound

New general-purpose circuits 90
New rendezvous circuits 48

Client-side rendezvous circuits 24
Server-side rendezvous circuits 24
Client-side rendezvous circuits to SNS 2

TABLE VI. COMBINED POSITIONAL RELAY BANDWIDTH BY
PERCENT FOR PRIVCOUNT DEPLOYMENT

Round Guard Middle Exit Intro. Rend.

Measurement 1 1.15% 0.78% 3.52% 0.88% 0.78%
Measurement 2 1.30% 0.87% 3.11% 0.99% 0.87%
Measurement 3* 1.03% 0.68% *0.0% 0.77% 0.68%

* To mitigate potential resource issues, exit relays were excluded from
measurement 3 (the classification round) since they would not have
contributed to middle relay onion service prediction counters.

privacy according to the daily action bounds shown in Table V,
which are all based on circuit counts since that is what our
deployment will measure; users whose actions stay below these
bounds will be protected under differential privacy. We protect
users who use 90 or fewer general-purpose circuits per day,
which could be used to access one site every ten minutes for 8
hours plus 10 additional circuits. We protect users who use 48
or fewer rendezvous circuits per day when not distinguishing
between client-side or server-side, and otherwise 24 or fewer
each of client-side and server-side rendezvous circuits per day:
75 percent of the onion sites we crawled (Section VI) used 4 or
fewer circuits, and so the number of circuits we protect could
be used to access 1 onion site every 10 minutes for one hour.

2) Measurement Rounds: We ran three different 24-hour
long measurement rounds. The first round of measurements
was used to calibrate the noise added to our counters. We
used previously published measurements of Tor activity [19]
to allocate our privacy budget across the configured counters.
We then measured general and onion service circuit usage from
different relay positions to obtain updated estimates of circuit
activity, which we used to adjust the allocation of our privacy
budget in the subsequent rounds.

In the second measurement round, we focused on measur-
ing the number of direct connections from the SNS of interest
to our relays serving in the rendezvous position based on the IP
address and autonomous system (AS) number of the SNS. This
was possible because the SNS runs a single onion service that
connects directly to the rendezvous point rather than a normal
onion service which builds a three-hop circuit to connect. This
set of measurements allow us to verify our circuit purpose and
position classifiers.

In the third measurement round, we enabled our classifiers
and focused on counting the results of the predictions. We also
configured a crawler under our control to access the SNS in
order to assert that our deployment was working properly and
to cross check our prediction results (the prediction results
for our crawler’s circuits were kept separate from the results
for other circuits). During round three only, we configured
a circuit sample rate of 0.12 and excluded our exit relays
from the measurement (since they would not contribute to the
middle relay prediction counters) in order to prevent resource
bottlenecks in our deployment pipeline. The percentage of
Tor network bandwidth that the relays in our deployment con-
trolled during each measurement round is shown in Table VI.

D. Research Ethics and User Safety
Our measurement study explicitly prioritizes user safety

as a primary goal. We practice data minimization, limit mea-
surement granularity, and provide additional security to the
measurement process as described above. We have incorpo-
rated feedback from the Tor Research Safety Board11 into our
methodology: on suggestion of the board we created a website
explaining our study12 and linked our measurement relays to
it, and we informed the SNS of our intentions to measure their
site (although we did not receive a response from any of the
employees of the SNS).

Because the main classification-based measurements are
done from middle relay positions, onion-encryption technically
prevents us from learning any client-identifying information.
Although this protects users to some extent, we further protect
users by utilizing the state-of-the-art in safe Tor measurement
tools and techniques. Specifically, we use PrivCount and the
techniques set out by Jansen and Johnson [19] and Elahi
et al. [11] to provide differential privacy and securely aggregate
measurements across all of our relay data collectors.

The PrivCount counters are initiated to noisy values to
ensure differential privacy is maintained, and are then blinded
and distributed across several share keepers to provide a secure
aggregation process. At the end of the process, we learn only
the value of these noisy counts aggregated across all data
collectors, and nothing else about the information that was
used during the measurement process. Specifically, we do
not learn relay-specific inputs to the final counter value, and
client usage of Tor during our measurement is protected under
differential privacy.

Importantly, we chose to show our proof-of-concept by
only predicting accesses to a single onion site that we believed
had non-trivial usage and that already has implied that it does
not require anonymity by running a non-anonymous single
onion service. We explicitly chose not to measure additional
regular onion sites because: (i) we did not believe it was
necessary to show the effectiveness of our techniques; (ii) we
wanted to avoid leaking more information than necessary about
specific onion site usage; and (iii) running a hidden onion
service would imply that anonymity is required or at least
desired by the service.

E. Results
In addition to measuring the results of our classifiers, we

also focused our PrivCount deployment on direct measure-
ments that would allow us to validate our classification results.

1) Direct Measurements: The direct measurement results
are shown in Table VII. We measured the number of observed
circuits on our relays from the circuit entry, middle, and end
(including various types of rendezvous circuits). Our measure-
ments indicate a significantly lower number of onion service
rendezvous circuits compared to non-onion service circuits,
as expected. While we discuss how these measurements give
us an idea of popularity below, here we note that there are
more than an order of magnitude fewer rendezvous circuits
compared to non-onion service circuits.

Because there are many circuits built in Tor over the period
of a day, the relative accuracy of our direct measurements is
quite high: most of the 95% confidence intervals lie between

11https://research.torproject.org/safetyboard.html
12https://onionpop.github.io
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TABLE VII. RESULTS FOR DIRECT MEASUREMENT OF ONION
SERVICE PROTOCOL

Circuit Count Description Count ± 95% CI

Entry 20,351,667 ± 3.45%
Middle 16,212,157 ± 4.33%
End (Exit + Rendezvous + etc.) 18,904,815 ± 3.71%

Rendezvous (Client or Service) 272,180 ± 5.15%
Rendezvous Client 136,191 ± 5.15%
Rendezvous Service 136,874 ± 5.12%

Rendezvous Service to SNS ASN 718 ± 91.64%

Exit + Rendezvous Client 11,327,103 ± 6.19%
Exit + Rendezvous Service 11,394,600 ± 6.16%

TABLE VIII. RESULTS FOR MEASUREMENT OF ONION SERVICE
CLASSIFIER DETECTION

Classifier # Positives # Negatives

Purpose is Rendezvous* 114,762±28.54% 2,444,166±79.82%
Ground Truth Tests** 645 (100%) 0 (0%)

Position is R-C-M1* 49,679±32.99% 68,022±48.15%
Ground Truth Tests** 623 (96.5%) 22 (3.4%)

Site is SNS* 10±1200% 45,376±36.12%
Ground Truth Tests** 374 (60.0%) 249 (40.0%)

* These values may appear lower than expected because we sampled circuits
at a rate of 12% due to resource constraints.
** The ground truth tests were run with a crawler accessing the SNS during
measurement, so these values represent true positives and false negatives.

3 and 6 percent. The one outlier is the direct measurement
from the rendezvous node position of connections from the
SNS ASN, which we can use to measure its popularity since
this particular SNS runs a single onion service. The confidence
interval is higher than expected (91.64%) which indicates that
the SNS onion service is much less popular than expected,
with potentially fewer than one hundred accesses through our
relays during our measurement period.

2) Classifier Measurements: A primary purpose of our
measurement is to test the ability of our classifiers to detect
when a relay serves on a rendezvous circuit, in the R-C-M1
position, and if it can identify accesses to a site of interest (SNS
in our case). To do this, we send circuit meta-data (including
cell meta-data for cells transferred on the circuit) to our classi-
fiers when the circuit ends and record the detection results. We
also run a crawler that creates rendezvous circuits through our
middle relays during our measurement. The circuits created by
our crawler provide ground truth that we can use to evaluate
the classifiers’ true positive and false negative rates.

Our classifier detection measurement results (including our
ground truth crawler tests) are shown in Table VIII. We
again see a similar trend in that an order of magnitude fewer
rendezvous circuits are detected compared to non-rendezvous
circuits. With these measurements, there is a significant amount
of noise associated with our measurements; this is primarily
because we added the full amount of noise to provide dif-
ferential privacy while at the same time sampling only 12%
of circuits due to resource constraints. This has significantly
increased the relative noise in our measurements. As in our
direct measurements, the low number of SNS circuits has also
caused our measure of the number of positive SNS detections
to appear insignificant due to the large confidence interval asso-
ciated with the noise that we added in order to protect privacy.

Our ground truth measurements show that the true positive
rate for the purpose classifier was 100%, the true positive rate
for the position classifier was 96.5% while the false negative

TABLE IX. LIKELY ONION SERVICE POPULARITY BY FRACTIONS OF
CIRCUITS OF VARIOUS TYPES

Description Method Popularity

Onion Service Popularity (as % of non-onion circuits)
Rendezvous / Entry Direct 1.34%
Rendezvous / End Direct 1.45%
Rendezvous Client / Exit + Rendezvous Client Direct 1.20%
Rendezvous Service / Exit + Rendezvous Service Direct 1.20%
Purpose is Rendezvous / Total Classified 4.48%

SNS Popularity (as % of onion circuits)
Rend. Service to SNS ASN / Rend. Service Direct 0.52%
Site is SNS / Total Classified 0.02%

rate was 3.4%, and the true positive and false negative rates for
the SNS classifier were 60% and 40%, respectively. With these
results, we are optimistic that our classifiers are functioning as
intended. We assert that an adversary who is not concerned
with privacy (and does not add noise) would be able to make
much more precise measurements than we describe here.

3) Popularity: We estimate the popularity of the onion
service protocol by computing the fraction of middle relay
circuits that are rendezvous circuits. Middle relays that do not
serve as the rendezvous point on a circuit cannot determine
with certainty whether or not the circuit is a rendezvous circuit,
but they can predict it by running our circuit purpose classifier.
As previously discussed, we also measure the popularity of the
onion service protocol independently and directly when our
relays do serve as rendezvous points, since in that case our
relays can distinguish client-side and server-side rendezvous
circuits from others.

Our popularity estimates are shown in Table IX. The entries
in the table show several ways one could estimate popularity,
with our classification-based estimates at the bottom of each
section. The direct measurement approaches indicate that onion
service popularity is between 1% and 1.5% based on circuit
counts; for comparison, 0.9% of Tor traffic by volume (i.e.,
bytes) is onion service traffic (900 Mbit/s onion13 of 100
Gbit/s total14) according to Tor metrics. Our classification-
based estimate is a bit higher at 4.48%, but we note this result
includes noise and an unknown number of false positives.
Similarly, our direct measurement of accesses to the SNS onion
site front-page is 0.52% of rendezvous service circuits whereas
our classification-based estimate is 0.02%.

F. Discussion
Our laboratory results from the previous sections show that

WF at the middle relay position is just as effective w.r.t. recall
and precision as has been shown from the guard position in
previous works—both for closed- and open-world scenarios.
On the other hand, our real-world results indicate that the base-
rate of the site we chose (i.e., the SNS) was too low for our
classifier to provide high confidence for its counter. However,
what we can learn with high confidence is that the popularity
of the SNS as an onion service is almost negligible when
comparing SNS onion service circuits to all other onion service
circuits. This result was unexpected: our intuition for picking
this particular SNS was that it is known to be one of the most
popular websites in the world. Our results show that a much
lower FPR—up to two orders of magnitude lower—is neces-
sary for WF to be useful in measuring individual onion sites.

13https://metrics.torproject.org/hidserv-rend-relayed-cells.html
14https://metrics.torproject.org/bandwidth.html
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VIII. RELATED WORK
Although there are many studies that explore the extent to

which traffic analysis can leak information on Tor [12], [23],
[24], here we focus on website and onion site fingerprinting.

A. Tor Website Fingerprinting Attacks
The first WF attack on Tor was proposed and evaluated

by Herrmann et al. and only achieved 3% success rate [15].
This research area has since seen great activity and the latest
WF studies achieve more than 90% accuracy under specific
conditions and scenarios [4], [14], [26], [28], [29], [30].

Recent work attempted to address WF on non-onion web-
sites in an open world model and increases the scalability of
evaluation approaches [26], but the closed world model has
been considered realistic for the evaluation of WF on onion
services [6] due to their limited number. It has been shown
that a local and passive adversary can effectively detect onion
service visits using circuit fingerprinting, and then apply web-
site fingerprinting methods to infer to which website they be-
long [22]. Errors when classifying onion service websites have
been explored in order to further improve WF techniques [25],
but the practicality of monitoring a realistic number of sites
even in the smaller onion service world is still in question [27].

To the best of our knowledge, we are the first to apply
circuit, position, and WF techniques from middle relays, and
we are the first to use our classification techniques on traffic
initiated from real Tor users. While we apply our techniques
for measurement purposes, recent work has shown how our
techniques can be used to further target specific users [17].

B. Tor Website Fingerprinting Defenses
Several defenses have been designed to mitigate WF at-

tacks. Most of these defenses are based on link padding [10],
[21], [29], that is, adding dummy messages that are indistin-
guishable from real ones in order to make the features that
WF exploit ineffective. Prior work assumes that the middle
collaborates in the defense and removes the padding, in which
case our techniques would not be affected. End-to-end padding
that does not depend on collaborating Tor infrastructure [6]
could disrupt the traffic analysis techniques we leverage, but
would come at a prohibitively-high performance cost.

Restricted routing—e.g., if middles were chosen and used
long term as is currently the case with guards—would limit the
number of users from which a middle could observe circuits.
In that case, middles could lose much of the advantage over
guards as preferential observation points.

C. Onion Site Enumeration
Existing HSDir lookup protocols have been shown to be

vulnerable to attack by an adversary running low-bandwidth
relays [3]. By exploiting the lookup protocols, an adversary
running an HSDir can directly measure the popularity of the
onion services whose addresses are assigned to it. Previous
work has used this approach to better understand the popularity
of content in the onion service ecosystem [2]. These attacks
can be mitigated by changes in the HSDir protocol.

Tor is currently deploying next-generation onion services
in order to limit the effectiveness of onion service enumeration
attacks, but the planned defenses will not significantly change
the flow of cells through a circuit (like padding does) and
therefore we believe that they will not significantly affect the
accuracy of our techniques.

IX. CONCLUSION
We have shown that a significant amount of information is

leaked to middle relay positions, although the extent of this
threat is often overlooked. We describe how the design of Tor
admits to middle relays a wider visibility over all users of
the network because clients pick new middle relays for every
circuit that they build. We have shown through extensive data
collection and experimentation that traffic analysis techniques
are as effective from internal middle positions as they are from
ingress and egress (guard and exit) positions. In particular, we
have built a traffic analysis pipeline that can detect a relay’s
position in a circuit, the purpose of the circuit, and identifies
the onion service being accessed through a circuit. We have
then put the pipeline into practice to measure the popularity of
a well-known social network onion service: we are the first to
apply these traffic analysis techniques on real Tor user traffic to
the best of our knowledge. Although our measurement results
are constrained in scale and accuracy due to resource and
ethical concerns (constraints not shared by malicious actors),
our framework provides the means to study effective mitigation
to potential threats and to gather additional measurements.

A. Lessons Learned
It is clear that more progress needs to be made and this

present work provides positive first steps in that direction.
We anticipate that classification techniques at middle relay
positions will not deteriorate and point out some of the
challenges to deploying them in the real-world. First, our
pipeline was created in order to reduce the number of circuits
that need to be processed by the WF classifier; we filter out real
user circuits for training and non-onion service circuits with
the circuit classifier during testing. This greatly reduced the
overhead both in training and testing and improved our results.
Therefore, careful filtering and data pre-processing are keys to
successful real-world deployments. Second, our measurement
was done in real-time: everything was kept in RAM, and we
used a low circuit sampling rate of 0.12 due to computational
and memory limitations. We found that real-world scale may
overwhelm available resources and pragmatic compromises
may need to be made. Third, we were very concerned with
user safety in our real-world measurements and hence our
results are noisy. Depending on the use-case (e.g., a malicious
actor), noise may not be necessary; removing this requirement
would reduce the operational overhead of running the privacy-
preserving apparatus and may allow higher sampling rates.

B. Future Work
Using our current WF classification pipeline, an adversary

could target the guards that originate connections to websites
of interest (e.g., the SNS). We have shown that there are a
small number of SNS circuits, and therefore the set of guards
used to access the SNS would also be small. An adversary
could reduce the time and cost of a targeting attack by focusing
on only these guards rather than, e.g., compromising guards
at random and waiting until it is used to access a website
of interest. Some related target attacks that depend on our
techniques have recently been explored [17].

An alternative to compromising guards that route interest-
ing connections is locating the originating client or destination
onion service using middle relay network latency measure-
ments. Hopper et al. [16] show the effectiveness of such
attacks from malicious websites. Mapping latency between
an adversarial middle and all Tor relays (or at least the
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most popular) [5] would assist in narrowing the network and
geographic location of circuit originators (e.g., to a region or
possibly a country).

An adversary could fingerprint protocols instead of web-
sites to target a broader base of users. For example, a censoring
regime may fingerprint Tor’s pluggable transports (PT) from
the middle relay positions. Fingerprinting PTs from the client-
side—which is the current state-of-the-art—has a high FPR
since PTs are designed to be confused with other protocols that
the censor is reluctant to block. In contrast, fingerprinting PTs
at a middle does not provide this same confusion since only Tor
traffic is present in the Tor network and the protocols that the
censor is reluctant to block (e.g., HTTPS) are not present. As-
suming that the censor already has the ability to identify users
on the client-side, the censor could greatly reduce the incidence
of false positives in detecting PT circuits. Furthermore, using
timing correlations between client-side observations could also
identify PT users, and an adversary could use our fingerprinting
techniques to identify which websites PT users visit.
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