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Abstract. This paper presents a novel use of pairing-based cryptogra-
phy to improve circuit construction in onion routing anonymity networks.
Instead of iteratively and interactively constructing circuits with a tele-
scoping method, our approach builds a circuit with a single pass. The
cornerstone of the improved protocol is a new pairing-based privacy-
preserving non-interactive key exchange. Compared to previous single-
pass designs, our algorithm provides practical forward secrecy and leads
to a reduction in the required amount of authenticated directory infor-
mation. In addition, it requires significantly less computation and com-
munication than the telescoping mechanism used by Tor. These proper-
ties suggest that pairing-based onion routing is a practical way to allow
anonymity networks to scale gracefully.

1 Introduction

The concept of onion routing [23] plays a key role in many efforts to provide
anonymous communication. In the world of cryptographic protocols, bilinear
pairings [9] have also had comparable impact. Their meeting is not surpris-
ing. This paper applies pairing-based cryptographic techniques—namely non-
interactive key agreement—to the problem of session key establishment in ano-
nymity networks based on onion routing. We show that this approach offers
better performance, evidenced by reduced computational cost and fewer net-
work communications. This improved performance is of particular interest to
low-latency anonymity networks, as it increases responsiveness and network ca-
pacity. While using fewer resources for cryptography, we are careful to simulta-
neously meet the security goals provided by existing methods.

1.1 Our Contributions

This paper makes four primary contributions in the field of anonymous commu-
nication.

1. We define a privacy-preserving key agreement protocol using bilinear pairings
in an identity-based infrastructure. We then adapt it to achieve unilateral
(one-way) anonymity with non-interactive key agreement.
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2. We use our protocol to build onion routing circuits for anonymity networks
like Tor [7]. Our protocol constructs a circuit in a single pass and also pro-
vides a practical way to achieve forward secrecy.

3. The performance of our circuit construction protocol surpasses that of Tor,
requiring significantly less computation and fewer network communications.

4. Our protocol does not require the public keys of onion routers to be au-
thenticated. This reduces the load on directory servers and improves the
scalability of anonymity networks.

The anonymous authentication scheme we present extends the non-interactive
key agreement scheme of Sakai, Ohgishi, and Kasahara [25]. Previous work re-
lated to pairing-based key exchange, as well as to anonymity networks, is covered
in Section 2. We describe the cryptographic protocols in Section 3, and an onion
routing system built with a Boneh-Franklin identity-based infrastructure in Sec-
tion 4. Some of the more practical issues in such a system are discussed in Section
5. Finally, we compare our computational and communications costs to those of
Tor in Section 6, and Section 7 concludes.

2 Related Work

Over the years, a large number of anonymity networks have been proposed and
some have been implemented. Common to many of them is onion routing, a
technique whereby a message is wrapped in multiple layers of encryption, form-
ing an onion. As the message is delivered via a number of intermediate onion

routers (ORs), or nodes, each node decrypts one of the layers, and forwards the
message to the next node. This idea goes back to Chaum [3] and has been used
to build both low- and high-latency communication networks. Formalizations
and security discussions of onion routing can be found in [2, 17, 19, 28].

A common realization of an onion routing system is to arrange a collection
of nodes that will relay traffic for users of the system. Some examples are [5, 7,
10, 23, 24] (the related work section of [7] contains a thorough list). To date, the
largest onion routing system is Tor, which has approximately 1000 onion routers
and hundreds of thousands of users [29]. These numbers (and their growth)
underscore the demand for anonymity online.

To use a network of onion routers, users randomly choose a path through the
network and construct a circuit—a sequence of nodes which will route traffic.
After the circuit is constructed, each of the nodes in the circuit shares a symmet-
ric key with the user, which will be used to encrypt the layers of future onions.
In the original Onion Routing project [13, 23, 28] (which was superseded by Tor)
circuit construction was done as follows. The user created an onion where each
layer contained the symmetric key for one node and the location of the next
node, all encrypted with the original node’s public key. Each node decrypts a
layer, keeps the symmetric key and forwards the rest of the onion along to the
next node. The main drawback of this approach is that it does not provide for-
ward secrecy (as defined in [7]). Suppose a circuit is constructed from the user
to the sequence of nodes A ⇔ B ⇔ C, and that A is malicious. If A records the
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traffic, and at a later time compromises B (at which point he learns the next
hop is C), then compromises C, the complete route is known, and A learns who
the user has communicated with.

A possible fix for this problem is to frequently change the public keys of
each node. This limits the amount of time A has to compromise B and C, but
requires that the users of the system frequently contact the directory server to
retrieve authentic keys. Later systems constructed circuits incrementally and in-
teractively (this process is sometimes called telescoping). The idea is to use the
node’s public key only to initiate a communication during which a temporary
session key is established via the Diffie-Hellman key exchange. Tor constructs cir-
cuits in this way, using the Tor authentication protocol (TAP). TAP is described
and proven secure in previous work of the last author [12].

Trade-offs exist between the two methods of constructing circuits. Forward
secrecy is the main advantage of telescoping, but telescoping also handles nodes
that are not accepting connections; if the third node is down during the con-
struction of a circuit, for example, the first two remain, and the user only needs
to choose an alternate third. Information about the status and availability of
nodes is therefore less important. The drawback of telescoping is the cost; estab-
lishing a circuit of length ℓ requires O(ℓ2) network communications, and O(ℓ2)
symmetric encryptions/decryptions.

Privacy-preserving authentication schemes can be one- or two-way (also re-
ferred to as unilateral or bilateral). After one-way authentication between Anony-
mous and Bob, Anonymous has confirmed Bob’s identity and Bob learns nothing
about Anonymous, except perhaps that he or she is a valid user of a particular
system. In a two-way scheme, both users can confirm they are both valid users
without learning who the other is.

The work of Okamoto and Okamoto [20] presents schemes for anonymous au-
thentication and key agreement. In Rahman et. al. [22], an anonymous authenti-
cation protocol is presented as part of an anonymous communication system for
mobile ad-hoc networks. The protocols in both papers are complex, and limited
motivation is given for design choices. Further, both papers neglect to discuss
the security of their proposed protocols. The protocols we present in Section 3.2
are a great deal simpler than previous protocols. This allows them to be more
easily understood, and simplifies the discussion of their security, which appears
in Section 3.3.

Previous protocols (as well as ours) owe a lot to the non-interactive key
exchange protocol of Sakai, Ohgishi and Kasahara [25]. In the next section, we
will review their scheme after covering relevant background material.

3 Pairing-Based Key Agreement with User Anonymity

In one of the pioneering works of pairing-based cryptography, Sakai et al. sug-
gested an identity-based, non-interactive key agreement scheme using bilinear
pairings [25]. In this section, we extend this key agreement scheme. We replace
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the identities of the participants by pseudonyms and our new scheme provides
unconditional anonymity to participating users.

3.1 Preliminaries

We briefly review bilinear pairings and the original non-interactive key agreement
scheme of Sakai et al. For a detailed presentation of pairings and cryptographic
applications thereof see Blake et al. [9] and references therein.

Bilinear Pairings. Consider two additive cyclic groups G and Ĝ and a multi-
plicative cyclic group GT , all of the same prime order n. A bilinear map e is a
map e : G × Ĝ → GT with following properties.

1. Bilinearity: For all P ∈ G, Q ∈ Ĝ and a, b ∈ Zn, e(aP, bQ) = e(P, Q)ab.
2. Non-degeneracy: The map does not send all pairs in G × Ĝ to unity in

GT .
3. Computability: There is an efficient algorithm to compute e(P, Q) for any

P ∈ G and Q ∈ Ĝ.

Our protocols, like many pairing-based cryptographic protocols, use a special
form of bilinear map called a symmetric pairing which has G = Ĝ. For such
pairings e(P, Q) = e(Q, P ) for any P, Q ∈ G. The modified Weil pairing over
elliptic curve groups [30] is an example of a symmetric bilinear pairing. In the
rest of the paper, unless otherwise specified, all bilinear pairings are symmetric.

The Bilinear Diffie-Hellman Assumption. The Bilinear Diffie-Hellman

(BDH) problem is to compute e(P, P )abc ∈ GT given a generator P of G and
elements aP, bP, cP for a, b, c ∈ Z

∗

n. An equivalent formulation of the problem,
due to the bilinearity of the map, is to compute e(A, B)c given a generator P of
G, and elements A, B and cP .

If there is no efficient algorithm to solve the BDH problem for 〈G, GT , e〉,
they are considered to satisfy the BDH assumption.

Boneh-Franklin Setup and Non-Interactive Key Agreement. In a Boneh-
Franklin Identity-Based Encryption (BF-IBE) setup [1], a trusted authority,
called a private key generator (PKG), generates private keys (di) for clients
using their well-known identities (IDi) and a master secret s. A client with iden-
tity IDi receives the private key di = sH(IDi) ∈ G, where H : {0, 1}∗ → G is a
full-domain cryptographic hash function.

Sakai et al. observed that, with such a setup, any two clients of the same
PKG can compute a shared key using only the identity of the other participant
and their own private keys. Only the two clients and the PKG can compute
this key. For two clients with identities IDA and IDB, the shared key is given
by KAB = e(QA, QB)s = e(QA, dB) = e(dA, QB) where QA = H(IDA) and
QB = H(IDB).

Dupont and Enge proved this protocol is secure in the random oracle model
assuming the BDH problem in 〈G, GT , e〉 is hard [8].
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3.2 Anonymous Key Agreement

We observe that by replacing the identity hashes with pseudonyms generated
by users, a key agreement protocol with unconditional anonymity is possible. In
our protocol, a participant can confirm that the other participant is a client of
the same PKG, but can not determine his identity. Each client can randomly
generate many possible pseudonyms and the corresponding private keys.

Suppose Alice, with (identity, private key) pair (IDA, dA), is seeking ano-
nymity. She generates a random number rA and creates the pseudonym and
corresponding private key (PA = rAQA = rAH(IDA), rAdA = sPA). In a key
agreement protocol, she sends the pseudonym PA instead of her actual identity
to another participating client, who may or may not be anonymous. For two
participants (say Alice and Bob) with pseudonyms PA and PB, the shared session
key is given as

KAB = e(PA, PB)s = e(QA, QB)rArBs

where rA and rB are random numbers generated respectively by Alice and Bob. If
Bob does not wish to be anonymous, he can just use rB = 1 instead of a random
value, resulting in PB = QB. If persistent pseudonymity is desired instead of
anonymity, the random values can easily be reused.

Two participants can perform a session key agreement by exchanging pseudo-
nyms. Further, two participants can also perform an authenticated key agree-
ment by modifying any secure symmetric-key based mutual authentication pro-
tocol and simply replacing their identities by their pseudonyms.

One-Way Anonymous Key Agreement. Anonymous communication gen-
erally requires anonymity for just one of the participants; the other participant
often works as a service provider and the anonymous participant needs to con-
firm her identity. In the key agreement protocol, the service provider uses her
actual identity rather than a pseudonym. Further, in this one-way anonymity
setting two participants can agree on a session key in a non-interactive manner.
A non-interactive scheme to achieve this is defined next.

Suppose Alice and Bob are clients of a PKG. As before, Alice has identity
IDA and private key dA = sQA = sH(IDA). Alice wishes to remain anonymous
to Bob, but she knows Bob’s identity IDB.

1. Alice computes QB = H(IDB). She chooses a random integer rA ∈ Z∗

n,
generates the corresponding pseudonym PA = rAQA and private key rAdA =
sPA, and computes the session key KAB = e(sPA, QB) = e(QA, QB)srA . She
sends her pseudonym PA to Bob.

2. Bob, using PA and his private key dB, computes the session key KAB =
e(PA, dB) = e(QA, QB)srA .

Note that in step 1, Alice can also include a message for Bob symmetrically
encrypted with the session key; we will use this in Section 4. Note also that in
practice, the session key is often derived from KAB, and not KAB itself.
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Key Authentication and Confirmation. In most one-way anonymous com-
munication situations, it is also required to authenticate the non-anonymous
service provider. With the non-interactive protocols of this section, the key is
implicitly authenticated; Alice is assured that only Bob can compute the key. If
Alice must be sure Bob has in fact computed the key, explicit key confirmation
can be achieved by incorporating any symmetric-key based challenge-response
protocol.

3.3 Security and Anonymity

In this section, we discuss the security and anonymity of our key agreement
schemes in the random oracle model. We make following claims:

Unconditional Anonymity: It is impossible for the other participant in a pro-
tocol run, the PKG or any third party to learn the identity of an anonymous
participant in a protocol run.

No Impersonation: It is infeasible for a malicious client of the PKG to im-
personate another (non-anonymous) client in a protocol run. In the case of
persistent pseudonymity, it is not feasible for a malicious entity to commu-
nicate using a different entity’s pseudonym.

Session Key Secrecy: It is infeasible for anyone other than the two partici-
pants or the PKG to determine a session key generated during a protocol
run.

Next, we discuss each of our claims in detail.

Unconditional Anonymity. For an anonymous client with identity IDC , the
pseudonym PC = rCQC ∈ G is the only parameter exchanged during the pro-
tocol that is derived from her identity. Because G is a cyclic group of prime
order, multiplying by the random rC perfectly blinds the underlying identity.
The anonymity set is restricted to the clients of a PKG, unless a random pair
(U, dU ) ∈ G is made public. In the latter case, anyone can generate a pseudonym
and participate in the protocol using (U, dU ).

No Impersonation. Suppose an adversarial client with IDadv, dadv wishes to
impersonate a non-anonymous participant (say, Bob with IDB) while communi-
cating with an anonymous client with pseudonym PA. The adversary would need
to compute KAB = e(PA, QB)s given PA, QB, QAdv and sQAdv. But this is just
the BDH problem, so under the BDH assumption on 〈G, GT , e〉, impersonation
of other clients is infeasible.

Similarly, if the adversary wishes to communicate with Bob using the per-
sistent pseudonym PA of some other pseudonymous entity, it must compute
KAB = e(PA, QB)s given PA, QB, QAdv and sQAdv. Again, the adversary must
solve the BDH problem.
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Session Key Secrecy. Dupont and Enge [8] prove the security of the key
agreement scheme of Sakai et al. in the random oracle model. According to
this proof, an attacker cannot compute the shared key if the BDH assumption
holds on 〈G, GT , e〉, and H is modelled by a random oracle. Our protocol simply
modifies that of Sakai et al. to use Pi = H ′(IDi) instead of Qi = H(IDi), where
H ′(x) = ri ·H(x) for a random value ri, so the proof of security in [8] applies to
our protocol as well.

3.4 Distributed PKG

The PKG in the BF-IBE framework, with the master key, has the power to
decrypt all messages encrypted for clients. As our schemes use the same setup
as BF-IBE, the PKG can compute a session key from the publicly available
pseudonyms and the master key s. Due to this, compromise of the PKG is a
single point of failure for security.

Boneh-Franklin suggest the use of a distributed PKG instead a single PKG
to mitigate this problem. Their distributed PKG uses t out of m threshold cryp-
tography [27], which involves distributing the master key information among m

PKGs, such that any t of them, but no fewer, can compute the master key or
generate a private key for a client. Their key distribution scheme uses a dealer
who actually decides the master key and thus becomes a candidate for attack
and can be a single point of failure. Instead, we suggest the use of a distributed
key generation protocol such as that of Pedersen [21] or Gennaro et al. [11]. In
these protocols, a master key is generated in a completely distributed way with
each of m PKGs contributing a random share. The distributed design is addi-
tionally more robust; at any given time only t of the m PKGs must be online in
order for a client to retrieve his private key.

3.5 Applications of Our Anonymity Schemes

Our anonymous key agreement schemes can be used to perform anonymous
communication in any setting having a BF-IBE setup. In recent years, numerous
BF-IBE based solutions have been suggested for various practical situations,
such as ad-hoc networks. [4, 14, 26] Our anonymous key agreement schemes can
be used in all of these setups without any extra effort. In this paper, we focus on
a new pairing-based onion routing protocol which achieves forward secrecy and
constructs circuits without telescoping. We describe this protocol in the next
section.

4 Pairing-Based Onion Routing

Low-latency onion routing requires one-way anonymous key agreement and for-
ward secrecy. In this section, we describe a new pairing-based onion routing
protocol using the non-interactive key agreement scheme defined in Section 3.2.

7



Our onion routing protocol has a significant advantage over the original onion
routing protocol [13] as well as the protocol used in Tor [7]; it provides a practical
way to achieve forward secrecy without building circuits by telescoping. Though
this is possible with the original onion routing protocol, that method involves
regularly communicating authenticated copies of ORs’ public keys to the system
users; forward secrecy is achieved by periodically rotating these keys. This does
not scale well; every time the public keys are changed all users must contact
a directory server to retrieve the new authenticated keys. However, our onion
routing protocol uses ORs’ identities, which users can obtain or derive without
repeatedly contacting a central server, thus providing practical forward secrecy
without telescoping.

4.1 Design Goals and Threat Model

As our protocol only differs from existing onion routing protocols in the circuit
construction phase, our threat model is that of Tor. For example, adversaries
have complete control over some part (but not all) of the network, as well as
control over some of the nodes themselves.

We aim at frustrating attackers from linking multiple communications to or
from a single user. Like Tor, we do not try to develop a system secure against a
global observer, which can in theory follow end-to-end traffic. Further, it should
not be feasible for any node to determine the identity of any node in a circuit
other than its two adjacent nodes. Finally, we require forward secrecy: after
some amount of time, the session keys used to protect node identities and the
contents of messages are irrecoverable, even if all participants in the network are
subsequently compromised.

4.2 Pairing-Based Onion Routing Protocol

An onion routing protocol involves a service provider, a set of onion routers,
and users. In our protocol, a user does not build the circuit incrementally via
telescoping, but rather in a single pass. The user chooses ℓ ORs from the available
pool and generates separate pseudonyms for communicating with each of them.
The user computes the corresponding session keys and uses them to construct a
message with ℓ nested layers of encryption. This process uses the protocol given
in Section 3.2 ℓ times.

The service provider works as the PKG for the ORs and provides private
keys for their identities.

Forward Secrecy. There are two time-scale parameters in our protocol: the
master key validity period (MKVP) and the private key validity period (PKVP).
Both of these values relate to the forward secrecy of the system. The PKVP
specifies how much exposure time a circuit has against compromises of the ORs
that use it. That is, until the PKVP elapses, the ORs have enough information
to collectively decrypt circuit construction onions sent during that PKVP. After
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each PKVP, ORs discard their current private keys and obtain new keys from
the PKGs. This period can be short, perhaps on the order of an hour.

The MKVP specifies the circuit’s exposure time against compromises of the
(distributed) PKG which reveal the master secret s. Because changing s involves
the participation of all of the ORs as well as the PKGs, we suggest the MKVP
be somewhat longer than the PKVP, perhaps on the order of a day. Remember
that in the t of m distributed PKG, if at least m − t + 1 PKG members are
honest and not compromised, no one will ever learn the value of a master secret.

Protocol Description. As discussed above, we propose the use of a distributed
PKG, but for simplicity, our discussion will consider the PKG to be a single
entity. Using a distributed PKG affects only the setup and key generation steps.

Setup: Given the security requirements, the PKG generates a digital signature
key pair (for any secure digital signature scheme). It also generates a prime
n, two groups G (written additively) and GT (written multiplicatively) of
order n and a bilinear map e : G×G → GT . Finally, the PKG chooses a full-
domain cryptographic hash function H : {0, 1}∗ → G. The PKG publishes
all of these values except its private signature key.

Key Generation: For each MKVP, the PKG generates a random master key
s ∈ Z∗

n and a random U ∈ G, and calculates sU . The PKG publishes a signed
copy of (vm, U, sU), where vm is a timestamp for the MKVP in question. This
U is a common value to be shared by all users of the system.

For every valid OR with identity IDi, and for every PKVP v that over-
laps with the MKVP, the PKG generates the private key dvi = sH(v||IDi).
The PKG distributes these private keys, as well as a copy of the signed
(vm, U, sU), to the appropriate ORs over a secure authenticated forward-
secret channel. If an OR becomes compromised, the PKG can revoke it by
simply no longer calculating its values of dvi.

Note that this key distribution can be batched; that is, the PKG can
precompute the master keys and private keys in advance (say a week at a
time), and deliver them to the ORs in batches of any size from one PKVP
at a time on up. This batching reduces the amount of time the PKG has to
be online, and does not sacrifice forward secrecy. On the other hand, large
batches will delay the time until a revocation becomes effective.

User Setup: Once every MKVP vm, each user must obtain a new signed tuple
(vm, U, sU) from any OR or from a public website. Once every PKVP v,
the user computes the following pairing for each OR i and stores the results
locally:

γvi = e(sU, Qvi) = e(U, Qvi)
s where Qvi = H(v||IDi)

Circuit Construction: During a PKVP v, a user U chooses a set of ORs (say
A, B, . . . , N) and constructs a circuit U ⇔ A ⇔ B ⇔ · · · ⇔ N with the
following steps.
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1. For each OR i in the circuit, the user generates a random integer ri ∈
Z∗

n and computes the pseudonym PUi = riU and the value γvi
ri =

e(U, Qvi)
sri From γvi

ri two session keys are derived: a forward session
key KUi and a backward session key KiU . Finally, the following onion is
built and sent to A, the first OR in the circuit:

rAU, {B, rBU, {· · · {N, rNU, {∅}KUN
} · · · }KUB

}KUA

Here {· · · }KUi
is symmetric-key encryption and ∅ is an empty message

which informs N that it is the exit node.

2. After receiving the onion, the OR with identity IDi uses the received
riU and its currently valid private key dvi to compute e(riU, dvi) =
e(U, Qi)

ris = γvi
ri . It derives the forward session key KUi and the back-

ward session key KiU . It decrypts the outermost onion layer {· · · }KUi
to

obtain the user’s next pseudonym, the nested ciphertext, and the identity
of the next node in the circuit. The OR then forwards the pseudonym
and ciphertext to the next node. To avoid replay attacks, it also stores
pseudonyms (see Section 5). The process ends when an OR (N in this
case) gets ∅.

3. The exit node N sends a confirmation message encrypted with the back-
ward session key {Confirm}KNU

to the previous OR in the circuit. Each
OR encrypts the confirmation with its backward session key and sends
it to the previous node, until the ciphertext reaches the user. The user
decrypts the ciphertext layers to verify the confirmation.

4. If the user does not receive the confirmation in a specified time, she
selects a different set of ORs and repeats the protocol.

The circuit construction is further illustrated in Figure 1, where a user builds
a three-node circuit.

Anonymous Communication: After the circuit is constructed, communica-
tion proceeds in the same manner as Tor. The user sends onions through the
circuit with each layer encrypted with the forward keys KUi, and each hop
decrypts one layer. Replies are encrypted at each hop with the backward key
KiU , and the user decrypts the received onion.

Note that as an optimization, one or more messages can be bundled inside
the original circuit construction onion, in place of ∅.

4.3 Advantages Over First-Generation Onion Routing

As discussed earlier, it is possible to achieve forward secrecy in first-generation
onion routing by periodically replacing the public-private key pairs of the ORs.
Following the change, the service provider publishes signed copies of the new OR
public keys after getting authentic copies from the ORs. However, this requires
all users to regularly obtain fresh authenticated public key information for all
ORs.
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User

〈U, sU〉

ORA

〈A, sQvA〉

ORB

〈B, sQvB〉

ORC

〈C, sQvC〉

rAU, {B, rBU, {C, rCU, {∅}KUC
}KUB

}KUA

rBU, {C, rCU, {∅}KUC
}KUB

rCU, {∅}KUC

{Confirm}KCU

{{Confirm}KCU
}KBU

{{{Confirm}KCU
}KBU

}KAU

Fig. 1. A user builds a circuit with three ORs.

In contrast, with our system, each user only needs to obtain the single au-
thenticated value (vm, U, sU), and only once every MKVP. The user can then
calculate the required γvi values on her own until the end of that period, thus
reducing the load on the service provider. This load is further reduced by having
the service provider never communicate directly with users at all, but only with
the ORs.

As a consequence, our pairing-based onion routing is a more practical solution
for low-latency anonymous communication.

4.4 Advantages Over Telescoping in Tor

The Tor network, in practice, uses the telescoping approach based on the Diffie-
Hellman key exchange to form an anonymity circuit. We find the following ad-
vantages for our protocol over the telescoping approach.

– Although our above-defined protocol requires occasional private key genera-
tion for ORs to achieve forward secrecy, it saves communication cost at every
circuit construction by avoiding telescoping. We discuss our communication
and computational advantages in Section 6.4.

– The absence of telescoping in our protocol provides flexibility to the user to
modify a circuit on the fly. For example, suppose a user U has constructed
a circuit (U ⇔ A ⇔ B ⇔ · · · ⇔ K ⇔ · · · ⇔ N). In our protocol, she can
bundle instructions to immediately replace K with K ′ in the next message,
while keeping the remaining circuit intact. Her circuit would then be (U ⇔
A ⇔ B ⇔ · · · ⇔ K ′ ⇔ · · · ⇔ N).

4.5 Issues with the Proposed Scheme

The certifying authorities in the Tor system need to be less trusted than the
PKG in our scheme. With a short PKVP and MKVP (compared to the key
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replacement period in Tor), our PKGs (any t of them) need to be online with
greater reliability. Further, if fewer than t are available, the whole system is
paralyzed after the current batch.

It is also possible for t malicious PKGs to passively listen to all of the traffic
as they can compute private keys for all ORs. A geographically and politically
distributed implementation of m PKGs certainly reduces this possibility.

To passively decrypt an OR’s messages, an adversary of the Tor system must
know the OR’s private key, as well as the current Diffie-Hellman key (established
for each circuit). In our scheme, as it is non-interactive, an adversary who knows
only the OR’s private key can decrypt all of the messages for that OR. This
may be an acceptable trade-off, considering the advantages gained from the
non-interactive protocol.

5 Systems Issues

In this section, we describe how components of an onion routing system such as
Tor would behave in a pairing-based setting. To implement pairings, we must
choose groups where pairings are known, and are efficiently computable. Once
these groups are fixed we can estimate the computational cost required to con-
struct a circuit. The next section will compare the cost of our scheme to the cost
of setting up a circuit in Tor.

PKG. As discussed in Section 3.4, the PKG should be distributed across servers
run by independent parties. To provide robustness, a “t of m” secret sharing
scheme may be employed; this would mean that an OR need only contact t of
m “pieces” of the PKG to learn its complete private key. Naturally, private key
information must always be communicated over a secure channel. We note that
end users of the system will have no reason to contact the PKG; the PKG only
communicates with ORs, and sends one private key (an element of G) per PKVP
to each. The load on the PKG should therefore be quite manageable. For added
protection from attack, the PKG could even situate itself as a “hidden service”
[7, §5], so that only known ORs could even connect to it, and no one would know
where many of the pieces were located.

Channel Security. The security and forward secrecy depends on the chan-
nel between the PKG and the OR used to compute the private key. With a
non-distributed PKG, an attacker can compromise an OR’s private key by com-
promising this channel. The distributed PKG provides robustness here as well,
since the attacker must subvert t secure channels to reconstruct the private key
from the shares.

Onion Router Identities. Users calculate γvi based on each router’s identity
IDi. This identity can be as simple as a port number and a hostname or IP
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address. In that case, the BF-IBE setup ensures that if a user knows how to
contact an OR, she automatically knows its public key.

The value γvi is also based on the current PKVP v. To avoid requiring tight
synchronization between the clocks of ORs and users, ORs should keep their
private keys dvi around for a short time after the official end of the PKVP, but
must securely discard them after that.

Replay Prevention. To avoid attacks where adversaries replay old circuit
construction onions, ORs should store the pseudonyms they receive for the du-
ration of a PKVP and drop onions which re-use a pseudonym. After circuit
construction, replay attacks can be prevented with existing methods (see [6] for
an example).

Directory Servers. Directory servers can be used to provide signed informa-
tion about the list of available ORs to the users of the system. The directory
servers in Tor, for example, provide a list of the ORs along with their public
keys, status, capabilities and policies. In our pairing-based setting, of course,
the public keys are unnecessary.

6 Performance

In this section, we consider the cost of creating a circuit from a user through
ℓ onion routers. We estimate the computational cost, and count the number of
AES-encrypted network communications. We compare the performance of our
system to that of Tor.

6.1 Security Levels and Parameter Sizes

Before comparing the costs of the cryptography in both schemes we determine
the parameter sizes required to provide the same level of security currently pro-
vided by Tor.

Tor uses public key parameters to provide security at the 80-bit level [12].
The discrete log problem is in a 1024-bit field, and the RSA problem is also at
the 1024-bit level. The symmetric parameters provide significantly more security,
by using AES with a 128-bit key.

We must choose appropriate groups G and GT over which our pairing will
be defined, in order to offer similar strength. The current favourite choice is the
group of torsion points of an elliptic curve group over a finite field, with either
the Weil or Tate pairing. To achieve an 80-bit security level, the elliptic curve
discrete log problem an attacker faces must be in a group of at least 160 bits.
Due to the reduction of Menezes, Okamoto and Vanstone [18], we must also
ensure that discrete logs are intractable in the target group, GT . In our case,
GT = Fpk , where k is the embedding degree of our curve taken over Fp. We must
then choose our curve E, a prime p, and embedding degree k such that E(Fp)
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has a cyclic subgroup of prime order n ≈ 2160, and pk is around 21024. This can
be achieved in a variety of ways, but two common choices are k = 2, p ≈ 2512

and k = 6, p ≈ 2171. Pairing implementations with both sets of parameters are
available in the PBC library [16]. Efficiency studies suggest that k = 2 and the
Tate pairing can offer better performance at this security level [15], so we make
that choice.

6.2 Cost of Building a Circuit with Tor

Tor builds circuits by telescoping. A user Uriel chooses a Tor node (say Alice),
and establishes a secure channel using an encrypted Diffie-Hellman exchange.
She then picks a second node, Bob, and over this secure channel, establishes a
new secure channel to Bob with another (end-to-end) encrypted Diffie-Hellman
exchange. She proceeds in this manner until the circuit is of some desired length
ℓ. For details, see the Tor specification [6]. Note that Uriel cannot use the same
Diffie-Hellman parameters with different nodes, lest those nodes be able to de-
termine that the same user was communicating with each of them.

Each Diffie-Hellman exchange requires Uriel to perform two modular expo-
nentiations with 1024-bit moduli and 320-bit exponents. Likewise, each server
also performs two of these exponentiations. Uriel RSA encrypts the Diffie-Hellman
parameter she sends the server, and the server decrypts it. The AES and hashing
operations involved have negligible costs compared to these.

Uriel’s circuit construction to Alice takes two messages: one from Uriel to
Alice, and one from Alice to Uriel. When Uriel extends this circuit to Bob (via
Alice), there are four additional messages: Uriel to Alice, Alice to Bob, Bob to
Alice, and Alice to Uriel. Continuing in this way, we see that the total number
of messages required for Tor to construct a circuit of length ℓ is ℓ(ℓ + 1). Note
that each of these messages needs to be encrypted and decrypted at each hop.

6.3 Cost of Building a Circuit with Paring-Based Onion Routing

In order to create a circuit of length ℓ with our scheme, the user Uriel must choose
ℓ random elements ri of Z

∗

n. As above, Uriel should not reuse these values. She
then computes rSU and γS

rS , and derives the forward and backward keys KUS

and KSU from γS
rS , for each server S in the circuit. Each server computes

e(rSU, dS) = γS
rS for its current private key dS and derives KUS and KSU .

Uriel creates one message, as in Figure 1, and sends it to the first server in
the chain. This server decrypts a layer and sends the result to the second server
in the chain, and so on, for a total of ℓ hop-by-hop encrypted messages. At the
end of the chain, the last server replies with a confirmation message that travels
back through the chain, producing ℓ more messages, for a total of 2ℓ.

6.4 Comparison and Discussion

We summarize the results of the previous two sections in Table 1. We count the
number of “bignum” operations for each of the client and the servers, both for Tor
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Operation Time Tor PB-OR
client each server client each server

Pairing 2.9 ms 0 0 0 1

RSA decryption 2.7 ms 0 1 0 0

Modular exponentiation 1.5 ms 2ℓ 2 0 0

Multiplication in G 1.0 ms 0 0 ℓ 0

Exponentiation in GT 0.2 ms 0 0 ℓ 0

RSA encryption 0.1 ms ℓ 0 0 0

Total time (ms) 3.1ℓ 5.7 1.2ℓ 2.9

Total AES-encrypted messages ℓ(ℓ + 1) 2ℓ

Table 1. Comparison of costs of setting up a circuit of length ℓ. The values in the
Tor column are based on the Tor specification [6]. PB-OR is our pairing-based onion
routing scheme.

and for our pairing-based onion routing protocol. We ignore the comparatively
negligible computational costs of AES operations and hashing.

For each bignum operation, we include a benchmark timing. These timings
were gathered on a 3.0 GHz Pentium D desktop using the PBC pairing-based
cryptography library [16]. We can see that the total computation time to con-
struct a circuit of length ℓ using our method is 61% less on the client side and
49% less on the server side as compared to using Tor. In addition, our method
uses only a linear number of AES-encrypted messages, while Tor uses a quadratic
number.

7 Conclusion

We have presented a new pairing-based approach for circuit construction in onion
routing anonymity networks. We first extended the protocol of Sakai et al. [25]
to allow for one-way or two-way anonymous or pseudonymous key agreement.
We then used this extension to produce a new circuit construction protocol for
onion routing networks. Our new pairing-based protocol creates circuits in a
single pass, and also provides forward secrecy.

This protocol uses significantly less computation and communication than
the corresponding protocol in Tor, and reduces the load on the network support
infrastructure. These improvements can be used to enhance the scalability of
low-latency anonymity networks.
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