
















































3

on which the service is provided: Anyone can look up in public databases

to which network an IP address belongs and where the user's computer

is located. Guha and Francis [26] have successfully tracked locations of

people by observing changing IP addresses of services provided on lap-

tops. Further, anyone who knows the IP address of a service could try to

mount an attack on the service which the user's computer is unlikely to

withstand. And �nally, service activity might give hints on the presence

of the user. These hints can reveal personal behavior or the timezone in

which a person resides. Usually, private persons who provide an Internet

service on their computer do not wish to make it available to the public,

but only to a limited set of users. These requirements make it necessary to

protect the service from unauthorized access attempts. In the following, a

service that is provided by a private person rather than an organization is

referred to as a private service. The requirements to private services are:

• The location of the server providing a private service is not revealed.

• Service activity of a private service is only known to authorized

clients.

• Unauthorized clients cannot make any access attempts to a private

service.

An important part of the solution for the given problems are privacy-

enhancing technologies [20,22,24]. These technologies attempt to give back

control over private information to the private persons. An important part

of these technologies are anonymous communication networks which per-

mit users to communicate without revealing their IP address. In particu-

lar, anonymous communication networks enable their users to hide from

others to whom they send messages or from whom they receive replies.

These technologies are useful to request a service with potentially contro-

versial contents without anyone, including the service provider, knowing

who sent the request.





















































Technologies for High-Latency Recipient Pseudonymity 29

Table 2.1: Comparison of high-latency designs to achieve recipient pseu-

donymity

Usenet Penet Cypher-

punk

Mix-

minion

PIR

No single point of trust ⊕ 	 ⊕ ⊕ ⊕
Traf�c analysis resistance ⊕ 	 	 ⊕ ⊕
Usability for pseudonym holder 	 ⊕ 	 	 	
Usability for sender 	 ⊕ ⊕ ⊕ ⊕

trieve their buckets using private information retrieval. Therefore, they

send k requests to different distributor nodes for each bucket they want to

retrieve in a way that the bucket content can be obtained by combining all

k results. However, an observer that sees only k − 1 requests cannot de-

rive the bucket that a nym owner was asking for. Users always request the

same number of buckets to conceal the number of messages they actually

receive.

One disadvantage of this approach is that pseudonym holders need to

download a volume of messages of the maximum receivable size every

cycle, regardless of the fact whether they receive any message at all. Users

need to estimate the volume of messages they typically receive in advance.

2.2.5 Comparison

Despite their different approaches, all presented designs can be used to

achieve high-latency recipient pseudonymity. However, the approaches

differ in certain criteria like security properties, ef�ciency, and usability.

The approaches are compared with respect to these criteria in Table 2.1.

The �rst criterion is having no single point of trust. Systems that depend

on one or a few single points of trust for meeting security properties like

pseudonymity are vulnerable to threats like legal pressure and hacking

attempts. Only the Penet pseudonymous remailer is attackable in this



























42 Background on Pseudonymous Services

Table 2.2: Comparison of low-latency designs supporting responder pseu-

donymity

Onion

Routing

TAZ/Re-

webber

PIP Tarzan I2P Tor

Long-term pseudonyms 	 ⊕ ⊕ 	 ⊕ ⊕
Responder authentication 	 	 	 	 ⊕ ⊕
No single point of censorship ⊕ 	 ⊕ ⊕ ⊕ 	
Traf�c analysis resistance ⊕ 	 ⊕ ⊕ ⊕ ⊕
Performance 	 	 ⊕ ⊕ 	 	
Usability for initiator 	 ⊕ ⊕ ⊕ 	 	

based design is excluded from this comparison, because its assumptions

are too different from the other approaches that are designed for packet-

switched networks like the Internet. Table 2.2 shows an evaluation of the

approaches with respect to the discussed criteria.

The �rst criterion is the ability of a responder to maintain a long-term

pseudonym. This ability is a prerequisite for offering a pseudonymous ser-

vice that can be contacted by clients using the same pseudonym. The orig-

inal onion routing does not exhibit this feature but only sketches brie�y

how clients can learn about and use reply onions. The Tarzan system

binds a responder pseudonym to a Tarzan node in the system that might

vanish at any time, leaving no way of contacting the responder anymore.

The other presented designs permit responders to maintain a long-term

pseudonym by using a directory to map it to short- or medium-term con-

tact information.

From the designs that support long-term pseudonyms, only a subset

ensures authenticity of the responder using a pseudonym. These designs in-

clude I2P and Tor hidden services where the mapping between long-term

pseudonym and short- or medium-term contact information is signed by

the responder. Neither the TAZ/Rewebber system nor the PIP system











































Existing Tor Hidden Service Directory Design 63

Table 4.1: Hidden service descriptor format, version 0

Field Description

Service key Public service key

Timestamp Time when descriptor was created

Introduction points List of introduction points

Signature Signature of above �elds created with private service key

by the owner of the private key which is the hidden server. Table 4.1 shows

the format of a version 0 hidden service descriptor as described in the Tor

rendezvous speci�cation [65].

Availability of the existing hidden service directory design can be eval-

uated empirically by considering availability of the three hidden service

directories.18 An evaluation of 1,968 hourly network status consensuses

between January 10, 2008 and March 31, 2008 has shown that in 104

cases one of the three hidden service directories has either failed or been

restarted. Given that servers usually upload a new descriptor every hour

and that clients do not retry failed downloads at other directories, clients

were unable to download descriptors for a mean downtime of 30× 1/3 =

10 minutes for every such incident. As a result, the 104 downtimes ac-

counted for 17.33 hours in an interval of 1,968 hours being a ratio of 0.9%.

The other way round, the overall uptime of the hidden service directory in

the observed time was 99.1%.

Scalability of the design can best be evaluated by considering the aver-

age numbers of requests to a hidden service directory. Table 4.2 contains

the number of publish and fetch requests per hour between May 1, 2007,

23:25 and May 2, 22:25 UTC (Coordinated Universal Time) to the hidden

service directory server moria1 run by Roger Dingledine. Figure 4.1 vi-

18 All evaluations based on historical Tor network data have been performed using the Tor

network archives collected on the directory server tor26 by Peter Palfrader. The subse-

quent statistical analysis was conducted using GNU R [79].











































84 Distributed Descriptor Storage

Server

1C03

3063

3889

5C85

6CD1

A1C8

A9EE

CE9A

F758

Client

1C03

3063

3889

5C85

A1C8

A9EE

BA3B

CE9A

F758

6CD1 (only in

server consensus)

A1C8

(in both

consensuses)

A9EE

(in both

consensuses)

BA3B

(only in client

consensus)

CE9A

(in both

consensuses)

1C03

(restarted)

3063 (in both

consensuses)

3889 (in both

consensuses)

5C85 (in both

consensuses)

F758

(in both

consensuses)

Figure 4.6: Example for determining descriptor availability using two dif-

ferent network status consensuses

�ers between A9EF to BA3B to be stored on node BA3B. In the example,

node 1C03 was restarted before the end of the considered period, so that

descriptors in the interval from F759 to FFFF and from 0000 to 1C03 are

considered as unavailable, too. The descriptor availability, as the share of

available identi�ers in the whole identi�er ring, is 72.9% in this example.

The descriptor availability in the period from p to p + 1 depends to a

large extent on the compared consensuses. Both client and server could

use three different consensuses to determine responsible directory nodes:

A fresh one that was recently published at time p, one that was published

at time p − 1 and is at least one period old, or one that was published at

time p − 2 and is already more than two periods old.23 This leads to a

23 There are at least two cases in which either server or client could use even older consen-

suses than that of p−2: First, the system clocks of either client or server could be slow, so

that an invalid consensus of p− 3 might still be in use; this is a rare case and will not be

considered to determine useful system parameters here. Second, the server could have

published a descriptor based on the consensus of p−3 or earlier, but has con�rmed that

the changes in p− 2 or later did not affect responsibility of the descriptor; in this case it



Evaluation 85

p− 2 p− 1 p p + 1 p + 2 p + 3

1

2

3

4

5

6

7

8

9

Figure 4.7: Possible combinations of consensuses used by hidden server

(dark gray) and client (light gray)

total number of 9 consensus combinations as shown in Figure 4.7. These

combinations will be referred to using the numbers 1 (client and server

both use consensus p) to 9 (client and server both use consensus p− 2).

From the 9 possible combinations, three pairs behave similarly when it

comes to descriptor availability: these are combinations 2 and 4, 3 and 7,

and 6 and 8. When considering two consensuses S published at pS used

by the server and C published at pC used by the client, this symmetry can

be explained: It does not make a difference for calculation of descriptor

availability whether pS precedes pC and a relay has joined in C, or pC

precedes pS and the relay has left in S. In both cases descriptors in the

identi�er range that the relay is responsible for are not available to clients.

Further, nodes that have been restarted between pS and p+1 are counted

as unavailable, too. Surprisingly, reference to S in this calculation does

not hurt symmetry: If a relay has been restarted after pS but before pC ,

it is not included in C, because it does not meet the minimum uptime

is safe to assume that the server could also have used p− 2, p− 1, or p for publication.













Evaluation 91

1 2 3 4 5 6

0.
01

0.
05

0.
50

5.
00

Number of Replicas

D
es

cr
ip

to
r 

U
na

va
ila

bi
lit

y 
(%

)

Minimum Uptime (h)

16 (p = 81.26%)
20 (p = 85.47%)
24 (p = 88.67%)
30 (p = 89.48%)
36 (p = 90.29%)
48 (p = 90.39%)

Figure 4.11: Descriptor unavailability as a function of number of replicas

cas also proportionally in�uences the number of messages and circuits

that a hidden server needs to build. Under the assumption that replicas

are stored under completely independent identi�ers, the overall descriptor

availability a is a function of the descriptor availability of a single replica

p and the number of stored replicas r: a = 1 − (1 − p)r. Likewise, de-

scriptor unavailability u can be calculated as: u = (1− p)r. The previously

found values for descriptor availability can be inserted for the descriptor

availability of a single replica p; the 0.001-quantiles of the empirical dis-

tributions are used here with the rationale that obtained results hold for

99.9% of all empirical cases. Figure 4.11 contains plots of descriptor un-

availabilities as functions of minimum uptime and number of replicas.

The dashed line visualizes a targeted overall descriptor unavailability of

0.1%. For a minimum uptime of 24 hours, this value is reached at a repli-

cation rate of 3.17, rounded up to 4.

To summarize, the evaluation has shown that a minimum relay uptime

of 24 hours reduces the directory size to 677 nodes in the mean as com-

pared to a total number of 1,423 nodes in the network. In return, the

remaining nodes exhibit relatively low churn rates of around 1.1%. The







































































126 Client Authorization

Table 5.2: Evaluation of attacks on pseudonymous services performing

client authorization and effectiveness of protections against these

Single

Service

Separate

Service

Basic

Authorization

Stealth

Authorization

Unauthorized access

Removed client ⊕⊕1 ⊕⊕1,2 ⊕⊕3 ⊕⊕2,3,4

Non-authorized client ⊕⊕1 ⊕⊕1 ⊕⊕3 ⊕⊕3,4

Denial-of-service attack

Authorized client 		5 	6 ⊕⊕7 ⊕⊕7

Removed client 		5 	2,6 ⊕⊕3 ⊕⊕2,3,4

Non-authorized client 		5 	6 ⊕⊕3 ⊕⊕3,4

Censor service

Authorized client ⊕8,9 ⊕⊕8,9,10 ⊕9,11 ⊕9

Removed client ⊕8,9 ⊕⊕2,8,9,10 ⊕11 ⊕⊕2,12

Non-authorized client ⊕8,9 ⊕⊕8,9,10 ⊕11 ⊕⊕12

Track service activity

Removed client 		13,14,15 		2,13,14,15 		13,14 ⊕2,4

Non-authorized client 		13,14,15 		13,14,15 		13,14 ⊕4

Track client requests

Authorized client 	14 	14 		14,16 	14

Removed client 	14 	2,14 		16 ⊕2,4

Non-authorized client 	14 	14 		16 ⊕4

		 trivial attack with almost no protection

	 realistic attack with only weak protection

⊕ realistic protection against an attack

⊕⊕ strong protection against an attack or not possible by design









130 Client Authorization

Alice con�gures her Tor client to use the authorization data when try-

ing to access Bob's service in the same way as above. The difference is

that the Tor client needs to include the descriptor cookie when trying to

download the service descriptor which is not the case in the basic autho-

rization protocol. The descriptor cookie contains the information that the

authorization data is used for the stealth protocol as opposed to the basic

protocol: The 22 characters-long base64-encoded [29] string may contain

up to 22× 6 = 132 bits of which 128 bits are used for the cookie. The re-

maining 4 bits are used to identify the authorization protocol. This is why

the last character of the authorization string in the hostname �le differs

from the descriptor cookie in the client_keys �le.

The ability to con�gure hidden services with client authorization has

been added to the Tor controller Vidalia.27 The necessary implementation

work was performed by Domenik Bork in the Google Summer of Code

2008 program.28 The motivation is to make it easier for users to provide

and access hidden services with client authorization. Figure 5.1 shows

the con�guration of a hidden service with basic client authorization. Fig-

ure 5.2 shows how clients con�gure their Tor clients to use authorization

data to access a hidden service.

5.7 Conclusion

This chapter has motivated the use of pseudonymous services with client

authorization which are offered to a limited set of clients. An analysis of

two approaches to use pseudonymous services with subsequent client au-

thorization has shown several security problems that might turn out to be

privacy-relevant for the service provider. Two extensions of the Tor hidden

27 See the Vidalia homepage: http://www.vidalia-project.net/ (last checked: Dec

17, 2008)

28 See the accepted project application: http://code.google.com/soc/2008/eff/

appinfo.html?csaid=86500DD2D78BB5D9 (last checked: Dec 17, 2008)





















































































172 Performance of Pseudonymous Services

the other hand, an extension of service-side introduction circuits from 3 to

4 might reduce the performance improvement that was gained with this

design change.

Combine Introduction with Opening Application-Level Stream

The last proposed design change addresses the BEGIN and CONNECTED

cells that need to be sent over the 6-hop circuit between client and hidden

server. These two cells are required to attach an application-level stream to

the circuit, so that application data can be sent and received. However, it

is the main purpose of building a circuit between client and hidden server

to attach at least one application-level stream to it. The idea is to drop

necessity of sending these two cells and integrate their contents in the IN-

TRODUCE2 and RENDEZVOUS2 cells. The hidden server could cache the

BEGIN cell that is part of the INTRODUCE2 cell and use it upon receiv-

ing the �rst data packet from the client. The client would conclude from

the CONNECTED cell that is included in the RENDEZVOUS2 cell that the

stream is open and start sending application data to the hidden server.

This design change would save 3.4− 0.5 + 3.0 = 5.9 seconds in the mean

(transmission time of the BEGIN cell, corrected by the bug that caused a

delay of 0.5 seconds, plus transmission time of the CONNECTED cell). An

evaluation of this design change is up to future work.

6.4 Conclusion

In this chapter a setup has been proposed to measure performance of op-

erations in the Tor network with special focus on hidden services. The

basic approach is to run a few Tor nodes as part of the public Tor net-

work, perform the desired operations, and evaluate the resulting log �les.

In this regard, the Java API PuppeTor has been presented as a tool for

automatically con�guring and executing Tor processes.









176 Related Work

the onion address of a hidden service can locate the tickets and under-

stand the contained list of introduction points. Furthermore, if required,

the hidden server can issue tickets for speci�c clients only and exchange a

secret cookie with them to locate the ticket and understand its content. If

required, ticket identi�ers can change periodically in order to hide when

the service was offered for the �rst time. These properties are achieved by

using the service descriptor index hash(address +′ 1′ + cookie + date)

for storing and locating tickets and hash(address +′ 2′ + cookie + date)

for encrypting its content. Without knowing the input to these hash func-

tions, one cannot generate current or future identi�ers or encryption keys.

In order to verify updated tickets at the directory, the authors propose to

use a reverse hash chain scheme. The initial publication of a ticket is ac-

companied by an iterated hash value vn = hashn(v) with v = address +′

1′ + cookie + date. Subsequent updates k = n − 1 . . . 1 contain the pre-

decessor in the hash chain of the last publication vk = hash(vk−1) with

v1 = v. This scheme ensures that only the hidden server is able to up-

date its ticket at the directory servers. The authors brie�y discuss to store

tickets in a distributed hash table instead of the directory servers.

The idea to encrypt contact information tickets bears an important prob-

lem that is mentioned but not solved by the authors: Although the direc-

tory servers can detect false updates using the reverse hash chain scheme,

they cannot detect false initial publications. An adversary that learns about

a valid lookup identi�er could easily store a false descriptor with own pro-

tection against false updates. Even though clients would not accept this

descriptor, the hidden service would be unavailable for them. Such a sit-

uation can occur when a hidden service is unavailable for a certain time

and the lease for a previously stored descriptor expires. In that case a di-

rectory server cannot verify future descriptors anymore and has to believe

that the false descriptor is legitimately stored under the given identi�er.

(The other way round, if directory servers would store descriptors or iter-

ated hash values for an unlimited time, another adversary could mount an
















































































