
von Karsten Loesing

Privacy-enhancing Technologies for

Private Services

Schriften aus der Fakultät Wirtschaftsinformatik und
Angewandte Informatik der Otto-Friedrich-Universität Bamberg2

UNIVERSITY OF
BAMBERG
PRESS

Schriften aus der Fakultät

Wirtschaftsinformatik und Angewandte Informatik

der Otto-Friedrich-Universität Bamberg

Schriften aus der Fakultät

Wirtschaftsinformatik und Angewandte Informatik

der Otto-Friedrich-Universität Bamberg

Band 2

University of Bamberg Press 2009

Privacy-enhancing Technologies

for Private Services

von Karsten Loesing

University of Bamberg Press 2009

Bibliographische Information der Deutschen
Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese
Publikation in der Deutschen Nationalbibliographie;

detaillierte bibliographische Informationen sind im Internet
über http://dnb.ddb.de/ abrufbar.

Diese Arbeit hat der Fakultät Wirtschaftsinformatik und Angewandte Informatik der Otto-
Friedrich-Universität als Dissertation vorgelegen.
1. Gutachter: Prof. Dr. Guido Wirtz
2. Gutachter: Prof. Dr. Udo Krieger
Tag der mündlichen Prüfung: 24. April 2009

Dieses Werk ist als freie Onlineversion über den Hochschulschriften-Server
(OPUS; http://www.opus-bayern.de/uni-bamberg/) der Universitätsbibliothek
Bamberg erreichbar. Kopien und Ausdrucke dürfen nur zum privaten und
sonstigen eigenen Gebrauch angefertigt werden.

Herstellung und Druck: Digital Print Group, Erlangen
Umschlaggestaltung: Dezernat Kommunikation und Alumni, Teresa Zak

© University of Bamberg Press Bamberg 2009
http://www.uni-bamberg.de/ubp/

ISSN: 1867-7401
ISBN: 978-3-923507-45-0 (Druckausgabe)
URN: urn:nbn:de:bvb:473-opus-1832

To my parents Karin and Wiard

who always give me the safety

that they would catch me if I fell.

Acknowledgments

I want to thank my supervisor, Prof. Dr. Guido Wirtz, for supporting my

dissertation even at a time when privacy on the Internet is highly con-

troversial in the German public opinion—which is sad in its own way.

Thanks to Prof. Dr. Udo Krieger and Prof. Dr. Andreas Henrich for their

support as members of my dissertation committee. I am also indebted to

my colleagues Jens Bruhn and Sven Kaffille for uncountable discussions

and (hopefully) mutual motivation. Thanks to all students at the Univer-

sity of Bamberg who have contributed to my dissertation project by work-

ing on software projects or writing their theses on related subjects, includ-

ing Knut Hildebrandt, Christian Wilms, Maximilian Röglinger, Domenik

Bork, and Jörg Lenhard. Special thanks to my parents for continuous mo-

tivation and for proofreading the final manuscript. Also, I thank Annika

Putz for her useful comments on the draft of my thesis.

I further thank the people of the Tor project: Roger Dingledine for con-

tinuously discussing my ideas to change/improve Tor hidden services,

for keeping me motivated to continue my work, and for giving me very

helpful comments on the final draft of my thesis. Nick Mathewson for

reviewing my patches and giving me useful feedback to improve them;

Paul Syverson for giving me invaluable advice on a draft of this thesis;

Lasse Øverlier and Steven J. Murdoch for various discussions on Tor hid-

den services; Peter Palfrader, Matt Edman, Andrew Lewman, and Jacob

Appelbaum for their support during Tor development and helping me se-

cure my Tor directory authority; Sebastian Hahn and Jens Kubieziel for

their feedback and corrections on one of the papers that is part of the con-

tribution of this thesis.

Zusammenfassung

Privatsphäre im Internet wird immer wichtiger, da ein zunehmender Teil

des alltäglichen Lebens über das Internet stattfindet. Internet-Benutzer

verlieren die Fähigkeit zu steuern, welche Informationen sie über sich

weitergeben oder wissen nicht einmal, dass sie dieses tun. Datenschutz-

fördernde Techniken helfen dabei, private Informationen im Internet zu

kontrollieren, zum Beispiel durch die Anonymisierung von Internetkom-

munikation. Bis heute liegt der Fokus bei datenschutzfördernden Techni-

ken hauptsächlich auf dem Schutz von Anfragen an öffentliche Dienste.

Diese Arbeit wirft die Frage nach den Risiken beim Betrieb von Inter-

netdiensten durch Privatpersonen auf. Ein Beispiel hierfür sind Instant-

Messaging-Systeme, die es ermöglichen, Anwesenheitsinformationen und

Textnachrichten in Echtzeit auszutauschen. Üblicherweise schützen diese

Systeme die Anwesenheitsinformationen, die auf zentralen Servern ge-

speichert werden, nicht besonders. Als Alternative verringern dezentrale

Instant-Messaging-Systeme dieses Problem, indem Privatpersonen sich

gegenseitig Dienste anbieten. Allerdings bringt das Anbieten eines Diens-

tes als Privatperson im Vergleich zu Organisationen oder Unternehmen

neue Sicherheitsprobleme mit sich: Erstens werden durch die Verfügbar-

keit eines solchen Dienstes Informationen über die Präsenz des Dienstan-

bieters preisgegeben. Zweitens soll der Standort des Servers unerkannt

bleiben, um nicht den Aufenthaltsort des Dienstanbieters zu offenbaren.

Drittens muss der Server besonders vor unautorisierten Zugriffsversu-

chen geschützt werden.

Diese Arbeit schlägt die Nutzung von pseudonymen Diensten als Bau-

stein von privaten Diensten vor. Pseudonyme Dienste verbergen den

x

Standort eines Servers, der einen bestimmten Dienst anbietet. Der hier

geleistete Beitrag soll herausfinden, welche Teile von pseudonymen Diens-

ten, besonders von Tor Hidden Services, fehlen, um sie für private Dienste

einzusetzen. Dies führt zu drei Hauptproblemen, zu denen Lösungen vor-

geschlagen werden: Erstens skalieren bisherige Ansätze für pseudonyme

Dienste nicht für die in Zukunft zu erwartende Anzahl von privaten Diens-

ten. Diese Arbeit schlägt einen neuen Ansatz vor, der Hidden-Service-

Beschreibungen in einer verteilten Datenstruktur ablegt, anstatt sie auf

zentralen Servern zu speichern. Ein besonderer Fokus liegt auf der Unter-

stützung von privaten Einträgen, die für private Dienste benötigt werden.

Zweitens geben pseudonyme Dienste während des Anbietens im Netz-

werk und der Verbindungsherstellung durch Clients zu viele Informatio-

nen über die Identität des Dienstes preis. Der in dieser Arbeit verfolgte

Ansatz ist, die Informationen, die ein Dienst im Netzwerk bekanntgibt,

auf ein Minimum zu reduzieren und nicht-autorisierte Clients am Zugriff

auf den Dienst schon während der Verbindungsherstellung zu hindern.

Diese Änderungen schützen die Aktivität und das Nutzungsmuster des

Dienstes vor nicht-autorisierten Personen. Drittens weisen pseudonyme

Dienste eine schlechtere Effizienz auf als Dienste, auf die direkt zugegrif-

fen wird. Der Beitrag dieser Arbeit ist, die Effizienz zu messen, mögliche

Probleme zu identifizieren und Verbesserungen vorzuschlagen.

Summary

Privacy on the Internet is becoming more and more important, as an

increasing part of everyday life takes place over the Internet. Internet

users lose the ability to control which information they give away about

themselves or are even not aware that they do so. Privacy-enhancing tech-

nologies help control private information on the Internet, for example,

by anonymizing Internet communication. Up to now, work on privacy-

enhancing technologies has mainly focused on privacy of users request-

ing public services. This thesis introduces a new privacy risk that occurs

when private persons run their own services. One example is instant mes-

saging systems which allow users to exchange presence information and

text messages in real time. These systems usually do not provide protec-

tion of presence information which is stored on central servers. As an

alternative, decentralized instant messaging system designs mitigate this

problem by having private persons provide instant messaging services to

each other. However, providing a service as a private person causes new

security problems as compared to providing a service as an organization

or enterprise: First, the presence of such a service reveals information

about the availability of the service provider. Second, the server location

needs to be concealed in order to hide the whereabouts of a person. Third,

the server needs to be specifically protected from unauthorized access at-

tempts.

This thesis proposes to use pseudonymous services as a building block

for private services. Pseudonymous services conceal the location of a

server that provides a specific service. The contribution made here is to

analyze what parts of pseudonymous services, in particular Tor hidden

xii

services, are missing in order to apply them for private services. This

analysis leads to three main problems for which solutions are proposed:

First, known pseudonymous service designs do not scale to the expected

number of private services which might be provided in the future. This

thesis proposes a new approach to store hidden service descriptors in a

distributed data structure rather than on central servers. A particular fo-

cus lies on the support of private entries which are required for private ser-

vices. Second, pseudonymous services leak too much information about

service identity during advertisement in the network and connection es-

tablishment by clients. The approach taken in this thesis is to reduce the

information that a service publishes in the network to a minimum and

prevent unauthorized clients from accessing a service already during con-

nection establishment. These changes protect service activity and usage

patterns from non-authorized entities. Third, pseudonymous services ex-

hibit worse performance than direct service access. The contribution of

this thesis is to measure performance, identify possible problems, and

propose improvements.

Contents

1 Introduction 1

2 Background on Pseudonymous Services 9

2.1 Definition of Pseudonymous Services 10

2.1.1 Distributed Systems 10

2.1.2 Security Properties 13

2.1.3 Properties of Privacy-Enhancing Technologies . . 15

2.1.4 Pseudonymous Services 18

2.2 Technologies for High-Latency Recipient Pseudonymity . 19

2.2.1 Usenet Message Pools 19

2.2.2 Pseudonymous Remailers 20

2.2.3 Reply-Block-Based Nymservers 22

2.2.4 Private Information Retrieval 28

2.2.5 Comparison . 29

2.3 Technologies for Low-Latency Responder Pseudonymity . 31

2.3.1 ISDN Mixes . 31

2.3.2 Onion Routing . 33

2.3.3 TAZ Servers and Rewebber Network 35

2.3.4 Pseudonymous IP Network 36

2.3.5 Tarzan . 38

2.3.6 I2P . 38

2.3.7 Tor . 39

2.3.8 Comparison . 41

xiv

3 Tor Hidden Services 45

3.1 Circuit Creation . 45

3.2 Directory System . 49

3.3 Hidden Services . 51

3.4 Threat Model . 54

4 Distributed Descriptor Storage 57

4.1 Requirements . 58

4.2 Previous Work on Descriptor Storage 59

4.3 Existing Tor Hidden Service Directory Design 61

4.4 Proposed Tor Hidden Service Directory Design 64

4.4.1 Overview . 66

4.4.2 Distribution of Consistent Routing Information . 67

4.4.3 Publication of Hidden Service Descriptors 69

4.4.4 Fetching Hidden Service Descriptors 73

4.5 Security Implications . 73

4.6 Evaluation . 77

4.6.1 Network Characteristics 77

4.6.2 Descriptor Availability 82

4.7 Implementation . 92

4.8 Conclusion . 98

5 Client Authorization 101

5.1 Requirements . 102

5.2 Existing Client Authorization Approaches 103

5.2.1 Single Service for All Users 104

5.2.2 Separate Service For Each Client 105

5.2.3 Separate Service For Groups of Clients 106

5.2.4 Conclusions from Existing Approaches 107

5.3 Basic Pseudonymous Client Authorization Protocol 107

5.3.1 New Introduction Key for Introduction Points . . 108

xv

5.3.2 Encryption of Introduction Points in Hidden Ser-

vice Descriptor . 109

5.3.3 Client Authorization at Hidden Server 111

5.3.4 Summary of Basic Pseudonymous Client Autho-

rization Protocol 112

5.4 Stealth Pseudonymous Client Authorization Protocol . . . 113

5.4.1 Client-specific Service Identities 114

5.4.2 Private Entries in Descriptor Directory 115

5.4.3 Encryption of Introduction Points 115

5.4.4 Delayed Descriptor Publication 116

5.4.5 Summary . 117

5.5 Security Analysis . 117

5.5.1 Access Service without Permission 119

5.5.2 Perform Denial-of-Service Attack 120

5.5.3 Censor Service . 121

5.5.4 Track Service Activity 122

5.5.5 Track Client Requests 124

5.5.6 Summary . 125

5.6 Implementation . 125

5.7 Conclusion . 130

6 Performance of Pseudonymous Services 133

6.1 Measurement Setup . 134

6.2 Service Publication . 138

6.2.1 Measurements . 139

6.2.2 Improvements . 144

6.3 Connection Establishment 150

6.3.1 Measurements . 151

6.3.2 Improvements . 162

6.4 Conclusion . 172

xvi

7 Related Work 175

7.1 Private Hidden Services 175

7.2 Locating Hidden Servers 177

7.3 Attacks on Availability of Hidden Services 182

7.4 Applications Based on Hidden Services 184

8 Conclusion 187

A Implementation 195

List of Tables

2.1 Comparison of high-latency designs to achieve recipient

pseudonymity . 29

2.2 Comparison of low-latency designs supporting responder

pseudonymity . 42

4.1 Hidden service descriptor format, version 0 63

4.2 Hidden service requests per hour to Tor directory server

moria1 between May 1, 2007, 23:25 UTC and May 2, 2007,

22:25 UTC . 64

4.3 Proposed hidden service descriptor format, version 2 . . . 69

4.4 Number of relays as a function of minimum uptime (h) . 79

4.5 Join rate (%) as function of minimum uptime (h) 81

4.6 Leave rate (%) as function of minimum uptime (h) 82

4.7 Descriptor availabilities (%) depending on consensus com-

bination (1 to 9) with minimum relay uptime of 24 hours 87

4.8 Shares of unavailability (%) for different reasons with fixed

consensus combination 7 and minimum relay uptime of

24 hours . 89

4.9 Descriptor availabilities (%) depending on minimum upti-

mes (h) for fixed consensus combination 7 90

5.1 Encryption of introduction points for basic client autho-

rization protocol . 111

xviii

5.2 Evaluation of attacks on pseudonymous services perform-

ing client authorization and effectiveness of protections

against these . 126

6.1 Measured service publication times (s) 141

6.2 Simulated establishment times for the first 3 out of n in-

troduction circuits . 147

6.3 Measured connection establishment times (s) 153

6.4 Simulated introduction circuit opening times (s) for re-

duced timeouts (s) . 166

6.5 Simulated introduction circuit opening attempts for reduced

timeouts (s) . 167

6.6 Simulated introduction circuit opening times (s) for de-

layed parallel circuit establishment (s) 168

6.7 Simulated introduction circuit opening attempts for de-

layed parallel circuit establishment (s) 168

A.1 Features added to implement the distributed descriptor stor-

age . 195

A.2 Bugfixes added while implementing the distributed direc-

tory storage . 197

A.3 Features added to implement client authorization 198

A.4 Bugfixes added while improving hidden service performance199

A.5 Features and subsequent bugfixes on them added to im-

prove hidden service performance 200

List of Figures

2.1 Sender-anonymous message delivery in a mix net 23

2.2 Sender-anonymous reply delivery using an untraceable re-

turn address . 24

3.1 Circuit creation and stream attachment 46

3.2 Creation and validity of a network status consensus (min) 50

3.3 Overview of the hidden service protocol 52

4.1 Hidden service requests per hour to Tor directory server

moria1 between May 1, 2007, 23:25 UTC and May 2, 2007,

22:25 UTC . 65

4.2 Overview of distributed directory in the proposed directory

design . 68

4.3 Example of distributed storage ring in the proposed direc-

tory design . 71

4.4 Total number of relays for different minimum relay uptimes 80

4.5 Churn rates as functions of minimum uptime 83

4.6 Example for determining descriptor availability using two

different network status consensuses 84

4.7 Possible combinations of consensuses used by hidden server

(dark gray) and client (light gray) 85

4.8 Descriptor availability as a function of consensus combi-

nation . 87

xx

4.9 Descriptor availability in the period from Feb 14, 2008,

14:00 to 15:00 for consensus combination 7 and minimum

uptime of 24 hours . 88

4.10 Descriptor availability as a function of minimum uptimes 90

4.11 Descriptor unavailability as a function of number of replicas 91

4.12 Configuration file of a hidden service directory node . . . 93

4.13 Server descriptor of a hidden service directory node 94

4.14 Extract from network status consensus 95

4.15 Version 2 hidden service descriptor 97

4.16 Development of directory nodes from November 12, 2007

to November 30, 2008 . 98

4.17 Requests processed by one directory node (per hour) be-

tween September 25 and October 1, 2008 99

5.1 Configuration of client authorization using Vidalia 131

5.2 Configuration of access to hidden services using Vidalia . 132

6.1 Basic types of the PuppeTor API 137

6.2 Example application for measuring service publication times138

6.3 Log statements of publishing a service in the network . . 140

6.4 Measured service publication times 142

6.5 Components of service publication (x axes contain time (s),

y axes frequency) . 143

6.6 Theoretical mean times before first descriptor upload (cir-

cles) as a function of stabilization time (dashed line) . . . 149

6.7 Theoretical number of uploaded descriptors (circles) as a

function of stabilization time with fixed lower bound of 1.0

upload (dashed line) . 150

6.8 Total connection establishment time 154

6.9 Measured steps in connection establishment process . . . 155

xxi

6.10 Log statements of connection establishment as observed

on a client . 156

6.11 Log statements of connection establishment as observed

on a rendezvous point . 157

6.12 Log statements of connection establishment as observed

on an introduction point 157

6.13 Log statements of connection establishment as observed

on a hidden server . 157

6.14 Components of connection establishment (x axes contain

time (s), y axes frequency) 158

6.15 Empirical cumulative distribution function of opening client-

side introduction circuits 165

1 Introduction

Privacy on the Internet is increasingly becoming a problem. People are

using the Internet for their everyday activities, but many do not realize

how much information they give away about themselves. Internet users

leave traces of every search for information, every email they send, every

forum entry they write, and so forth. Companies have long discovered the

value of private information for marketing purposes or to classify their

customers. Governments are just about to deploy systems to collect pri-

vate information to better control what their citizens are doing on the Net.

Privacy means that people are able to control which personal information

they give away and which not. Even though this property is often taken

for granted in everyday life, the Internet and its applications make it in-

creasingly harder to protect individual privacy.

The initial motivation for this thesis originates from privacy issues with

instant messaging systems. The basic operation of an instant messaging

system is to disseminate information about its users’ presence statuses

and permit exchange of text messages in real time. Both presence sta-

tus and text messages are privacy-relevant, but so far all approaches on

protecting instant messaging focus on privacy of text messages. As an ex-

ample, Off-The-Record messaging [5] extends existing instant messaging

systems by encrypting text messages from end to end. The approach does

not only conceal message contents, but ensures that contents of a com-

munication session are “off the record” in the sense that neither of the

participants can prove that any statement has been made by their com-

munication partner and not by themselves.

However, presence status information is certainly privacy-relevant, too.

2 Introduction

One can learn a lot about a person’s behavior from keeping track of her

presence status. On the one hand, this information needs to be given to

intended recipients. On the other hand, nobody else should learn about

a person’s presence status. What if an instant messaging protocol leaks

presence status to unauthorized entities? Does the system ensure that

users which are removed from the list of communication partners do not

learn about presence status anymore? Could the instant messaging ser-

vice providers record their users’ presence status and pass presence pro-

files on to third parties?

When looking at instant messaging systems, the main problem of pro-

tecting presence information results from their system architectures. Typ-

ically, users log in on central servers which provide them with presence

statuses of communication partners and announce to them when a user

has entered the system. With such a central component it is impossible

to guarantee that presence information is only given to intended recipi-

ents. In contrast to this, decentralized approaches based on peer-to-peer

designs are more likely to solve the given problem. In such a design, there

is little or no infrastructure, but users provide the instant messaging ser-

vice on their own. Unfortunately, a decentralized approach generates a

new problem: Users need to establish connections to each other in order

to exchange presence information or text messages. But as soon as users

reveal their IP addresses, their communication partners could exploit this

knowledge to derive private information about the user later on. Any fu-

ture communication that is directed to or originates from that IP address

leaks presence of the user.

The specific problem of privacy-aware instant messaging can be gener-

alized to all kinds of Internet services. In fact, any service which is pro-

vided by a private person has specific security requirements that exceed

those of usual Internet services. The problem is that the service might

reveal information about its provider which are private and shall therefore

be protected. This information includes the IP address of the computer

3

on which the service is provided: Anyone can look up in public databases

to which network an IP address belongs and where the user’s computer

is located. Guha and Francis [26] have successfully tracked locations of

people by observing changing IP addresses of services provided on lap-

tops. Further, anyone who knows the IP address of a service could try to

mount an attack on the service which the user’s computer is unlikely to

withstand. And finally, service activity might give hints on the presence

of the user. These hints can reveal personal behavior or the timezone in

which a person resides. Usually, private persons who provide an Internet

service on their computer do not wish to make it available to the public,

but only to a limited set of users. These requirements make it necessary to

protect the service from unauthorized access attempts. In the following, a

service that is provided by a private person rather than an organization is

referred to as a private service. The requirements to private services are:

• The location of the server providing a private service is not revealed.

• Service activity of a private service is only known to authorized

clients.

• Unauthorized clients cannot make any access attempts to a private

service.

An important part of the solution for the given problems are privacy-

enhancing technologies [20,22,24]. These technologies attempt to give back

control over private information to the private persons. An important part

of these technologies are anonymous communication networks which per-

mit users to communicate without revealing their IP address. In particu-

lar, anonymous communication networks enable their users to hide from

others to whom they send messages or from whom they receive replies.

These technologies are useful to request a service with potentially contro-

versial contents without anyone, including the service provider, knowing

who sent the request.

4 Introduction

A subset of anonymous communication systems also supports provid-

ing a service without anyone learning about the provider’s identity. These

services are accessed by a pseudonymous address which cannot be linked

to the IP address of the server providing the service. This feature is re-

ferred to as pseudonymous services. Hiding the location of a service is a

necessary prerequisite in the attempt to hide service activity and protect

a service from attacks. However, the current designs of pseudonymous

services are not sufficient to meet all security requirements of private ser-

vices. Even though the IP address of a pseudonymous service is hidden,

service activity is still leaked and services are still vulnerable to attacks.

Pseudonymous services have not been designed with the scenario of pri-

vate services in mind.

Contribution. The contribution of this thesis is to identify what parts of

pseudonymous services need to be extended in order to support private

services and to propose a working design for the necessary changes. A

comparison of pseudonymous service designs will reveal that Tor hidden

services [11] are a useful basis for these extensions. Tor is actively used

by hundreds of thousands users, has an active community, and the Tor

developers are open to discuss changes and accept patches if proven to be

useful.

Tor provides anonymity by relaying traffic over a series of nodes to

hide the relation between initiator and responder. The initiator there-

fore builds a circuit between her own computer and a series of usually

three Tor relays. All messages are encrypted in layers, so that none of

the relays can link message content to the initiator. Tor hidden services

make use of circuits to provide pseudonymous services. Besides, hidden

services promise to resist censorship and distributed denial-of-service at-

tacks. Hidden services are implemented by using a random Tor relay as

rendezvous point. Both initiator and responder build circuits to this rendez-

vous point in order to hide their own identity. Rendezvous points are only

 5

used for a single connection between a client and a hidden server. In order

to accept client requests containing the address of a rendezvous point, a

hidden service picks a set of Tor relays as introduction points. These work

similarly to rendezvous points, but only transfer a single message con-

taining the connection request from client to hidden server. The hidden

server makes a hidden service available by publishing a hidden service de-

scriptor containing a signed list of introduction points. These descriptors

are stored on a set of directory servers from where they can be downloaded

by clients. Clients establish a connection by setting up a rendezvous point

and sending an introduction request to one of the service’s introduction

points. Upon receipt, the hidden server establishes the connection using

the specified rendezvous point.

Hidden services have not been designed for private services. There are

at least three problems of Tor hidden services which need to be improved:

First, the hidden service design does not scale to the expected number of

private services which might be provided in the future. Second, the hid-

den service protocol does not hide service availability or prevent unautho-

rized access attempts which are required for private services. And third,

performance of hidden services needs to be improved in order to become

more attractive for users, including applications that are based on private

services.

The first contribution of this thesis will be to make hidden services

more scalable. The current hidden service design is sufficient for a lim-

ited number of public services which are available most of the time. But

in contrast to public services, availability of private services is likely to

change, so that the services need to be made available quite often. These

new usage characteristics put significant load on the directory system. The

contribution of this thesis is a new approach to store hidden service de-

scriptors in a distributed data structure rather than on central servers. A

particular focus lies on the security properties of such a distributed ap-

proach and on the support of private entries which are required for private

6 Introduction

services.

The second contribution is to support client authorization as part of the

hidden service protocol. Tor hidden services leak information about the

pseudonymous identity of a service and propagate service activity to multi-

ple places in the Tor network. While this is acceptable for public services,

private services require activity to be hidden from anyone but authorized

clients. The approach taken in this thesis is to stop unauthorized connec-

tion requests as an integrated component of the hidden service protocol.

Unauthorized clients are not allowed to download a hidden service de-

scriptor or even learn about its existence.

The third contribution is to measure and improve performance of Tor

hidden services. Double indirection of requests by means of rendezvous

and introduction points results in significant delay during connection es-

tablishment. In addition to that, relaying messages over a series of relays

with possibly very different performance properties further increases the

delay. The contribution is to investigate what parts of the hidden service

protocol take most of the time and to propose improvements.

Dissertation Project. Special focus of this thesis is to present a practi-

cal design and evaluate it in a realistic environment. In addition to ana-

lyzing problems on a conceptual level and proposing a novel design that

overcomes these problems, certain efforts have been made to specify and

implement the necessary changes in the Tor software. Six proposals con-

taining Tor design changes [31,36–38,42,43] have been submitted and ac-

cepted by the Tor project. At the time of writing this thesis most of these

changes have been deployed in either stable or development versions of

the Tor software. This approach allows to integrate community feedback

as well as to evaluate the new designs on a wide scale.

During this dissertation project, a number of peer-reviewed conference

papers [39–41] and technical reports [12] have been published by the au-

thor in the immediate context of this thesis. The work has also been

 7

discussed with the research community during short talks on PET 2007,

PET-CON 2007, 2008.1, and 2008.2, and a peer-reviewed talk on HOT-

PETs 2008 [45]. Two practicals with a total number of 16 students have

been held at the University of Bamberg in 2005 and 2007. Two diploma

theses [28, 81] and one bachelor thesis [35] were written in the context of

this dissertation project between 2006 and 2008. Some part of the imple-

mentation is based on work created during the Google Summer of Code

2007 program1 and during a project funded by the NLnet foundation2.

Outline. The next two chapters cover the necessary background that is

required to understand the contribution of this thesis. Chapter 2 gives

an overview of pseudonymous services. First, some definitions are nec-

essary to obtain a common understanding what pseudonymous services

are. These definitions include terms from the areas of distributed sys-

tems, computer networks, cryptography, and privacy-enhancing technolo-

gies. After that, existing technologies are discussed which either support

pseudonymous services or which have contributed to the development

of later pseudonymous service designs. Chapter 3 gives more detailed

background on the design of Tor hidden services [11]. The chapter de-

scribes circuit creation, the directory system, the hidden service protocol,

and Tor’s threat model.

The following three chapters contain the contribution of this thesis as

described above. Chapter 4 describes the distributed descriptor storage,

Chapter 5 presents the extension of Tor hidden services towards client

authorization, and Chapter 6 covers performance measurements and im-

provements. It was attempted to write these three chapters so that they are

1 See the accepted project application: http://code.google.com/soc/2007/eff/

appinfo.html?csaid=33D2740B403CC323 (last checked: Dec 17, 2008)

2 See the project homepage: https://www.torproject.org/projects/hidserv.html

(last checked: Dec 17, 2008)

8 Introduction

self-contained and can be read independently. They only presume knowl-

edge of the background chapters. All three chapters start with a short

problem statement, discuss previous work on the topic, and present the

contribution including possible evaluations.

The last two chapters conclude the thesis. Chapter 7 describes work that

is related to the contribution. Related work includes approaches to make

Tor hidden services more private, various attacks on either revealing the

location of hidden services or making them unavailable, and proposed

applications based on hidden services. Finally, Chapter 8 concludes the

thesis and gives an outlook on future work.

2 Background on Pseudonymous Services

Pseudonymous services are, roughly speaking, services that are accessed

via an anonymous communication system using pseudonymous identi-

fiers rather than addresses that can be linked to the service provider. The

main intention of setting up a pseudonymous service is to protect the ser-

vice provider from being identified and made responsible for the provided

service. Pseudonymous services are an important building block for pri-

vate services as motivated in the last chapter. Hiding the location of a

private person’s computer that provides a service is the first step in hid-

ing the person’s activity and protecting the computer from attacks. This

chapter gives the necessary background on pseudonymous services.

The next section gives definitions of the properties of pseudonymous

services and related concepts. These definitions include terms from the

areas of distributed systems, computer networks, security and cryptogra-

phy, and privacy-enhancing technologies. These definitions help derive

a working definition for pseudonymous services that is used throughout

this thesis. In the subsequent two sections, existing technologies are dis-

cussed that either provide pseudonymous services or that made important

contributions to later designs which do provide this feature. In Section

2.2, technologies are presented that permit high-latency recipient pseudo-

nymity, that is, receiving messages using a pseudonym. These could be

considered to be the precursors of technologies providing pseudonymous

services. The major drawback for using these technologies for pseudo-

nymous services is their intended design to delay messages for hours to

prevent traffic analysis attacks. Section 2.3 contains low-latency designs

for servers making use of responder pseudonymity, that is, designs for

10 Background on Pseudonymous Services

pseudonymous services. Their low-latency properties allow the execution

of interactive services as they are required for private services. The dis-

cussion of technologies explicitly excludes designs to achieve anonymous

storage. These systems provide protection for users storing and retrieving

files, but do not support users in running interactive services. Goldberg

periodically publishes the state of the art of privacy-enhancing technolo-

gies for the Internet [20, 22, 24], including some of those designs that had

to be excluded here.

2.1 Definition of Pseudonymous Services

The discussion on background of pseudonymous services requires a few

definitions of necessary terms. First, a definition is given for services com-

ing from the areas of distributed systems and computer networks. Next,

some important security properties are defined that are common for ser-

vices being distributed over insecure networks in general. Finally, ano-

nymity and pseudonymity are defined as properties of privacy-enhancing

technologies.

2.1.1 Distributed Systems

The foundation for talking about pseudonymous services is the notion of

a service in the context of distributed systems. Coulouris and others [7]

define a distributed system “as one in which hardware or software compo-

nents located at networked computers communicate and coordinate their

actions only by passing messages.” The central point in their definition

is the necessity to pass messages over a computer network. As a result,

all systems that require only a single computer to execute are excluded

from the definition. The authors mention a number of consequences

that arise from their definition: First, a distributed system needs to cope

with concurrent program execution which is not necessarily the case in

non-distributed systems. Second, a distributed system does not have a

Definition of Pseudonymous Services 11

global clock that could be used to synchronize programs which are exe-

cuted on distinct networked computers. And third, each component of a

distributed system can fail independently, while other components keep

running. These limitations need to be taken into account when designing

applications for distributed systems.

The above definition does not motivate the reasons for building a dis-

tributed system in the first place. The authors give the main motivation

for building distributed systems and running distributed applications on

them separately: “The motivation for constructing and using distributed

systems stems from a desire to share resources.” These resources in-

clude both hardware resources, such as disks and printers, and software

resources, like files, databases and data of all kinds. In these cases, the

main focus of distribution is to access a remote resource to request in-

formation from it or change its state. When considering communication

applications, the notion of a resource could also be extended to retrieve

information about the presence state of a communication partner and the

ability to deliver messages.

Passing messages between networked computers may be the defining

element for distributed systems. But this definition is not sufficient to

describe how a distributed system works. The authors therefore use the

notion of a service as the means of sharing resources between networked

computers. The authors define the term service as “a distinct part of

a computer system that manages a collection of related resources and

presents their functionality to users and applications.” Presenting the

functionality of a service requires a defined interface containing a set of

permitted operations. In case of a networked service this interface is pro-

vided to other computers by means of exchanging messages. As a result,

the operations defined in a service interface constitute the only way of

accessing a resource and changing its state.

In the context of providing and accessing a service, there are usually two

roles involved: client and server. Tanenbaum and van Steen [78] define

12 Background on Pseudonymous Services

these two terms as follows: “A server is a process implementing a specific

service, for example, a file system service or a database service. A client

is a process that requests a service from a server by sending it a request

and subsequently waiting for the server’s reply.” This definition implies a

strict separation of the two roles of server and client with the server being

available all of the time whereas clients only need to be available while

requesting the service.

In contrast to this, Kurose and Ross [34] give a broader definition of

server and client that includes the development of peer-to-peer (P2P) ar-

chitectures: “In a client-server architecture, there is an always-on host,

called the server, which services requests from many other hosts, called

clients. [. . .] In a P2P architecture, there is minimal (or no) reliance on

always-on infrastructure servers. Instead the application exploits direct

communication between pairs of intermittently connected hosts, called

peers.” Peer-to-peer architectures do not distinguish as strictly between

the two roles of client and server. A peer can act as either client or server

depending on the communication context: “In the context of a communi-

cation session between a pair of processes, the process that initiates the

communication [. . .] is labeled as the client. The process that waits to be

contacted to begin the session is the server.”

In the context of this thesis, a private service is one that is provided by

a server which is owned by a private person. Usually, the computer that

runs the server is not dedicated to perform only this task, and therefore

the service is not necessarily available all the time. As a result, activity

of the service might correlate with the personal behavior of the service

provider.

The way how client and server exchange messages in order to imple-

ment and use a service is defined in a protocol. According to Kurose and

Ross [34], “a protocol defines the format and the order of messages ex-

changed between two or more communicating entities, as well as the

actions taken on the transmission and/or receipt of a message or other

Definition of Pseudonymous Services 13

event.” Schneier [71] further adds the requirement that a protocol must

be “designed to accomplish a task.” Protocols constitute a formalization

of the behavior of communicating entities to a level that allows evaluation

of the non-functional properties of a service including security properties.

2.1.2 Security Properties

The fact that clients and servers need to exchange messages over possi-

bly untrusted computer networks raises security concerns that need to be

addressed. Menezes and others [49] and Schneier [71] list four main infor-

mation security objectives: First, confidentiality ensures that the contents

of a message can only be understood by the intended receiver. Second,

data integrity addresses the unauthorized alteration of data, so that a mes-

sage cannot be modified in transit. Third, authentication denotes the abil-

ity of communicating parties to identify each other and prevents others

from impersonating a communicating party. And fourth, non-repudiation

means that an entity cannot deny previous commitments or actions after

providing or requesting a service.

The aforementioned security objectives can be achieved using cryptog-

raphy. The result is a cryptographic protocol that uses cryptographic algo-

rithms to ensure one or more of these security properties. Schneier sum-

marizes the purpose of using cryptography in protocols by saying that “it

should not be possible to do more or learn more than what is specified in

the protocol.”

There are a few building blocks for cryptographic protocols that need to

be introduced in brief by describing their basic properties.3 The first build-

ing block are encryption algorithms. Symmetric encryption algorithms use

the same symmetric key for encrypting a plaintext as for decrypting the

ciphertext. Sender and receiver of the message need to agree on the sym-

3 See Menezes and others [49] or Schneier [71] for an in-depth description of the crypto-

graphic techniques.

14 Background on Pseudonymous Services

metric key before communicating in a secret way. A well-known symmet-

ric key algorithm that is used in this thesis is AES, the Advanced Encryp-

tion Standard [54].

In contrast to symmetric key cryptography, public-key cryptography uses

two different keys for encrypting and decrypting messages, one of them

public and the other one private. Anyone with the public key can encrypt

messages but not decrypt them. Only the person with the private key

can decrypt messages. An example of a public-key algorithm is RSA [69]

which is also used in this thesis. Another widely used public-key algo-

rithm is Diffie-Hellman [10] which is used by two communicating parties

to agree on a shared key by exchanging messages over a possibly untrusted

network. The shared key can then be used to perform symmetric key cryp-

tography.

Two more building blocks of cryptographic protocols are secure hash

functions and digital signatures. Schneier defines a secure hash function, or

one-way hash function, as “a hash function that works in one direction: It

is easy to compute a hash value from pre-image [the variable-length input

string; the author], but it is hard to generate a pre-image that hashes to a

particular value.” A common secure hash algorithm is SHA [55] which is

also used in this text. Digital signatures are used to assure to a recipient

that a given message has been created by the claimed sender. One way

to implement digital signatures is to invert the use of public and private

key of a public-key algorithm: The sender signs a message (or a secure

hash of it) with the private key, and other people can verify the signature

by using the public key of the sender.

One security property that cannot be solved with cryptography only is

availability, which is listed by Coulouris and others [7] as a main security

objective. Availability denotes protection against an adversary that tries to

make a resource or service unavailable. There are different ways how an

adversary could make a server unavailable: One way is to flood the service

with fake requests so that it becomes too busy to answer legitimate re-

Definition of Pseudonymous Services 15

quests, which is called a denial-of-service attack. Another way is to censor

an entry in a name system that clients need to resolve the service address

in order to request the service.

2.1.3 Properties of Privacy-Enhancing Technologies

The security properties above are widely accepted as protections of both

users and providers of services. However, apart from confidentiality, they

do not take into account privacy of either service users or providers. The

field of privacy-enhancing technologies addresses properties like anony-

mity or pseudonymity which can be seen as additional requirements to

services, exceeding the stated security properties.

Pfitzmann and Hansen [61] have established a terminology for proper-

ties of privacy-enhancing technologies, including anonymity and pseudo-

nymity. They assume a basic system model of senders sending messages

to recipients using a communication network. This model is similar to the

system model described above for the definition of distributed systems in

general. The authors give a first definition of anonymity: “Anonymity of a

subject means that the subject is not identifiable within a set of subjects,

the anonymity set.”

The authors further define anonymity in terms of unlinkability of items

of interest which can be messages or actions such as sending or receiving

a message: “Unlinkability of two or more items of interest [. . .] from an

attacker’s perspective means that within the system [. . .] the attacker can-

not sufficiently distinguish whether these items of interest are related or

not.” This definition leads the authors to definitions of anonymity for ei-

ther sender or recipient of a message as well as for the relation between

both: “Sender anonymity of a subject means that to this potentially sending

subject, each message is unlinkable. Correspondingly, recipient anonymity

of a subject means that to this potentially receiving subject, each message

is unlinkable. Relationship anonymity of a pair of subjects, the potentially

16 Background on Pseudonymous Services

sending subject and the potentially receiving subject, means that to this

potentially communicating pair of subjects, each message is unlinkable.”

The anonymity definitions can be transferred to the roles of client and

server. When considering a client sending a request to a server, the cli-

ent is referred to as sender and the server as recipient. But obviously,

for the response that a server sends to a client, this assignment changes.

Therefore, when talking about services, the terms initiator and responder

are used for client and server, as it is done, for example, by Dingledine

and others [11]. Hence, initiator anonymity comprises both sender ano-

nymity of a client sending messages to a server and recipient anonymity

for receiving replies. Likewise, responder anonymity denotes recipient ano-

nymity for receiving client requests and sender anonymity for sending

replies.

Pfitzmann and Hansen further give definitions for terms related to

pseudonymity: “A pseudonym is an identifier of a subject other than one of

the subject’s real names. [. . .] The subject which the pseudonym refers to

is the holder of the pseudonym. A subject is pseudonymous if a pseudonym

is used as identifier instead of one of its real names. [. . .] Pseudonymity

is the use of pseudonyms as identifiers.” The authors further define a

sender being pseudonymous as sender pseudonymity and a recipient being

pseudonymous as recipient pseudonymity. These definitions are extended

here to initiator pseudonymity for a client of a service being pseudonymous

and responder pseudonymity for a server being pseudonymous. In the con-

text of services, pseudonyms are always digital pseudonyms, that is, they

are unique as identifiers and suitable for authentication by using them to

create digital signatures.

When comparing the two states of a subject being either publicly identi-

fiable by real name or being completely anonymous, pseudonymity covers

all states in between. Pseudonymity comprises all degrees of linkability of

a pseudonym to a subject. Pfitzmann and Hansen mention two aspects

of linkability of pseudonyms: knowledge of the linking between a pseudo-

Definition of Pseudonymous Services 17

nym and its holder and linkability due to use of a pseudonym in different

contexts.

The knowledge of the linking between a pseudonym and its holder can

change over time. Pseudonyms can be initially unlinked, initially non-

public, or public from the beginning. The knowledge about a linking can

vary from person to person. Unless a pseudonym can be transferred to a

new holder (which is excluded by Pfitzmann and Hansen as well as in the

discussion here), knowledge of the linking can only increase. Anonymity

decreases with increasing knowledge of the linking of a pseudonym to its

holder.

The second aspect of linkability covers using a pseudonym in differ-

ent contexts. Pfitzmann and Hansen distinguish between person, role,

relationship, role-relationship, and transaction pseudonyms. A holder

using a pseudonym for all transactions uses it as a person pseudonym.

Holders may also decide to use a pseudonym for a certain role, like as

a company employee or as a private person, or for a relationship to an-

other subject. The holder may also combine both properties and use a

distinct pseudonym for a certain role and given relationship, thus using a

role-relationship pseudonym. A holder using a new pseudonym for each

performed transaction uses a transaction pseudonym, which is closest to

anonymity. Using the same pseudonym in different contexts allows es-

tablishment of a reputation linked to that pseudonym. But repeated use

also reduces the degree of anonymity that a pseudonym can provide.

A special case of linkability due to use of a pseudonym in different con-

texts can be seen for private services. A server that uses the same pseu-

donym over time to advertise its service allows others to derive service

activity. Whoever can link a pseudonym used by a server to its holder

might be able to derive activity of the person providing the service.

18 Background on Pseudonymous Services

2.1.4 Pseudonymous Services

Finally, these definitions suffice to give a definition for pseudonymous

services that is used in the following:

Pseudonymous services permit clients to request a service from a

server using a pseudonym that cannot be linked to the location of

the server or the identity of the service provider.

On the one hand, the pseudonym that is used by a server needs to be

persistent, so that clients can request the service using the same pseudo-

nym over time. On the other hand, the linking between the pseudonym

and its holder may not be known to anyone but the service provider. The

location of the server is explicitly included in the definition, because the

linking between the location of a computer, which is usually denoted by

its IP address, can be linked easily to a person’s identity by the person’s

Internet Service Provider.

The above definition does not prescribe specific security properties.

Typically, pseudonymous services should provide confidentiality, data in-

tegrity, and availability. It is also useful to have authentication and non-

repudiation of the server. In most cases, clients of a pseudonymous ser-

vice shall remain anonymous and therefore be able to deny previous re-

quests to the service. Depending on the purpose of a service, clients can

use pseudonymous, too, so that they are authenticated to the server and,

as a result, cannot deny previous requests.

The next two sections describe privacy-enhancing technologies which

either implement pseudonymous services or contain techniques that

could be used to do so. A basic distinguishing characteristic of these

technologies is whether they transmit messages with high or low latency.

High-latency anonymous communication systems are presented in Sec-

tion 2.2, whereas low-latency systems are discussed in Section 2.3.

Technologies for High-Latency Recipient Pseudonymity 19

2.2 Technologies for High-Latency Recipient Pseudonymity

High-latency anonymous communication systems permit their users to

exchange messages in an anonymous or pseudonymous way. Message

transmission times typically range from some hours up to one day. While

this may be acceptable for asynchronous applications like email, it is in-

sufficient for interactive services like web browsing. Nevertheless, many

of the principles behind high-latency anonymity systems have also been

applied to low-latency anonymous communication systems. Therefore, a

study of high-latency anonymous communication systems is compulsory

in order to understand the basic principles behind low-latency systems.

The literature on privacy-enhancing technologies contains a plethora

of high-latency anonymous communication systems. While the primary

function of these systems is to provide sender anonymity, only a small

percentage of them provides sender and/or recipient pseudonymity. The

focus here are systems and general principles to provide recipient pseu-

donymity: the required functionality is that a user Bob can establish a

long-term pseudonym to receive messages by a user Alice directed to his

pseudonym without anyone being able to link Bob’s pseudonym to his

real identity.

2.2.1 Usenet Message Pools

An obvious way to achieve recipient pseudonymity is to broadcast a mes-

sage to all pseudonym holders and let them find out themselves which

messages are directed to them and which are not. If all possible recipients

have successfully received a message, it is impossible for an external ob-

server to tell to which of them it was directed. If message contents shall

be kept confidential, messages can be encrypted for the holder of a recip-

ient pseudonym before broadcasting them. Encryption should not reveal

to whom a message is addressed except to the intended recipient. This

property is referred to as implicitly addressing the broadcasted message to

20 Background on Pseudonymous Services

the recipient.

A practical realization of the broadcast idea has been established in 1994

with the Usenet group alt.anonymous.messages. If Alice wants to send

a message to Bob, she (optionally) encrypts the message and posts it to this

newsgroup. Bob periodically downloads all messages and figures out for

every message whether he can decrypt them and whether they are directed

to him. The only step Bob needs to take to establish his pseudonymous

identity is telling it (possibly including an encryption key) to Alice.

On the one hand this approach provides for strong resistance against

linking a pseudonym to a recipient’s identity. But on the other hand there

are obvious scalability problems with this approach.

2.2.2 Pseudonymous Remailers

Pseudonymous remailers take a different, more efficient approach to

achieve recipient pseudonymity. The basic idea of a pseudonymous re-

mailer is to act as an intermediary between sender and recipient. A re-

mailer rewrites identifying message headers and forwards the message

to the recipient afterwards. A pseudonymous remailer further assigns a

pseudonymous identity to every user and keeps a local table containing

mappings of pseudonyms to user addresses. Whenever a sender directs

a message to a pseudonym, the remailer can look up the recipient’s real

address and forward the message accordingly. The best known pseudony-

mous remailer was the Penet remailer anon.penet.fi that was set up in

1993 and shut down in 1996. The design of the Penet remailer is unpub-

lished, but a good summary can be found in [60].

A user Bob who wants to create a long-term pseudonym sends an arbi-

trary initial message to the pseudonymous remailer that assigns a unique

pseudonym to Bob like an144108@anon.penet.fi. Bob tells his pseudo-

nym to Alice either by sending her a message via the remailer (with the

result that his pseudonym is included as sender address instead of his real

Technologies for High-Latency Recipient Pseudonymity 21

address) or makes it available to her otherwise. Alice who wants to send a

message to Bob simply directs it to his pseudonym, so that it gets routed to

the remailer anon.penet.fi. The remailer replaces the pseudonymous

message recipient with Bob’s real address and forwards the message to

Bob.

The simple design of pseudonymous remailers implies two major prob-

lems: The first is vulnerability to traffic analysis. The remailer does not

take precautions to hide the correlation between incoming and outgoing

messages. Outgoing messages have similar sizes as incoming messages

and are sent at a certain time after the incoming message was received.

Further, message contents remain roughly the same (besides removing

processing information where to forward the message). An adversary

with the ability to monitor traffic could easily link an incoming message

directed to a pseudonym to an outgoing message addressed to the pseu-

donym holder, thus uncovering recipient pseudonymity.

The second major problem is exposure to legal prosecution or hacking

attempts. The table containing the mapping between pseudonyms and

real addresses is the most sensitive part in the system to ensure recipient

(and sender) pseudonymity. Whoever knows this table can uncover pseu-

donymity of all recipients in the system. Users need to trust the remailer

operator in keeping this table secret and protecting it against hacker at-

tacks. Further, it puts the remailer operator at risk of having to disclose

the table for legal reasons which in the end was the reason for shutting

down anon.penet.fi.4

4 The press release announcing the closure of the Penet remailer can be found

under: http://w2.eff.org/Censorship/Foreign_and_local/Finland/960830_

penet_closure.announce (last checked: Dec 17, 2008)

22 Background on Pseudonymous Services

2.2.3 Reply-Block-Based Nymservers

The third approach to achieve high-latency recipient pseudonymity is

based on Chaum’s mix-net design [6]. The basic idea is to relay messages

over a chain of remailers with each of them performing cryptographic op-

erations on messages and relaying them in batches. The result is sender

anonymity unless an adversary can manage to compromise all remailers

in a chain. Chaum also proposed the concept of untraceable return address

(which will be referred to as reply blocks in the following text) to provide re-

cipient anonymity. When combining reply blocks with a nymserver (short

for pseudonym server), one can further achieve recipient pseudonymity.

The following discussion covers different approaches to achieve recip-

ient pseudonymity using reply blocks. Chaum’s mix-net design is de-

scribed next. While it does not include the description of a nymserver

itself, it constitutes the basis for the following approaches. After that, two

types of reply-block-based approaches are discussed: The first approach is

based on reusable reply blocks in the style of Chaum’s untraceable return

addresses. The second approach makes use of single-use reply blocks in

the attempt to better resist traffic analysis.

Mix Nets and Untraceable Return Addresses

In 1981, David Chaum described the concepts of a mix and a mix net [6].

The purpose of a mix is similar to that of a remailer: hide the correlation

between the sender of a message and its recipient. Only the mix itself

would be able to uncover this correlation. A mix net consists of multi-

ple mixes and allows its users to send messages via a cascade of mixes.

In this case all mixes would have to collude to link the original sender

of a message to the recipient. In addition to relaying messages, a mix

performs a couple of operations on relayed messages in order to prevent

traffic analysis: received messages are decrypted, padded to a uniform

length, reordered, and sent out in regular batches.

Technologies for High-Latency Recipient Pseudonymity 23

A M1 Mn B

E1(A2, E2(. . . (An, En(AB,M)) . . .))

E2(. . . (An, En(AB,M)) . . .)

En(AB,M)

M

. . .

Figure 2.1: Sender-anonymous message delivery in a mix net

If user Alice wants to anonymously send a message to user Bob, she

first needs to learn about the existing mixes’ addresses Mi and their pub-

lic keys PKi as well as Bob’s address AB . Alice prepares her message for

Bob by adding Bob’s address and encrypting her message for the last re-

mailer in the chain Mn. Next she adds the address of the last remailer An

and encrypts the result for the last but one mix Mn−1. She subsequently

adds similar layers for the other mixes in reverse order from Mn−2 to M1.

Finally, she can send the composed message to M1. The mixes Mi all

perform the same task of decrypting the received message and forward-

ing the result to either the next mix in the chain or to Bob, respectively.

Figure 2.1 shows the exchanged messages of Alice anonymously sending

a message to Bob.

Chaum also proposed a similar technique for anonymously sending a

reply message back to the sender. An untraceable return address is con-

structed by the sender and made known to another user, possibly together

with a sender-anonymous message. The recipient then can reply to the

sender without knowing the sender’s real address. An untraceable return

address only contains the routing portion of a message while the mes-

sage content M is added later by the user who actually sends the reply.

Untraceable return addresses contain symmetric keys Ri for all mixes on

24 Background on Pseudonymous Services

A

M ′
1M ′

m

B

A1, E1(R1, A2, E2(R2, . . . Am, Em(Rm, AB))), PKA

E1(R1, . . .), EA(M)

E2(R2, . . .), K1(EA(M))

Em(Rm, AA), Km−1(. . . K1(EA(M)))

Km(Km−1(. . . K1(EA(M))))

. . .

Figure 2.2: Sender-anonymous reply delivery using an untraceable return

address

the path that are used to encrypt the reply, which differs from decrypting

forward messages using the private keys of the mixes. Figure 2.2 depicts

the sequence of exchanged messages that are necessary for Bob to reply

to Alice using a reply block.

Chaum’s design obeys an important limitation: a mix may not process

the same message twice. If this operation would be permitted, an adver-

sary could re-insert a message to a mix and find the next mix or the recip-

ient’s address in the intersection of both outgoing batches. Mixes ensure

replay protection by memorizing forwarded messages and dropping du-

plicates. As a result, untraceable return addresses can only be used once.

Cypherpunk-Style Nymservers

Cypherpunk remailers, as described by Goldberg in [24], were designed

to overcome the weaknesses of pseudonymous remailers as described in

Section 2.2.2 by applying (most of) the principles of Chaum’s mix nets.

Remailers shall not store any sensitive data about users or relayed mes-

sages that could be exploited by an attacker or required to be disclosed

Technologies for High-Latency Recipient Pseudonymity 25

due to legal pressure.

The basic function of a Cypherpunk remailer remains the one of strip-

ping headers from received messages and forwarding them afterwards.

In addition to that, Cypherpunk remailers recognize (but do not enforce)

a couple of commands while processing a message: Messages can be en-

crypted using the public key of a remailer, so that the remailer needs to

decrypt the message before further processing it. The sender of a message

can further specify a random or fixed time for which a message shall be

delayed before being forwarded. Further commands like these have been

introduced over time, but not all remailers are required to support them.

Besides sending forward-anonymous messages, Cypherpunk remailers

also support reply blocks to enable replies to anonymous messages. A

major difference to the original design of Chaum’s untraceable return ad-

dresses is that Cypherpunk remailers permit using reply blocks multiple

times.

Cypherpunk-style nymservers like nym.alias.net [47] further provide

recipient (and sender) pseudonymity. The idea is to combine the concepts

of a nymserver with reply blocks instead of real addresses. The nymserver

stores a table between pseudonyms and one or more reply blocks that can

be used to deliver a message to the pseudonym holder.

A user Bob who wants to create a long-term pseudonym first creates

an asymmetric key and a reply block directed to his real address.5 He

then deposits the public key, the reply block, and a chosen pseudonymous

identifier at the nymserver, using a remailer chain himself to hide his iden-

tity from the nymserver. Finally, Bob announces his pseudonym to other

users who might want to contact him.

If Alice wants to send a message to Bob, she addresses her message to

5 Alternatively, he can combine usage of reply blocks with the approach to direct messages

to a usegroup message pool as described in Section 2.2.1 and insert the address of a

Usenet group instead. Even if an attacker would reveal the destination of a reply block,

only the Usenet group would be revealed.

26 Background on Pseudonymous Services

Bob’s pseudonym at the nymserver, for example nymB@nym.alias.net.

The nymserver first ensures that the message is not a replay of a previous

message; if it is, the server drops the message. Otherwise, the nymserver

encrypts Alice’s message with Bob’s public key and forwards it together

with the stored reply block to the first remailer listed in Bob’s reply block.

The message is then delivered via the remailer chain like a usual reply

message. Upon receiving the message from the last remailer, Bob de-

crypts it successively using all symmetric keys that he included in the reply

block and finally with the private key of his pseudonym.

As an extension of the basic case described above, a user could also

deposit more than one reply block at the nymserver and define a rule

whether messages shall be sent using all or only a random subset of these

reply blocks. The additional paths can be used either to improve reliability

or to create cover traffic by creating reply blocks with long remailer chains

ending nowhere.

Cypherpunk-style remailers exhibit a couple of security problems as de-

scribed by Lance Cottrell.6 Cypherpunk remailers do not take reasonable

precautions to prevent an adversary from associating incoming with out-

going messages. Message sizes are not unified and decrease after each

processing step due to either dropping an encryption layer or a reply block

layer. An adversary can further guess message correlations from the tim-

ing in which messages are received and forwarded to the next remailer.

The fact that reply blocks may be used repeatedly makes it possible for

an adversary to trace the path to a recipient by sending a large number of

messages.

Mixmaster remailers [50] solve most of these problems by adding mes-

sage padding and other features described by Chaum [6], including strict

prevention of replayed messages. Mixmaster remailers further perform

6 See the essay by Lance Cottrell on Mixmaster and remailer attacks: http://www.

obscura.com/âĹĳloki/remailer/remailer-essay.html (last checked: Dec 17,

2008)

Technologies for High-Latency Recipient Pseudonymity 27

integrity checks of all messages to make sure that they have not been

modified. This integrity check, however, makes it impossible to construct

headers of reply messages without already knowing their content which

is added by the recipient. Consequently, the Mixmaster protocol does not

support recipient pseudonymity.

The Babel [27] design contains a slight but noteworthy modification of

reply blocks by including a key seed in reply blocks that is encrypted for the

creator of the reply block. This key seed is used to derive all symmetric

keys for the return path. The advantage is that the sender does not have

to remember the keys of a reply block in order to process a reply, but

can reconstruct them using the enclosed key seed. This modification of

Cypherpunk-style reply blocks allows the sender to remain stateless with

respect to outstanding replies.

Mixminion-Style Nymservers

The Mixminion system [8, 46] changes the design of reply blocks by re-

stricting them to be used only a single time. Single-use reply blocks are

not exposed to replay attacks, because Mixminion remailers detect replays

for both forward and reply messages. Another feature of reply blocks in

Mixminion is that reply messages that are sent using a reply block are in-

distinguishable from usual forward messages, even to the forwarding re-

mailer. Since replies are rare in number compared to forward messages,

this makes it even harder for an adversary to trace a reply message.

Accordingly, Mixminion-style nymservers are designed to handle

single-use reply blocks for a given pseudonym. The Mixminion design-

ers [8] proposes two approaches for nymservers based on single-use reply

blocks. The first approach assumes that a pseudonymous user deposits

a sufficient number of reply blocks on a nymserver, so that all incoming

messages can be delivered. Whenever the number of reply blocks stored at

the nymserver decreases, the user would have to upload new ones to keep

28 Background on Pseudonymous Services

his pseudonym operational. The main disadvantage of this approach is

that an attacker can deny service by flooding any pseudonym to consume

all stored reply blocks and make further message delivery impossible.

The second nymserver approach in Mixminion resembles a mailbox

design. The nymserver stores all received messages in the first instance

(possibly encrypting them upon reception to lower the risk of disclosure).

A user periodically queries the mailbox for newly received messages and

supplies an appropriate number of reply blocks, so that the nymserver can

deliver the messages. A disadvantage of this approach is that the nym-

server needs to store user messages potentially for a long time, which

might have legal and security implications.

2.2.4 Private Information Retrieval

The Pynchon Gate [70] constitutes a rather different approach to recipi-

ent pseudonymity. Instead of delivering messages to recipients over a re-

mailer network that supports reply messages, the Pynchon Gate makes

use of private information retrieval techniques. The system processes

received messages in daily batches and makes them available in an en-

crypted and specifically indexed way to all possible recipients. Clients re-

quest a subset of all messages following a schema that does not permit an

observer to determine the pseudonym the recipient is using and signifi-

cantly reduces the overhead as compared to downloading all messages.

The Pynchon Gate system consists of a central component that pro-

cesses incoming messages with the two subcomponents of a nymserver

and a collator. The nymserver encrypts incoming messages for the recipi-

ents as soon as they arrive and passes a batch of all messages to the collator

once every day. The collator packages them into an indexed bucket pool

and replicates the index and all messages to a set of independently op-

erated distributor nodes. The pseudonym holders first download the com-

plete index to calculate which buckets hold their messages and then re-

Technologies for High-Latency Recipient Pseudonymity 29

Table 2.1: Comparison of high-latency designs to achieve recipient pseu-

donymity

Usenet Penet Cypher-

punk

Mix-

minion

PIR

No single point of trust ⊕ 	 ⊕ ⊕ ⊕
Traffic analysis resistance ⊕ 	 	 ⊕ ⊕
Usability for pseudonym holder 	 ⊕ 	 	 	
Usability for sender 	 ⊕ ⊕ ⊕ ⊕

trieve their buckets using private information retrieval. Therefore, they

send k requests to different distributor nodes for each bucket they want to

retrieve in a way that the bucket content can be obtained by combining all

k results. However, an observer that sees only k − 1 requests cannot de-

rive the bucket that a nym owner was asking for. Users always request the

same number of buckets to conceal the number of messages they actually

receive.

One disadvantage of this approach is that pseudonym holders need to

download a volume of messages of the maximum receivable size every

cycle, regardless of the fact whether they receive any message at all. Users

need to estimate the volume of messages they typically receive in advance.

2.2.5 Comparison

Despite their different approaches, all presented designs can be used to

achieve high-latency recipient pseudonymity. However, the approaches

differ in certain criteria like security properties, efficiency, and usability.

The approaches are compared with respect to these criteria in Table 2.1.

The first criterion is having no single point of trust. Systems that depend

on one or a few single points of trust for meeting security properties like

pseudonymity are vulnerable to threats like legal pressure and hacking

attempts. Only the Penet pseudonymous remailer is attackable in this

30 Background on Pseudonymous Services

regard which finally led to termination of its service. In the other systems

there is no single point that knows about the link between a pseudonym

and the real identity of its holder, thus providing better protection.

The second criterion is resistance against traffic analysis. An adversary

who can keep track of a message in a system by comparing message sizes

and timings might be able to link a pseudonym to its holder. The Penet

pseudonymous remailer does not take special precautions to impede traf-

fic analysis and is thereby vulnerable to traffic analysis. The Cypherpunk

pseudonymous remailer introduces a few countermeasures against traffic

analysis, but does not enforce them. Further, the fact that reply blocks

may be used multiple times defeats this protection. Mixminion imple-

ments effective countermeasures against traffic analysis including indis-

tinguishability of forward and reply messages. Usenet message pools and

Private Information Retrieval make traffic analysis attacks very hard, be-

cause messages addressed to a recipient are hidden in larger message sets

that a recipient downloads regularly from the system.

Usability of pseudonym holders is another criterion when comparing the

approaches. Pseudonym holders in the Usenet-based approach and in

the Private Information Retrieval system need to periodically download

a possibly large number of messages in order to determine whether any

of them is addressed to them or not. Mixminion requires pseudonym

holders to provide enough single-use reply blocks to receive messages ad-

dressed to them which requires special software. Establishing a recipient

pseudonym in the Cypherpunk remailer either requires a couple of man-

ual steps or special software, too. Only the Penet makes registration of a

new recipient pseudonym a simple task that only requires sending a sin-

gle mail to the nymserver. Incoming messages for the pseudonym are

forwarded to the real address of the recipient.

Usability is also a factor when considering the sender of a message.

In the Usenet approach users need to prepare messages by encrypting

them for pseudonymous recipients, possibly using special software. In

Technologies for Low-Latency Responder Pseudonymity 31

the other approaches this is not necessary, so that messages can simply

be addressed to special pseudonyms and are delivered by the pseudony-

mous communication system to the intended recipients.

2.3 Technologies for Low-Latency Responder Pseudonymity

A characteristic feature of most high-latency anonymous communication

systems is the introduction of artificial delays to defeat traffic analysis. In

contrast to this, low-latency anonymous communication systems do not

introduce any delays artificially, but focus on fast transmission of mes-

sages. As a result, interactive protocols can be executed on top of the ano-

nymous communication system. As with high-latency systems, there are

different designs to provide anonymity or pseudonymity in a low-latency

system. The following description focuses on approaches that support

responder pseudonymity (rather than only recipient pseudonymity) with

a long-term pseudonym which is a necessary prerequisite to implement

pseudonymous services.

2.3.1 ISDN Mixes

Pfitzmann and others [62] presented in 1991 the first design for a low-

latency anonymous communication system supporting responder pseu-

donymity. The purpose was to provide untraceable communication in the

digital telephony network ISDN with the bandwidth restriction of using

only two duplex data channels and one signalling channel.

The main goal of the approach was to create a mix channel transmitting

a continuous stream of data from initiator to responder with almost no

delay and without anyone being able to trace either initiator or responder.

The basic building block to transmit data is an ISDN mix that is a variant

of Chaum’s mix [6], but that processes data in real-time. Therefore, the

initiator prepares a message for a mix cascade M1 to Mn by encrypting

it multiple times to the public keys of all mixes in reverse order. Every

32 Background on Pseudonymous Services

layer of encryption contains a symmetric decryption key ki that is used by

the corresponding mix Mi to decrypt succeeding stream data. After es-

tablishing such a mix sending channel, the initiator can send a data stream

which is encrypted multiple times to the first mix which is then decrypted

by every mix using the appropriate secret key ki.

Likewise, participants create such channels to receive stream data in-

stead of sending it. Therefore, a participant sends an establishment mes-

sage to a series of mixes containing symmetric encryption keys k′i. In this

case unencrypted stream data is provided to the last mix Mn and encrypted

by every mix in the cascade until it is delivered to the participant. This

concept of a mix receiving channel bears resemblance to untraceable re-

turn addresses as presented in Section 2.2.3, however, with the difference

that participants establish receiving channels themselves instead of giving

out information for how to establish them to others.

So far it is only possible to create sending and receiving channels. What

is still missing is a way to connect two channels to transfer user data from

an initiator to a responder. Therefore, two participants agree on a com-

mon label that they include in their mix-channel establishment messages

and that is processed by the last mix Mn to connect the two channels. The

initiator creates such a label and broadcasts it to all possible responders us-

ing a sending channel.7 The broadcasted message is implicitly addressed

to the responder, so that the responder can cryptographically determine

that the message is addressed to him and read the label, while the mes-

sage is incomprehensible for other participants. Initiator and responder

of this broadcast message use the label to create a sending and receiving

mix channel, respectively, and the last mix Mn connects them.

Even though some ideas of this approach could be applied to Internet

services, there is a major assumption that is specific to circuit-switched

7 The approach provides for a hierarchical network, so that these messages would in fact

be broadcasted to a certain number of participants only.

Technologies for Low-Latency Responder Pseudonymity 33

telephony networks: users have a fixed amount of bandwidth at hand. On

the one hand, this bandwidth can never be exceeded, so that resources

need to be released as quickly as possible. But on the other hand, unused

bandwidth can be used for continuously sending cover traffic which is of-

ten too expensive in packet-switched networks like the Internet. Further,

the requirement to send and receive broadcast messages is unrealistic on

an Internet scale, even when being performed in a hierarchical fashion.

2.3.2 Onion Routing

The first Onion Routing design [25, 67] was proposed in 1996 and pro-

vides anonymity for the communication partners of Internet services like

the World Wide Web and Telnet. Onion routing is based on a possibly

large number of routing nodes. In order to establish an anonymous con-

nection, the initiator selects a series of routing nodes and creates an onion

which encapsulates that route. The onion contains encrypted layers for the

routing nodes in the path, including secret decryption/encryption keys for

each routing node. The initiator sends the onion along the selected route,

thus establishing a virtual circuit beginning at the initiator and ending at

the last routing node. The routing nodes store the state of a virtual circuit

and process data going in either forward or backward direction by decrypt-

ing/encrypting it and forwarding it to either the next or previous routing

node in the path. The routing nodes further make sure that onions are

not used more than once by checking their timestamp to see if they are

still valid and by memorizing processed onions until they expire.

The design also introduces the concept of reply onions which can be

used by any participant to create a virtual circuit to the creator of the reply

onion. The idea of reply onions resembles the concept of untraceable

return addresses in as much as they permit a responder to create a virtual

circuit back to an anonymous initiator. Just like normal onions, reply

onions contain a pre-defined path of router nodes and include all routing

34 Background on Pseudonymous Services

information and cryptographic keys, encrypted in layers, that is necessary

to build the virtual circuit. Reply onions may only be used once, too, which

is ensured by the routing nodes.

Reply onions can be used in different ways to achieve responder pseu-

donymity. The typical way is to include a reply onion in the data stream

of an initiator-anonymous connection, so that the responder can contact

the initiator after the virtual circuit has been torn down. A participant

could also broadcast reply onions which could then be used anonymously

by other participants to establish a virtual circuit to the first participant. In

addition to that, the authors [25] briefly mention two more approaches to

create a completely anonymous connection between two parties that are

based on the concept of an anonymity server. In the first approach two

participants create virtual circuits to the same anonymity server that con-

nects the two circuits using a shared token. In the second approach one

participant creates a virtual circuit to an anonymity server and requests it

to create a connection to another participant using a provided reply on-

ion. The results of both approaches would be that the identities of both

participants are protected by a virtual circuit that they have determined

themselves.

Unfortunately, the usefulness of reply onions to implement long-term

responder pseudonyms is limited. First, reply onions can only be used

once by design. Second, validity of reply onions needs to be restricted in

order to limit the amount of storage that is necessary to memorize previ-

ously processed reply onions. Third, using a reply onion requires all rout-

ing nodes that were picked during the creation process to be still available

at the time of building the virtual circuit. Nevertheless, reply onions con-

stitute an important step in the development of responder pseudonymity.

Technologies for Low-Latency Responder Pseudonymity 35

2.3.3 TAZ Servers and Rewebber Network

TAZ servers8 and the Rewebber Network [23] were proposed in 1998 by

Goldberg and Wagner as a means for anonymous publication on the

World Wide Web. Rewebbers are HTTP proxies that understand so-called

rewebber locators that basically resemble the concept of untraceable return

addresses: rewebber locators consist of a rewebber address and an en-

crypted string possibly containing another nested rewebber locator.

Clients use rewebber locators to request documents from servers that

wish to remain anonymous by sending them to the first rewebber. Af-

ter decrypting the encrypted URL part, the rewebber forwards the loca-

tor to the next rewebber until it finally reaches the real web server which

originally created the rewebber locator. The webserver responds with a

document which is encrypted multiple times and passed back to the cli-

ent. Each rewebber on the way removes one layer of encryption, so that

the client receives the plain document as response to the original request.

The result of this approach is that only the rewebber closest to the client

sees decrypted data whereas only the rewebber closest to the server learns

where these data originate from.

The proposed design further contains the concept of TAZ servers to

achieve pseudonymous publication on the World Wide Web using short

persistent names. TAZ servers store mappings of persistent domain

names in the virtual .taz domain to rewebber locators. This way clients

do not need to remember the rather cumbersome rewebber locators, but

a much shorter .taz domain name. Further, if a rewebber locator needs to

be replaced, the server does not need to inform all clients, but only update

the mapping at the TAZ server. As a safeguard to impersonation attacks

on existing .taz servers, the TAZ server may store a password hash to au-

thenticate updates. TAZ servers do not, however, provide authenticity of

8 TAZ stands for Temporary Autonomous Zone which is inspired from the book T.A.Z.: The

Temporary Autonomous Zone, Ontological Anarchy, Poetic Terrorism by Hakim Bey.

36 Background on Pseudonymous Services

stored entries with regard to the person or organization running the web-

server. The authors state that clients and servers should rely on end-to-end

authentication by signing all anonymous documents using a private key

and distributing the public key together with the .taz domain name.

The main problem of this approach is that rewebber locators can be

used multiple times; while caching at the rewebbers reduces the number

of requests that need to traverse the complete path, the general problem of

traceability remains. Another minor weakness of the design of TAZ serv-

ers is missing authenticity of .taz domain names: a client that requests

a resource from a trusted .taz service and obtains a rewebber locator for

that resource from a TAZ server needs to download the resource first be-

fore being able to authenticate its origin; it would be desirable to perform

authentication before actually performing the request.

2.3.4 Pseudonymous IP Network

The Pseudonymous IP (PIP) Network [19] as proposed by Goldberg in

2000 provides anonymity and pseudonymity for clients and pseudonymity

for servers of Internet services. The central concept to achieve anonymity

for clients is the IP wormhole. An IP wormhole enables a client to anony-

mously exchange IP packets with an Anonymous Internet Proxy which is

part of the PIP network. Roughly speaking, IP wormholes work similarly

to virtual circuits in the Onion Routing [25] design, but on the IP level

rather than on the TCP level; the differences between the two concepts

do not affect the way of providing pseudonymity for servers as discussed

here.

The design contains the concept of a rendezvous server that can, but does

not need to be part of the PIP network. A service provider registers his ser-

vice using an IP wormhole at a rendezvous service under an arbitrary ser-

vice tag; while the only requirement to the service tag is that it is unique, it

may also be the hash of a public key that is used by the rendezvous server

Technologies for Low-Latency Responder Pseudonymity 37

to authenticate the message as originating from the owner of the private

key. In consequence, the rendezvous server assigns one of its public IP

addresses (assuming that it controls multiple IP addresses; otherwise it

assigns its own IP address) and possibly a TCP/UDP port number to the

service and waits for TCP connection requests, UDP datagrams, or sim-

ply IP packets. The rendezvous server further publishes the service tag

together with the assigned IP address and port number to a distributed

storage network like Gnutella [18].

A client looks up a given service tag in the distributed storage network

to retrieve IP address and port number of the rendezvous server. De-

pending on the privacy requirements, the client can either contact the

rendezvous server directly or use an IP wormhole itself to protect its real

IP address. All data between client and server are hereafter forwarded

by the rendezvous server in both directions. If confidentiality is needed,

client and server need to apply end-to-end encryption, because otherwise

data is readable for the rendezvous server.

Rendezvous servers might have transient nature and go offline during

the lifetime of a service. In order to stay connected, services should set up

connections to multiple rendezvous servers and advertise them under the

same service tag in the distributed storage network. The author further

sketches an extension to switch rendezvous servers seamlessly during an

ongoing connection between client and server.

One problem of the approach is that the distributed storage network

exhibits only weak security properties: an adversary could publish an arbi-

trary number of entries for the same service tag, making it hard for clients

to identify the legitimate ones. The author discusses the possibility to let

entries be signed by the service provider and verified by the clients. How-

ever, this requires a change in the design, as entries are generated and

published by the rendezvous server and not by the service provider; it also

puts the burden of downloading and verifying a possibly large number of

entries to clients. It would be better to implement authentication at the

38 Background on Pseudonymous Services

distributed storage nodes rather than at clients and servers.

2.3.5 Tarzan

In 2002, Freedman and Morris presented Tarzan [16, 17], a peer-to-peer

anonymous IP network overlay. In this system every participant acts as

a proxy and relays data for other participants. In combination with cover

traffic an adversary cannot tell easily whether traffic originates at a cer-

tain proxy or is relayed for another participant. The network meta-data is

stored in a distributed fashion, so that there is no central database in the

network.

Participants can build tunnels to other proxies which are based on lay-

ered encryption and multi-hop routing as in the previously described ap-

proaches. The last proxy of a tunnel acts as network address translator to

bridge traffic between the Tarzan network and the Internet. This address

translation works in both directions, so that a service provider can estab-

lish a tunnel and publicize the address of the network address translator

to others as a way to contact him. Clients can then establish a connection

to the network address translator which forwards requests to the server

and delivers responses back to the client.

The major problem of this approach is that the Tarzan design does not

address the effect of volatility of proxies to service availability. Once a

proxy that is part of a tunnel leaves the network, the server needs to estab-

lish a new tunnel to the network address translator and is unavailable in

the meantime. Even worse, if the network address translator disappears,

the server needs to advertise a new service address for its service. In short,

the design is missing a naming service for pseudonymous services.

2.3.6 I2P

I2P, the Invisible Internet Project, is another peer-to-peer-based approach

to achieve responder pseudonymity. The design is unpublished, so that

Technologies for Low-Latency Responder Pseudonymity 39

the following description is based on the information given on the project

website.9 Every participant of the I2P network runs a router that may ini-

tiate connections to other routers itself and relay traffic for other routers.

Participants build uni-directional tunnels through previously selected

paths of routers to either send IP packets to the router at the end of the

tunnel (outbound tunnels) or receive data from there (inbound tunnels).

The default operation of I2P, as opposed to the previously described de-

signs, is to establish a connection to another, pseudonymously identified

I2P node while connections to non-I2P nodes explicitly require an out-

bound proxy running on an I2P node. I2P nodes store so-called lease sets

in the distributed network database. A lease set contains a participant’s

public key, a set of inbound tunnels, and a signature created with the par-

ticipant’s private key. Tunnels are valid for only 10 minutes, so that a

participant needs to refresh his lease set that often. A client can request a

lease set of another node by querying the database for the hash of the par-

ticipant’s public key and connect one of her outbound tunnels to one of

the retrieved inbound tunnels. As a means to counter attacks on specific

parts of the distributed database which could make a lease set unavailable,

entries are stored under daily changing keys by using the hash of the con-

catenation of the current date and the hash of the participant’s public key

as storage key.

The design of responder pseudonymity in I2P is promising, but with-

out any published information besides the website it is hard to evaluate

security properties of the system.

2.3.7 Tor

Tor [11] evolves the original Onion Routing design [25]. Tor contains a

feature to provide responder pseudonymity that is called location-hidden

9 See also the I2P homepage: http://www.i2p2.de/techintro.html (last checked: Dec

17, 2008)

40 Background on Pseudonymous Services

services, or hidden services in short. The design of hidden services refines

Goldberg’s rendezvous design [19] by connecting two circuits created by

client and server on a common rendezvous point. Hidden services further

use separate introduction points as first contact points for clients to improve

denial-of-service protection and a hidden service directory system to store

hidden service descriptors.

A service provider who wants to offer a hidden service generates a pub-

lic key pair as long-term identity for his service. The server establishes

the hidden service in the Tor network on randomly selected relays that act

as introduction points. In order to do so the server creates circuits consist-

ing of three relays and establishes introduction points on the last relays of

these circuits. The server sends establishment messages to these relays

that are created with the private key of the hidden service. The first two re-

lays in the circuit protect the link between the hidden service identity that

is known to the introduction point and the IP address that is known to the

first relay in the circuit. In the next step the server creates a hidden service

descriptor containing the list of previously established introduction points,

signed with the private key of the service. The server uploads this descrip-

tor to the hidden service directory using a circuit to hide the link between

its address and the hidden service identity from the hidden service direc-

tory. Finally, the server advertises the hash of the hidden service’s public

key, the onion address, to prospective clients. After that, the hidden service

is established and ready to be contacted by clients.

A client that wants to establish a connection to a hidden service fetches

its hidden service descriptor from the hidden service directory. The cli-

ent uses a circuit for this request to hide its attempt to access a certain

hidden service from the hidden service directory. If a descriptor is avail-

able, the client establishes a separate rendezvous point in the same way as

the server established introduction points. The rendezvous point will be

used to transfer application data. The client further opens a circuit to one

of the service’s introduction points. As soon as the rendezvous point is

Technologies for Low-Latency Responder Pseudonymity 41

established, the client sends an introduction request to the introduction

point that is forwarded to the hidden service. The server learns about the

rendezvous point of the client and opens a circuit to that relay. The server

then sends a rendezvous message to the rendezvous point that is passed

on to the client. At this point, client and server share a common circuit.

The client can then attach application streams to that circuit and send re-

quests to the hidden service.

The hidden service design exhibits a couple of useful security proper-

ties. Hidden services can resist certain attacks by quickly changing their

introduction points and publishing a new descriptor containing new ones.

The service is authenticated towards the introduction points, the hidden

service directory, and clients, so that nobody can impersonate an existing

hidden service. However, there are also a few drawbacks of the hidden ser-

vice design. Clients require special software, the Tor software, to be able

to access a hidden service. Further, the hidden service directory, consist-

ing of three fixed servers, constitutes single points that are able to censor

any hidden service.

The hidden service design is the most evolved pseudonymous services

design nowadays. It is deployed in a network consisting of more than

1,000 relays and a few hundred thousands users. The Tor system, in-

cluding the hidden service protocol, is well-documented and backed up

by an active community. These facts make Tor hidden services the most

promising candidate for implementing private services as motivated in

the previous chapter.

2.3.8 Comparison

All described designs support responder pseudonymity by allowing clients

to establish a connection to a server under a given pseudonym without

knowing its real location. The approaches shall be compared using a num-

ber of criteria ranging from security to usability properties. The ISDN-

42 Background on Pseudonymous Services

Table 2.2: Comparison of low-latency designs supporting responder pseu-

donymity

Onion

Routing

TAZ/Re-

webber

PIP Tarzan I2P Tor

Long-term pseudonyms 	 ⊕ ⊕ 	 ⊕ ⊕
Responder authentication 	 	 	 	 ⊕ ⊕
No single point of censorship ⊕ 	 ⊕ ⊕ ⊕ 	
Traffic analysis resistance ⊕ 	 ⊕ ⊕ ⊕ ⊕
Performance 	 	 ⊕ ⊕ 	 	
Usability for initiator 	 ⊕ ⊕ ⊕ 	 	

based design is excluded from this comparison, because its assumptions

are too different from the other approaches that are designed for packet-

switched networks like the Internet. Table 2.2 shows an evaluation of the

approaches with respect to the discussed criteria.

The first criterion is the ability of a responder to maintain a long-term

pseudonym. This ability is a prerequisite for offering a pseudonymous ser-

vice that can be contacted by clients using the same pseudonym. The orig-

inal onion routing does not exhibit this feature but only sketches briefly

how clients can learn about and use reply onions. The Tarzan system

binds a responder pseudonym to a Tarzan node in the system that might

vanish at any time, leaving no way of contacting the responder anymore.

The other presented designs permit responders to maintain a long-term

pseudonym by using a directory to map it to short- or medium-term con-

tact information.

From the designs that support long-term pseudonyms, only a subset

ensures authenticity of the responder using a pseudonym. These designs in-

clude I2P and Tor hidden services where the mapping between long-term

pseudonym and short- or medium-term contact information is signed by

the responder. Neither the TAZ/Rewebber system nor the PIP system

Technologies for Low-Latency Responder Pseudonymity 43

exhibit authentication as a mandatory feature. Onion Routing and the

Tarzan system do not provide authentication of responder pseudonyms

as they lack support for long-term pseudonyms in the first place.

In the context of how long-term pseudonyms are implemented, another

criterion to compare the approaches is censorship resistance. If the map-

ping between long-term pseudonym and short- or medium-term contact

information is stored at a single point, it could be censored to make a

responder unavailable. This censoring might be possible in the TAZ/

Rewebber system as well as in Tor hidden services. The PIP design and

I2P use distributed approaches to store mappings for long-term pseudo-

nyms which are significantly harder to censor. Onion Routing and Tarzan

do not have a single point of censorship as they do not support long-term

pseudonyms.

Further, the approaches shall be compared with respect to their traffic

analysis resistance. None of the approaches introduce delays on purpose

to defeat traffic analysis of a global passive adversary who can observe the

whole network. But traffic analysis can also be performed by creating new

paths through a network beginning or ending at the victim and observing

recurring traffic patterns. The TAZ/Rewebber system is vulnerable to this

attack, because a rewebber locator may be reused for an arbitrary number

of requests. Tor hidden services have been proven vulnerable to a simi-

lar attack where an adversary could force the server to create new circuits,

possibly including a rogue node at the first position; however, this vulner-

ability has been fixed [56]. The other systems are not vulnerable to this

attack, because paths are established by the responder, as in PIP, Tarzan,

or I2P, or can only be established once, as in the original Onion Routing

design.

The performance of establishing a connection is another important crite-

rion with regard to usability. The original Onion Routing design, the

TAZ/Rewebber system, I2P, and Tor hidden services require the initiator

to create a new path or part of it through the network for every connec-

44 Background on Pseudonymous Services

tion. On-demand path creation slows down connection establishment to

a pseudonymous responder as compared to approaches where the initia-

tor only needs to connect to a publicly accessible node in the network, as

in the PIP system and Tarzan.

Finally, usability for the initiator is different when comparing the ap-

proaches. The TAZ/Rewebber system, the Pseudonymous IP network,

and Tarzan allow the initiators of connections to pseudonymous respon-

ders to do so using standard software, like a Web browser. In contrast

to this, Onion Routing, I2P, and Tor require the initiators to use special

software when contacting a pseudonymous responder. This requirement

reduces usability to a certain extent.

This chapter has given a definition of pseudonymous services and has

presented the necessary background on technologies to realize them. As

a result, Tor hidden services [11] have been identified as a promising can-

didate to implement private services which use pseudonymous services

as a basic building block. The next chapter will give more specific back-

ground on Tor hidden services which is required in order to understand

the missing pieces for implementing private services.

3 Tor Hidden Services

Tor hidden services permit users to provide a service to other users with-

out leaking the location of the server. Concealing the server location is

the first step in hiding the user’s activity and protecting the server from

attacks. In this chapter the Tor system, including the hidden service fea-

ture, is described in more detail in order to give enough background for

the subsequent contribution chapters. The description starts with two

general features of Tor, namely circuit creation in Section 3.1 and the di-

rectory system in Section 3.2. The hidden service protocol is presented in

more detail in Section 3.3. Finally, Section 3.4 describes the threat model

of Tor which defines the capabilities of an adversary that the system is able

to protect against.

3.1 Circuit Creation

The Tor network is an overlay network consisting of relays that transport

user data and clients that operate on behalf of users. Clients and relays

exchange fixed-size cells over TLS-encrypted connections [9] to build multi-

hop circuits and attach streams to them. In contrast to the original onion

routing design, circuit creation in Tor exhibits perfect forward secrecy by

negotiating ephemeral session keys rather than using long-lived public

keys. This process is called telescoping and is performed incrementally.

Figure 3.1 shows the sequence of circuit creation and stream attachment

that is described in the following.

A client starts to create a circuit by selecting (typically three) relays based

46 Tor Hidden Services

Client Entry Node Middle Node Exit Node Server

CREATEFAST

RELAYBEGIN

RELAYCONNECTED

EXTEND

CREATEDFAST

CREATE

CREATEDEXTENDED

EXTEND

EXTENDED

CREATE

CREATED

RELAYBEGIN RELAYBEGIN

RELAYCONNECTED
RELAYCONNECTED

(open TCP

connection)

(TLS−encrypted) (TLS−encrypted) (TLS−encrypted) (unencrypted)

EXTEND

EXTENDED

Figure 3.1: Circuit creation and stream attachment

on criteria like bandwidth, availability, or policy to exit to a certain target.10

The three relays are also referred to as entry, middle, and exit node depend-

ing on their position in a circuit. The client establishes a connection to

the first relay using TLS which provides authentication of the relay to-

wards the client and confidentiality of communication. The client then

sends a CREATEFAST cell with the first half of a secret key to encrypt data

in the newly established circuit. The relay responds with a CREATEDFAST

cell with the second half of the secret key, after which both client and relay

share a secret key. It is not necessary to perform a Diffie-Hellman key ex-

change at this point, because the client has already authenticated the relay

and both are communicating over an encrypted connection. This is not

the case for the subsequent nodes in the circuit to which a client does not

10 It is assumed here that clients know the list of all relays, their configuration, and public

keys which will be described in more detail below.

Circuit Creation 47

open a direct TLS connection.

In the next step the client extends the one-hop circuit incrementally

to the other relays. Therefore, the client sends an EXTEND cell to the

first relay that is encrypted with the previously negotiated secret key11 and

that contains a nested CREATE cell that is encrypted for the public key

of the second relay. The first relay decrypts the EXTEND cell, establishes

a TLS connection to the second relay, and forwards the encrypted CRE-

ATE cell. The CREATE cell contains the first half of a Diffie-Hellman key

handshake [10] to establish a secret key between client and second relay.

The second relay performs the Diffie-Hellman handshake and responds

to the first relay with a CREATED cell containing the second half of the

Diffie-Hellman handshake. The first relay encrypts the received CREATED

cell with the secret key, encapsulates it in an EXTENDED cell and sends

it to the client. Subsequent circuit extensions work likewise with all cells

except CREATE and CREATED being encrypted multiple times using the

previously negotiated secret keys.

As soon as a circuit is established, the client can attach one or more

application-level streams to it. Therefore, the client prepares a RELAY-

BEGIN cell by encrypting it to the secret keys and sending it to the first

relay in the circuit. Every relay removes the outer encryption layer and

forwards the cell to the next relay. The last relay finds the RELAYBEGIN

cell and opens a connection to the given target. After the connection has

been established, the last relay creates a RELAYCONNECTED cell, encrypts

it with the shared secret key and sends it to the previous relay in the cir-

cuit. Again, every relay encrypts the received cell and forwards it to either

the previous relay in the circuit or to the client. Finally, the client decrypts

the cell with all secret keys and learns that the stream has been opened.

Subsequent data is sent similarly in both directions contained in RELAY-

11 To be precise, client and relay use keys that are derived from the negotiated secret key to

encrypt data that is sent in either forward or backward direction; however, this level of

detail is not required for the discussion here.

48 Tor Hidden Services

DATA cells. Both sides can close the stream by sending a RELAYEND.

After all streams have been closed and the circuit reached a certain age,

the circuit can be closed by sending a DESTROY cell in either direction. A

more in-depth specification of circuit creation in Tor can be found in the

Tor specification [64].

The circuit creation process in Tor may appear rather cumbersome.

However, its purpose is to achieve perfect forward secrecy. In the origi-

nal Onion Routing design [25] a single onion is used to establish a virtual

circuit that is encrypted using medium-term public keys. A hostile node

could record traffic and later force successive nodes to decrypt it. This

threat does not emerge with the telescoping approach in Tor. Once ses-

sion keys are deleted, nobody can force or compromise a relay to decrypt

old traffic. The circuit creation algorithm further provides authentication

of relays to the initiating client so that an adversary cannot easily imper-

sonate relays which was shown by Goldberg [21].

Building circuits in Tor can be a time-consuming task and has therefore

been subject to various investigations. Kate and others [32] proposed an al-

ternative circuit building protocol that requires only a single pass and also

provides forward secrecy. Øverlier and Syverson [58] presented a mod-

ified protocol based on Diffie-Hellman handshakes to build Tor circuits

with fewer exponentiations than in the original protocol thus accelerating

the process. Panchenko and others [59] measure the influence of single

overloaded nodes on the general performance of Tor. They propose new

path selection strategies to improve latency of Tor based on actively mea-

suring latencies and passively observing bandwidths of direct links to Tor

relays. Similarly, Snader and Borisov [74] propose tunable path selection

algorithms, so that users can choose between strong anonymity protec-

tion or better performance. Under the assumption that this choice does

not make users partitionable, overall anonymity for all users increases be-

cause of an increase in the total number of users.

Directory System 49

3.2 Directory System

Clients need a list of all relays including their addresses, public keys, and

policies to exit to certain targets in order to build circuits. Therefore, a

small number of trusted directory authorities keeps a list of active relays

and serves them to clients. It is vital that all clients know roughly the same

set of relays. Otherwise, an adversary could easily identify those clients

using a different set of relays. Tor contains a separate directory protocol

[63] that specifies how routing information is distributed to clients.

The first directory protocol version was designed for single directory au-

thorities that serve directories of all relays to the clients. The major prob-

lem of this version is that directories containing all information about a re-

lay, including public keys, grow pretty fast. The first protocol version was

therefore extended by directory caches which help distributing the load to

multiple nodes. Further, network status documents were introduced which

contain a short list of routers rather than the complete descriptors. This

separation allows clients and caches to download network status docu-

ments in shorter intervals and request only the missing router descriptors

afterwards.

Another problem of the first directory protocol was that clients had to

believe in the network status document of a single authority. Therefore, in

the second directory protocol version clients downloaded network status

documents from all directory authorities and combined them to obtain a

common view on the network. However, as the network grew, the net-

work status documents did so, too. This has made it quite expensive for

clients to download all network status documents and combine them lo-

cally.

At the time of writing, the third directory protocol version [63] is in use.

The idea of this version is to combine network status documents already

on the directory authorities and serve documents which are signed mul-

tiple times to clients. Whenever a relay is (re-)started or has changed its

50 Tor Hidden Services

0−5−10 60 180

exchange

votes

exchange

signatures

consensus is fresh consensus is not fresh

but still valid

Figure 3.2: Creation and validity of a network status consensus (min)

configuration, it creates a router descriptor containing, among other things,

its IP address and onion port for incoming connections, long-term identity

key, medium-term onion key, and its exit policy. The relay then uploads

its router descriptor to all directory authorities.12 The idea is that clients

should only use a relay that is known to at least half of all directory author-

ities; otherwise a single directory authority could fool clients by serving a

specifically prepared list of relays in the attempt to destroy their anony-

mity. As a solution to counter this problem, the directory authorities vote

in fixed intervals on a common list of routers, the network status consensus.

Clients download the consensus from any of the directory authorities to

obtain a common view on the network. Afterwards, they need to download

the corresponding router descriptors to be able to create circuits.

Figure 3.2 shows the timing of creation and validity of a network status

consensus. The times are system-wide defaults at the time of writing and

may change in the future. 10 minutes prior to publication of a consen-

sus, the directory authorities start exchanging signed network status vote

documents containing the identities of known relays. Every directory au-

thority then computes a network status consensus document containing the

identities of all relays that are listed in the majority of all votes. Under

the assumption of full connectivity between directory authorities, every

authority comes up with the same list of relays. 5 minutes prior to publi-

cation, the authorities exchange detached signatures of the previously cre-

ated consensus. At time 0 the consensus is published and made available

12 At the time of writing there are six directory authorities running the described version 3

of the directory protocol.

Hidden Services 51

to clients. It is then fresh for 60 minutes at which point a new consen-

sus is published. A consensus is valid for 180 minutes after publication

during which clients do not need to download a new consensus. After

180 minutes at the latest a consensus is discarded and clients download a

new consensus.

3.3 Hidden Services

Hidden services make use of initiator-anonymous circuits to provide re-

sponder pseudonymity. The hidden service protocol defines three addi-

tional roles that are implemented by Tor relays: hidden service directory

server (which can be distinct from the directory authorities as described

above), introduction point, and rendezvous point. Tor clients can both pro-

vide and access a hidden service. The in-depth specification of the hid-

den service protocol is described in the Tor rendezvous specification [65],

which already includes the changes that have been performed for the pur-

pose of this thesis. Figure 3.3 shows the steps to set up a hidden service

in the network and to establish a connection to it.

Before being able to offer a hidden service, service provider Bob gen-

erates a public key pair as long-term identity for his service. Bob then

establishes his service in the Tor network by randomly selecting a small

number of relays as his introduction points and creating circuits to them.

He sends ESTABLISHINTRODUCE cells containing the public key of the

service to the prospective introduction points in step 1. The introduction

points acknowledge the request by sending INTROESTABLISHED cells in

step 2, meaning that the relays are ready to accept introduction requests

from clients.

After establishing a sufficient number of introduction points, Bob cre-

ates a hidden service descriptor containing the public key of the service, a

timestamp, and the introduction point list, signed with the private key of

the service. He uploads this descriptor to the three authoritative hidden

52 Tor Hidden Services

Client

Introduction Point

Hidden

Service

Directory

Rendezvous Point

Hidden Server

1

3
7

8

10

13

2

12

5

11

4
6

9

14

Figure 3.3: Overview of the hidden service protocol

service directories in step 3 which is acknowledged in step 4. Bob uses

another circuit for uploading his descriptor in order to hide his IP address

from the directories as well. After that, the hidden service is established

and ready to be contacted by clients.

Bob can tell the onion address of his service, which is a hash of the public

key of his service, to his clients in step 5. The advantage of using a service

name that is derived from a public key as opposed to a freely selectable

name is that it is self-authenticating: clients can verify that an obtained

hidden service descriptor was created by the service that they expect and

do not have to trust the directory servers in returning the correct descrip-

tor for a given service name. The disadvantage, however, is that onion

addresses are less convenient for users to handle than freely selectable

names.

A client Alice who wants to establish a connection to Bob’s service starts

by fetching his hidden service descriptor from the directory servers in

step 6 and receives a response in step 7. Alice uses a circuit for this request

to hide her attempt to access Bob’s service from the directory servers.

Hidden Services 53

If Bob’s service is available and Alice has received a hidden service de-

scriptor, she establishes a separate rendezvous point that will be used to

transfer user data for her request. Typically, she does not need to estab-

lish a new circuit from scratch, but can reuse a preemptively established

circuit for this purpose; this process is called cannibalization and is al-

ways used when a circuit needs to be created on demand. Alice sends

an ESTABLISHRENDEZVOUS cell to the prospective rendezvous point in-

cluding a single-use random string, the rendezvous cookie, in step 8. The

rendezvous point stores this cookie and acknowledges receipt by respond-

ing with a RENDEZVOUSESTABLISHED cell in step 9. In the meantime,

Alice establishes a circuit to one of Bob’s introduction points. She may

reuse an existing circuit by means of cannibalization and extend it by a

single hop to the introduction point.

As soon as Alice’s rendezvous point and the circuit to Bob’s introduc-

tion point are established, Alice sends an INTRODUCE1 cell to the intro-

duction point in step 10 containing the unencrypted hash of Bob’s pub-

lic key and an encapsulated message part. The latter is encrypted using

Bob’s public key and contains IP address and onion port of Alice’s rendez-

vous point, the rendezvous cookie, and the first half of a Diffie-Hellman

handshake. The introduction point compares the unencrypted hash with

previously received public keys of services. If the introduction point finds

a match, it acknowledges Alice’s request in step 11 and forwards the en-

crypted message part of the INTRODUCE1 cell as INTRODUCE2 cell to Bob

in step 12. Bob establishes a circuit to Alice’s rendezvous point, possi-

bly by extending a cannibalized circuit, and sends to it a RENDEZVOUS1

cell containing the rendezvous cookie and the second half of the Diffie-

Hellman handshake in step 13. The rendezvous point, upon recognizing

the rendezvous cookie, forwards the second half of the Diffie-Hellman

handshake as RENDEZVOUS2 cell to Alice in step 14, finally establishing

an end-to-end encrypted circuit between Alice and Bob. Alice can then at-

tach application-level streams to the circuit and perform service requests.

54 Tor Hidden Services

3.4 Threat Model

A threat model defines the capabilities of an adversary which the system

can protect its users from. A common threat model in privacy-enhancing

technologies is that of a global passive adversary; in this model the adver-

sary is capable of observing (but not modifying) all traffic that is passed

within the anonymous communication system including from and to its

users. Tor [11], like all other practical low-latency anonymous communi-

cation systems, does not protect against a global passive adversary. Tor

does not introduce artificial delays in the transported traffic and does not

add cover traffic at times when no real traffic is sent. An adversary who

is able to observe all traffic between the relays and between clients and

relays can link the initiators to responders and hidden services to the serv-

ers which provide them. Such an attack would be performed using traffic

analysis techniques, that is, by comparing patterns in the observed traffic.

In contrast to this, Tor protects its users against an adversary that can

control only a limited fraction of all network traffic. This adversary can

generate, modify, delete, or delay traffic, can operate relays of his own,

and can compromise some fraction of other relays. The assumption of

such an adversary is more realistic in the Tor network. Relays are run

by volunteers distributed over the whole world which, however, allows an

adversary to become part of the network with one or a few nodes without

attracting much attention. In general it is deemed to be sufficient to ob-

serve only the ends of a circuit to correlate initiator and responder, or in

case of hidden services, to link a hidden service to the server that provides

it. Attacks on low-latency anonymous communication systems that make

use of traffic analysis are described, for example, by Raymond [66] and

Serjantov and Sewell [72].

This chapter has given a brief overview of Tor and its hidden services

Threat Model 55

feature. This description will be necessary to understand the limitations

of hidden services for private services and will be required to comprehend

the contribution of this thesis. The next three chapters will point out the

specific problems of hidden services with respect to implementing private

services and will present solutions to overcome them.

4 Distributed Descriptor Storage

Anonymous communication systems that support recipient pseudonyms

usually rely on a directory service. Its purpose is to store and serve descrip-

tors containing the mapping from a long-term pseudonym to short- or

medium-term contact information. In most cases the contact information

expires after a certain time, but initiators shall still be able to contact the

recipient under a persistent pseudonym. Another reason is convenience,

so that users do not need to remember cumbersome contact information

but can refer to a certain recipient using a human-readable name. The re-

quirements to directories for recipient pseudonymity as described below

exceed those to naming services in general when it comes to privacy of

stored entries. These requirements make the design of a directory service

for this application a non-trivial task.

This chapter presents a novel distributed directory design for Tor hid-

den services. The basic elements of the design have been described earlier

as part of a privacy-aware instant messaging system [39,40]. The idea was

to rely on Tor hidden services to provide the instant messaging service and

distribute contact data in a public distributed hash table outside of Tor.

The design provided for a way that entries in the distributed hash table

are only detectable and comprehensible for intended users. The design

presented here adopts many of these ideas, like encoding of descriptor

identifiers, and evolves them towards a general distributed hidden service

directory.

The chapter is structured as follows: The desirable requirements to

naming services are listed in Section 4.1. Previous designs, which are ei-

ther centralized or decentralized, are described in Section 4.2. Section 4.3

58 Distributed Descriptor Storage

contains a description of the existing Tor hidden service directory design.

Section 4.4 contains the proposal of the distributed hidden service direc-

tory for Tor. The possible impacts of the new design on security properties

are investigated in Section 4.5. An evaluation of the availability of stored

descriptors based on a statistical analysis of archived data about the Tor

network is presented in Section 4.6. Some facts about the implementa-

tion of the distributed storage that has been deployed in the public Tor

network are outlined in Section 4.7. Section 4.8 concludes the chapter.

4.1 Requirements

A directory service for long-term recipient pseudonyms has the purpose

to store and serve mappings from pseudonyms to contact information.

Hence, the functional requirements are the two operations of publishing

and retrieving such directory entries. The non-functional requirements

can be subdivided into requirements to naming services in general and

those requirements which are specific to anonymous communication sys-

tems. Clearly, it is hard for any directory solution to fulfill all requirements

in equal measure.

Two general requirements are availability and scalability: A major re-

quirement to a directory service is high availability, that is, the proportion

of time the service is working should be close to 100%. The directory

service should not become unavailable when a single or a few nodes in a

network fail or are attacked. Further, the directory service should scale to

a large number of requests and entries. New applications, possibly including

private services as described in this thesis, are likely to increase the load

of the directory service. High scalability also protects against denial-of-

service attacks that attempt to make the system unavailable by overloading

it with useless entries.

Specific requirements to directory services for long-term recipient pseu-

donyms are authenticity of entries, censorship resistance, concealing ac-

Previous Work on Descriptor Storage 59

tivity, and support for private entries: The directory should verify authen-

ticity of stored entries, so that clients fetching a certain entry can be sure that

the entry was created by the service which they specified in their request.

Clients should not need to trust the directory in this context, but should be

able to verify authenticity themselves. The directory servers should not be

able to censor entries for a certain pseudonym easily in order to make that

recipient unavailable, neither on their own behalf, nor when being forced

to. Requests to the directory can reveal a lot of information about a service

and its clients: publish requests indicate service activity, and fetch requests

reveal actual usage of a service by clients. While it is very hard to conceal ac-

tivity completely, request data should not be accumulated at a single place

over time. The directory should support storage of entries for certain clients,

so that only these clients can locate the entry in the first instance, fetch it,

and understand the contained contact information.

4.2 Previous Work on Descriptor Storage

Previous work on directory service designs can be subdivided into cen-

tralized and decentralized approaches. While the earlier pseudonymous

service designs relied on centralized solutions, decentralized designs have

been proposed and deployed more recently.

The high-latency anonymous communication systems with support for

recipient pseudonymity that rely on a directory service all use a central-

ized design. These systems include nymservers in the Penet remailer and

both Cypherpunk-style [47] and Mixminion-style remailers [8]. In these

designs, contact information for recipients is stored on a single server

and used to forward incoming messages to the pseudonymous recipients.

Albeit being simple, these directory service designs fail to provide all re-

quirements as stated above. Availability depends on a single point of fail-

60 Distributed Descriptor Storage

ure,13 and scalability is limited by the resources that are available to a

nymserver. Even though the nymserver might ensure that contact infor-

mation is authentic, the sender of a message cannot verify this, because

the nymserver forwards messages directly, rather than returning entries

to the sender. The nymserver might censor any pseudonym by block-

ing the forwarding of messages and learns about all activities related to a

pseudonym.

One of the first directory service designs for low-latency anonymous

communication systems, the TAZ Server [23], was a centralized design,

too. The difference to a nymserver is that contact information, a so-called

rewebber locator in this case, is returned to the client rather than forward-

ing its request. TAZ servers are exposed to the same problems concerning

availability and scalability as nymservers. Authenticity of entries is explic-

itly excluded from the design, so that TAZ servers merely need to pro-

vide simple lookup functionality. From this follows that the other require-

ments, such as censorship resistance, concealing activity, and support for

private entries are not included in the design, either.

Tor hidden services [11] rely on a centralized approach, too, which con-

sists of three distinct directory servers.14 Hidden service descriptors are

replicated to all three directory servers which increases availability. Scal-

ability, however, is an issue, because every directory server stores every

descriptor, which obviously does not scale for a large number of descrip-

tors. Descriptors are referred to by the hash of the public key that is used

to identify the service and to sign the descriptor, so that authenticity of en-

tries is verified by directory servers and clients. The current design does

not exhibit censorship resistance, as the three directory servers could de-

13 There might be multiple nymservers being responsible for different pseudonyms, which,

however, does not improve availability of a single pseudonym.

14 The Tor design paper already suggests to utilize a distributed hash table instead of the

centralized storage, which, however, was not implemented in favor of the simpler server-

based design.

Existing Tor Hidden Service Directory Design 61

cide to block a specific descriptor to make the hidden service unavailable.

Activity is not concealed from the directory server operators who could

analyze these data to derive information about service activity or usage.

Private entries are not supported.

The Pseudonymous IP Network [19] was the first design to make use

of a decentralized storage, in particular an unstructured peer-to-peer net-

work like Gnutella [18]. This approach solves the requirements of avail-

ability and scalability quite well and also exhibits improved security prop-

erties. The distributed storage is resistant to censorship, and activity is

concealed from a single node operator. Authenticity of entries, however,

is not achieved by the Gnutella-based design, as an adversary could store

an arbitrary number of false entries under a given pseudonym name. The

design also makes no provisions for storing private entries.

The I2P system15 uses a distributed hash table to store information to

contact I2P nodes. This approach ensures availability and scalability. En-

tries are authenticated by the storing nodes which verify their signatures.

Censorship resistance and concealing of activity are ensured by periodi-

cally changing responsible storage nodes. Private entries are not specified.

4.3 Existing Tor Hidden Service Directory Design

The previous discussion of designs for directory services has shown that

none of them provides all of the requirements as stated above. The central-

ized approaches lack availability and scalability and do not prevent the op-

erators from censoring or tracking activity of pseudonyms. The decentral-

ized approaches can improve these properties, but none of them fulfills

all stated requirements. The goal of this chapter is to present and evaluate

a new decentralized directory service for Tor hidden services. Therefore,

15 See the I2P homepage: http://www.i2p2.de/techintro.html (last checked: Dec 17,

2008)

62 Distributed Descriptor Storage

the existing directory service design for hidden services in Tor is discussed

first with respect to fulfilling the stated requirements.

The existing Tor hidden service directory design relies on three fixed

directory servers. Their addresses and identity keys are hard-coded in the

Tor source code and are supposed to change seldom.16 Hence, the direc-

tory servers can be considered to be well-known to all hidden servers and

clients.

Hidden servers publish the descriptors for their hidden services to the

directory ports of all three directory servers using an HTTP post request.

Requests are tunneled via Tor circuits to conceal the hidden server as ori-

gin of the request; however, the descriptor content is transmitted in the

clear between the last node in the circuit and the directory server.17 Hid-

den servers repeat this step whenever their descriptor changes or when an

hour has elapsed. Clients that want to access a hidden service try to fetch

its descriptor from one randomly selected directory server. This request

is also tunneled via a Tor circuit to protect the location of the requesting

client. Failed requests are not repeated at other directory servers, unless

the user makes another attempt to reach a hidden service.

A hidden service descriptor in the existing design consists of the public

key of the hidden service, a timestamp, a list of introduction points, and

a signature created with the corresponding private key. Hidden service

descriptors are identified by the hash of the public key which is equal to

the onion address of the hidden service. Both the directory servers and

clients can verify that a hidden service descriptor must have been created

16 The IP addresses of the three directory servers have changed five times between their ini-

tial setup on April 29, 2004 and the time of writing this on September 27, 2008; changes

took place on May 7, 2004, October 14, 2004, July 15, 2005, November 5, 2005, and May

23, 2007.

17 The existing design has been improved in the course of this thesis by extending circuits

to the directory servers and sending encrypted directory requests in so-called BEGINDIR

cells.

Existing Tor Hidden Service Directory Design 63

Table 4.1: Hidden service descriptor format, version 0

Field Description

Service key Public service key

Timestamp Time when descriptor was created

Introduction points List of introduction points

Signature Signature of above fields created with private service key

by the owner of the private key which is the hidden server. Table 4.1 shows

the format of a version 0 hidden service descriptor as described in the Tor

rendezvous specification [65].

Availability of the existing hidden service directory design can be eval-

uated empirically by considering availability of the three hidden service

directories.18 An evaluation of 1,968 hourly network status consensuses

between January 10, 2008 and March 31, 2008 has shown that in 104

cases one of the three hidden service directories has either failed or been

restarted. Given that servers usually upload a new descriptor every hour

and that clients do not retry failed downloads at other directories, clients

were unable to download descriptors for a mean downtime of 30× 1/3 =

10 minutes for every such incident. As a result, the 104 downtimes ac-

counted for 17.33 hours in an interval of 1,968 hours being a ratio of 0.9%.

The other way round, the overall uptime of the hidden service directory in

the observed time was 99.1%.

Scalability of the design can best be evaluated by considering the aver-

age numbers of requests to a hidden service directory. Table 4.2 contains

the number of publish and fetch requests per hour between May 1, 2007,

23:25 and May 2, 22:25 UTC (Coordinated Universal Time) to the hidden

service directory server moria1 run by Roger Dingledine. Figure 4.1 vi-

18 All evaluations based on historical Tor network data have been performed using the Tor

network archives collected on the directory server tor26 by Peter Palfrader. The subse-

quent statistical analysis was conducted using GNU R [79].

64 Distributed Descriptor Storage

Table 4.2: Hidden service requests per hour to Tor directory server moria1

between May 1, 2007, 23:25 UTC and May 2, 2007, 22:25 UTC

Request Type Min. 1st Qu. Median Mean 3rd Qu. Max.

Publish 1169 1374 1456 1453 1548 1712

Fetch 50 90 103 113 142 207

sualizes these data in a graph. The low number of fetch requests results

from the fact that only one third of the fetch requests can be observed

at a single directory server; nevertheless, the ratio of requested to pro-

vided hidden services is rather low. These data have been collected in

an anonymity-preserving way by accumulating the number of requests in

time slices of 15 minutes and writing a history of 24 hours to a file on the

directory server. There is no public archive of requests available, so that

this evaluation should not be considered representative.19

The remaining four requirements have already been discussed in the

previous section. While the design ensures authenticity of descriptors, the

other requirements of censorship resistance, protection of service activity,

and support for private entries are not provided.

4.4 Proposed Tor Hidden Service Directory Design

The design of directory servers and hidden service descriptors in Tor

meets only a few of the previously stated requirements. In contrast to

this, a decentralized approach has a number of advantages which could

be leveraged in Tor. Storing hidden service descriptors on a subset of a

large number of directory nodes instead of only three servers exhibits bet-

ter scalability and can also increase availability. Furthermore, it becomes

19 The data have been posted to the Tor developer mailing list on May 2, 2007: http://

archives.seul.org/or/dev/May-2007/msg00004.html (last checked: Dec 17, 2008)

Proposed Tor Hidden Service Directory Design 65

Time

R
eq

ue
st

s
(p

er
 h

)

0
50

0
10

00
15

00

23:25 02:25 05:25 08:25 11:25 14:25 17:25 20:25

Request Type

Publish
Fetch

Figure 4.1: Hidden service requests per hour to Tor directory server

moria1 between May 1, 2007, 23:25 UTC and May 2, 2007, 22:25 UTC

significantly harder for a single node to either censor a service or track

its activities; even if the operators of the three directory servers are per-

fectly trustworthy people, they could be forced or subpoenaed to censor a

service or reveal information about descriptor publications or fetches. At

last, a decentralized approach allows for private entries with even better

protection of contact information and activity from unauthorized clients.

Besides the possible benefits of a distributed directory, there are a few

threats to keep in mind. Migration of the directory service from the pre-

sumably trusted directory authorities to a large number of possibly un-

trusted nodes might introduce new problems. It must be assumed that

an adversary can control a limited part of nodes and connections in the

network, thus being able to set up own directory nodes and read or mod-

ify messages to other directory nodes. On the one hand, descriptors shall

still be signed and the lookup process shall be based on the hash of the

public key, which prevents directory nodes from forging descriptors. On

66 Distributed Descriptor Storage

the other hand, an adversary might learn information that was not public

in the existing design which must be counteracted or at least limited.

4.4.1 Overview

The presented decentralized directory design makes use of peer-to-peer

principles. Previous experience with both unstructured [44] and struc-

tured peer-to-peer systems [30] was of great help when deciding which sys-

tem to adapt. The proposed design bears close resemblance to distributed

hash tables [1], especially Chord [75, 76]. Storage nodes and descriptors

in a distributed hash table are assigned unique identifiers determining

on which node a descriptor is stored. The nodes maintain routing tables

containing a small portion of other nodes and can forward requests to the

responsible node.

However, in contrast to general-purpose distributed hash tables, the

proposed design makes arrangements to limit the impact of malicious

directory nodes: neither routing information nor stored entries are ex-

changed between directory nodes. While both functions are required for

a general-purpose distributed hash table to operate, they would open up

security problems that are incompatible with the stated requirements.

Instead of maintaining their own partial routing tables, all hidden serv-

ers and clients rely on the common network status consensus. The net-

work status consensus contains a list of all relays in the network including

potential directory nodes. It is available on all Tor nodes anyway for per-

forming the actual onion routing. The consensus is updated once an hour

by the directory authorities and remains valid for three hours.20 Directory

nodes do not need to exchange routing information or forward directory

requests to other nodes. Therefore, they do not need to believe in what

20 These values reflect the situation at the time of writing this thesis; both voting interval

and number of periods for which a network status consensus is valid might change in

the future.

Proposed Tor Hidden Service Directory Design 67

other directory nodes say. In return, the directory nodes need to be very

stable, so that routing information at hidden servers and clients is as con-

sistent as possible.

Directory nodes do not replicate stored entries among themselves, but

rely on the hidden servers to make sure that descriptors are replicated to

a sufficiently large number of directory nodes or notice that responsibility

for a given descriptor has changed. Consequently, entries are not trans-

fered between directory nodes in case of joining or leaving nodes. This

design prevents routing attacks as described in [73] where an adversary

joins the system under changing identities and requests replicas.

The subsequent description is split into three parts which are shown in

Figure 4.2: A list of current directory nodes is compiled on the directory

authorities and distributed to hidden servers and clients in steps 1a and

1b. Hidden servers publish the hidden service descriptors for their ser-

vices to the directory nodes which verify and store them locally in step 2.

Clients fetch hidden service descriptors from the directory nodes in step 3.

4.4.2 Distribution of Consistent Routing Information

Clients and hidden servers require consistent routing information, so that

clients fetch descriptors from the directory nodes to which they were pub-

lished before. The two selection criteria for directory nodes in the pro-

posed design are to serve as Tor relays and to be connected to the Tor

network for a minimum uptime of a given number of hours. These criteria

narrow down the selection of nodes to highly available nodes only, thus

ensuring a certain level of consistency of routing information at hidden

servers and clients. There is no official authorization necessary to run a

directory node. Relay operators can decide for themselves whether to par-

ticipate in distributed descriptor storage or not by configuring their relay

accordingly. The idea is to have hundreds of directory nodes with each of

68 Distributed Descriptor Storage

Client

Directory Authorities

Directory Nodes

Hidden Server

1b

3

1b

2

1a

Figure 4.2: Overview of distributed directory in the proposed directory

design

them storing and serving a small share of all descriptors. The existence of

bad directory nodes shall be countered by means of replication.

Compiling and distributing a list of directory nodes is performed in

multiple steps: In the first step, relays that are configured as hidden ser-

vice directory nodes include a new flag in the router descriptors that they

upload to the directory authorities stating their willingness to act as direc-

tory node. Next, the directory authorities ensure that they can connect to

the relay for the globally defined minimum uptime before assigning the

new flag to the relay in their votes and in the consensus. Finally, clients

and hidden servers download the network status consensus and can filter

all relays with the new flag to obtain the complete list of directory nodes.

Proposed Tor Hidden Service Directory Design 69

Table 4.3: Proposed hidden service descriptor format, version 2

Field Description

Descriptor identifier Hash of service identity and secret identifier part

Service key Public service key

Secret identifier part Hash of time period, descriptor cookie, and replica index

Timestamp Time when descriptor was created

Introduction points List of introduction points (possibly encrypted)

Signature Signature of above fields created with private service key

4.4.3 Publication of Hidden Service Descriptors

Hidden servers start advertising their hidden services in the network by

calculating current descriptor identifiers.21 As opposed to the existing

design, descriptor identifiers change periodically, so that descriptors are

stored on changing directory nodes over time. The main reason for this

is that directory nodes shall only be responsible for a given descriptor for

a limited time. Table 4.3 shows the proposed hidden service descriptor

format. A descriptor identifier is calculated by applying a secure hash

function H to the concatenation (denoted as ||) of the public key identifier

of a hidden service (its onion address) and a possibly secret identifier part.

Throughout this thesis SHA-1 [55] is used as secure hash function. The

secret identifier part is the result of a hash operation, too.

descriptor-id = H(public-key-id || secret-id-part)

secret-id-part = H(descriptor-cookie || time-period || replica-index)

The descriptor cookie is an optional secret key that is shared between

a hidden server and a client. By including the descriptor cookie in the

21 Assembly of descriptor identifiers in the presented design has certain similarities to an

approach by Øverlier and Syverson [57]. Their work was simultaneously published with a

previous design [39] that is the basis for the design presented in this thesis. The approach

by Øverlier and Syverson will be described in more detail as related work in Chapter 7.

70 Distributed Descriptor Storage

descriptor identifier, the identifier is made unguessable for unauthorized

clients. The result is support for private entries.22

The time period contains the number of the period since the epoch (Jan-

uary 1, 1970, 00:00:00 UTC) for a globally fixed period length of, for exam-

ple, 24 hours. It is constructed in a way that transition times of descriptor

identifiers are equally distributed over the whole period depending on the

public key of the service. Preventing descriptor identifiers from changing

at the same periodic time avoids re-publication bursts of all descriptors in

the system. During period change-over times, hidden servers are required

to publish descriptors for the expiring as well as the upcoming period in

order to compensate clock deviations.

The replica index is used to assign distinct identifiers to the replicas of a

descriptor to distribute them to different parts of the identifier range. As

opposed to the distributed hash table Chord [76], replicas are not stored

on the siblings of a responsible node, but under distinct identifiers. Even

though storage on adjacent nodes in combination with node-to-node repli-

cation would have advantages in compensation of node failures, it opens

the possibility for a very effective threat: an attacker could create a number

of directory nodes with subsequent identifiers, for example by perform-

ing a Sybil attack [13], large enough to literally create a “black hole” in the

identifier circle. Hidden services with descriptor identifiers in the affected

identifier range would become inaccessible. Furthermore, directory nodes

shall not be responsible for replication anyway in order to restrict dissem-

ination of descriptors. Therefore it does not make a difference whether

replicas are stored on adjacent nodes or distributed over the identifier cir-

cle.

After determining the descriptor identifiers, a hidden server determines

which directory nodes are responsible for storing the descriptor replicas.

22 This feature is only mentioned at this point for the sake of completeness. It will be

discussed in more detail in the next chapter on client authorization for pseudonymous

services.

Proposed Tor Hidden Service Directory Design 71

Node 6CD1

Node A1C8
Node 5C85

Node 3889

Node 3063Node CE9A

Node A9EE

Node 1C03

Node F758
Descriptor FEE7

Descriptor

B748

Descriptor

553A

Descriptor 0E97

Figure 4.3: Example of distributed storage ring in the proposed directory

design

Responsibility of a directory node for certain descriptors is defined by its

node identifier. In the proposed design, the unique identity keys of re-

lays have been chosen as node identifiers, because they usually do not

change over time. Directory nodes are arranged using their identifiers in

a closed identifier ring, comparable to a Chord ring [76]. Descriptors have

identifiers in the same identifier space as directory nodes. A descriptor is

stored depending on its identifier on the directory node with next greater

or equal identifier. Figure 4.3 shows an example directory consisting of

nine directory nodes and four stored descriptors. In this example descrip-

tor 553A would be stored on node 5C85, descriptor B748 on node CE9A,

and descriptors FEE7 and 0E97 on node 1C03.

After having determined the responsible directory nodes for the de-

scriptors of a hidden service, the hidden server creates or extends circuits

to the directory nodes. Circuit extension by one or more hops is more ex-

pensive than sending an HTTP request from the exit node of a circuit to a

72 Distributed Descriptor Storage

directory node. But it hides the descriptor content from the exit node and

conceals the fact that a descriptor is published from the exit node. Hidden

servers re-publish descriptors whenever their content changes or when

they detect that a new directory node has become responsible for storing

a descriptor. Failed requests are by no means forwarded to other directory

nodes, even if a requested directory node knows that another node might

be better suited to store the descriptor, in order to limit unrestrained dis-

semination of descriptors.

The directory nodes, upon receiving a publish request, need to verify

that a hidden server is allowed to store a descriptor under a given identi-

fier. If descriptor identifiers are computed as described above, they look

like random strings to a storing directory node. However, without being

able to verify the legitimacy of a storing hidden server, anyone could claim

to store a descriptor under a given identifier, possibly occupying the slot of

a legitimate hidden service. Unfortunately, a hidden server cannot easily

move on to a new slot, besides changing the public key and thereby the

onion address of a hidden service. Another, superficially neat idea is to

store all descriptors for a given identifier without verifying them, because

a client would have to download them all to filter out the legitimate ones.

This is a race that clients would inevitably lose.

Therefore, hidden service descriptors contain the secret identifier part

that was used to create the descriptor identifier. A directory node can

verify legitimacy for using a descriptor identifier in two steps: First, the

directory node verifies the signature of the descriptor content with the in-

cluded public key. Second, the directory node generates a descriptor iden-

tifier using public key and time period and compares it with the claimed

descriptor identifier. If both identifiers match, the directory node memo-

rizes the descriptor and makes it persistent. Although a relay would not

be selected as directory node for one publication period after restarting,

clients might still request descriptors from them for a certain time after

restarting.

Security Implications 73

In contrast to the current design, the novel design makes barely trusted

relays responsible for storing hidden service descriptors. While they can-

not alter the signed contents, they could deny existence of previously

stored descriptors in the attempt of making a hidden service unavailable.

As a countermeasure hidden servers periodically try to download their

own descriptors. If they fail, they file a complaint against the directory

node to the directory authorities. The authorities first re-publish the af-

fected descriptor and then try to fetch it in random intervals. If they can

confirm the misbehavior, they penalize the directory node first by tem-

porarily removing its directory node flag. In case of recurrence the direc-

tory authorities ban the IP address range of the relay for acting as directory

node in the future.

4.4.4 Fetching Hidden Service Descriptors

When fetching descriptors, clients determine the descriptor identifiers for

a given onion address and look up the responsible directory nodes in the

same way as hidden servers do. The requesting client creates or extends a

circuit to one of the responsible directory nodes and sends a fetch request

to it. If the directory node has a descriptor for the requested identifier, it

returns this descriptor to the client which verifies and uses it to establish

a connection to the hidden server. If a request fails for any reason, clients

retry at the other responsible directories until either one of their requests

succeeds or none of the responsible directory nodes are left to try. Failed

requests are not forwarded to other directory nodes in order to limit dis-

semination of the information that a certain descriptor is requested.

4.5 Security Implications

Distributing the hidden service directory from a fixed set of servers to a

subset of a large number of nodes has security implications that need to

be discussed. The following list of possible security problems is based

74 Distributed Descriptor Storage

on the previously stated requirements to a directory service and a list of

possible attacks on distributed hash tables by Sit and Morris [73].

Forge Descriptors. An adversary could want to replace a valid descrip-

tor with an own descriptor in order to impersonate a hidden server. This

attack is neither possible in the existing, nor in the proposed design, be-

cause descriptors are signed with the private key of a hidden service.

Disseminate False Routing Information. An adversary could try to dis-

tribute false routing information to hidden servers or clients in the at-

tempt to target their ability to address publish or fetch requests to the

responsible directory nodes and make services unavailable. As discussed

in [73], an adversary in a distributed hash table could forward lookups to

incorrect or non-existing nodes, send incorrect routing table updates to

other nodes, or attempt to partition the network by providing false rout-

ing information to bootstrapping nodes. Although these attacks constitute

a threat in distributed hash tables, they are not possible in the proposed

design where all participants rely only on centrally provided routing infor-

mation. For a successful routing attack, the majority of directory author-

ities that create the network status consensuses would have to collude or

be compromised.

Cause Frequent Routing Information Changes. In a distributed hash ta-

ble, nodes can join and leave the system at any time, resulting in main-

tenance messages to update routing tables. A malicious node could ex-

ploit this rebalancing, resulting in a lot of unnecessary traffic and possibly

destabilization of the directory. The proposed design is immune to this

attack, because routing tables are only updated once an hour based on the

network status consensus.

Security Implications 75

Harvest Service Identities and Access Services. A malicious directory

node could accumulate knowledge about (previously unknown) hidden

services over time and try to access them. This security risk is unavoidable

with the directory nodes being able to understand the contents of descrip-

tors. At first sight the existing design prevents this attack, because service

identities are only made known to the allegedly trusted directory servers.

However, an adversary could also run a relay and wait to be picked as in-

troduction point or as exit node in a circuit that is used to send a request to

a directory server to learn about service identities. After all, hiding the ex-

istence of a hidden service was not stated as a requirement in the original

Tor design [11].

Track Service Activity and Usage. An adversary controlling a directory

node could want to track activity and usage of a specific hidden service.

The adversary would conclude service activity from the existence of a lo-

cally stored descriptor and usage from requests for that descriptor. There-

fore, the adversary would determine future descriptor locations at least

one publication period in advance and start a node with an identity so

that it would consequently become responsible for at least one descriptor

replica. The fact that a directory node is only responsible for a small share

of all descriptors impedes analysis of publish and fetch requests over a

longer period to derive information on service activity and usage, respec-

tively. Furthermore, the required minimum directory node uptime pre-

vents malicious directory nodes from quickly changing their identity and

as a result the identifier range which they are responsible for. Minimum

uptime is enforced by the directory authorities which require a directory

node to be available for at least one publication period before listing it as

directory node.

A similar attack on tracking service activity is also possible in both the

existing and in the proposed design by repeatedly requesting a descriptor

from the directory servers or responsible directory nodes. In both designs

76 Distributed Descriptor Storage

an adversary could also run a relay in the hope of being picked as intro-

duction point or as exit node in a circuit that is used to send a request to a

directory server and learn about service activity and usage.

Censor Specific Service. A group of colluding directory nodes can calcu-

late future descriptor identifiers of a hidden service and generate identity

keys to become responsible for all respective parts of the identifier ring

one publication period in advance. They can then make the hidden ser-

vice unavailable by not serving its descriptors anymore. This attack re-

quires to run a number of directory nodes that is twice the number of

stored replicas: While half of the directory nodes block current descrip-

tors, the other half awaits becoming responsible for the descriptors in the

upcoming time period. Clearly, this is a very serious attack, but the ability

to report bad directory nodes constitutes an effective countermeasure to

it.

Swamp Directory Node with Incorrect or Useless Descriptors. An adver-

sary could swamp a directory node with correct, but useless descriptors

for non-existing hidden services. Although such an attack is also possible

in the current design, single directory nodes might be more vulnerable to

it as opposed to the central directory servers. However, the impact of this

attack on overall descriptors availability is limited in a distributed storage

system where more nodes need to be attacked as compared to a centralized

system. A possible countermeasure could be to make descriptor publica-

tions computationally expensive to make the attack unattractive.

Abuse Storage Space. An adversary could attempt to abuse storage space

of hidden service descriptors for unrelated data by encoding these data

in the contact information part of descriptors. This attack cannot be pre-

vented completely even when checking plausibility for all descriptor parts.

But the attack can be made unattractive by limiting descriptor size to a rea-

Evaluation 77

sonable value. The maximum allowed size for descriptors in the proposed

design is 20 kilobytes.

4.6 Evaluation

Most properties of the proposed design can be evaluated analytically, like

censorship resistance and tracking of activity. Evaluating the size of the

directory as well as availability of stored descriptors, however, is different,

because both rely on network characteristics like the number of relays in

the network and change rates of the node population. There are several

reasons why correctly stored descriptors might be unavailable for clients:

Directory nodes could fail or leave the network at any time. Joining direc-

tory nodes might only be known to some but not all participants. Mali-

cious nodes might accept descriptors but not hand them out to requesting

clients. Therefore, the novel design must resist a certain amount of fail-

ure, which is accomplished by means of replication.

In the following, the proposed distributed directory design is evaluated

based on empirical data. At first, two general network metrics are mea-

sured, namely theoretical directory size in terms of participating directory

nodes and churn rates as the fractions of joining and leaving nodes com-

pared to the whole node population. In a second step, theoretical descriptor

availability is analyzed which is the probability that a random descriptor

can be successfully downloaded by clients. The goal of this evaluation

is to show the feasibility of the proposed design as well as to determine

useful parameters for the minimum uptime that is required for relays to

become directory nodes and number of replicas that need to be stored for

each descriptor.

4.6.1 Network Characteristics

The first part of this evaluation covers general characteristics of the Tor

network which have an influence on the distributed directory: directory

78 Distributed Descriptor Storage

size and churn rates. The directory size as the number of nodes that

participate in the distributed directory affects scalability, censorship re-

sistance, and concealing activity. The more nodes participate in the di-

rectory, the better. However, the minimum uptime requirement shrinks

the distributed directory by excluding less available nodes. Another as-

sumption is that the minimum uptime affects churn rates: the higher the

minimum uptime requirement is, the lower are the churn rates; the ra-

tionale behind this assumption is that nodes which are available for some

time are more likely to stay connected in the future. These hypotheses are

to be evaluated.

Both directory size and churn rates can be evaluated by analyzing ar-

chived network status consensuses and router descriptors. For the given

evaluation, the network status consensuses and router descriptors in the

interval from January 10, 00:00 to March 31, 2008, 23:00 UTC have been

analyzed. During this period of 82 days, the directory authorities pub-

lished 1,968 consensuses containing the total number of 15,697 distinct

server identities. Only running nodes were considered, that is, those re-

lays having the Running flag set. The first 50 and last 3 consensuses were

omitted, so that all investigated consensuses can meet minimum uptime

requirements of up to 48 hours. After that, a total number of 1,915 con-

sidered consensuses remains. From the 331,862 referenced descriptors

there are 11 missing in the archives. A manual check has confirmed that

the corresponding relays have been restarted shortly before the consensus

was created in which they were missing.

Table 4.4 shows directory sizes as a function of different minimum up-

times. When no minimum uptime is required, there are 1,423 nodes

in the network in the mean. For a minimum uptime of 4 hours, thus

excluding all nodes that have been running for 3:59 hours or less, the

number of relays shrinks by 247 nodes to 1,149 nodes in the mean. It is

no surprise that the number of relays shrinks even further when requir-

ing higher minimum uptimes. However, the differences in network sizes

Evaluation 79

Table 4.4: Number of relays as a function of minimum uptime (h)

Minimum Uptime Min. 1st Qu. Median Mean 3rd Qu. Max.

0 1258 1358 1423 1423 1484 1660

4 1019 1113 1150 1149 1185 1274

8 855 963 998 994 1026 1095

12 753 855 885 882 911 971

16 683 773 796 795 818 874

20 626 705 728 725 748 795

24 584 656 683 677 698 739

30 543 616 643 637 659 704

36 510 579 610 603 626 676

48 451 524 556 548 573 618

also shrink with increasing minimum uptimes, so that the difference of

network sizes between 20 and 24 hours is only 48 nodes in the mean.

After a required minimum uptime between 20 and 24 hours, the mean

network size is halved as compared to no minimum uptime requirement.

Figure 4.4 plots the populations of directory nodes for different mini-

mum uptimes over time. The five topmost graphs exhibit daily fluctua-

tions which cannot be observed as clearly for the five bottommost graphs.

A possible explanation for this is that a certain number of relays is run on

computers which are shutdown over night or connected via dial-in lines

that are automatically disconnected daily by their ISPs. The maximum

values in the number of relays occur around 17:00 UTC while the mini-

mum values are reached at around 04:00 UTC. While the exact reasons for

this phenomenon are subject to further studies, the insight for this eval-

uation is that node fluctuation suddenly decreases for minimum uptimes

of 20 hours or more. These results indicate that a minimum uptime of

20 hours or higher has good characteristics for the proposed distributed

directory.

Comparing churn rates is even more useful in the attempt to evaluate

80 Distributed Descriptor Storage

Date

R
el

ay
s

Jan 13 Jan 27 Feb 10 Feb 24 Mar 9 Mar 23

0
50

0
10

00
15

00

Minimum Uptime (h)

0
4

8
12

16
20

24
30

36
48

Figure 4.4: Total number of relays for different minimum relay uptimes

short-term fluctuations of node populations. The join rate is defined as

the fraction of newly joined nodes in a snapshot compared to all nodes in

that snapshot. Likewise, the leave rate is defined as the fraction of leaving

nodes in a snapshot compared to the previous snapshot in which they

have been present. The two different reference snapshots (considered or

previous snapshot) result from normalization of the metrics to the range

of 0 to 100%.

Tables 4.5 and 4.6 show join and leave rates, respectively. Both join and

leave rates continually decline with increasing minimum uptime require-

ments. When no minimum uptime is required, around 4.7% of the nodes

leave the network and an equal number of other nodes join within one pe-

riod of time (here: one hour). Both join and leave rates improve towards

a more stable node population for increasing minimum uptimes. With a

required minimum uptime of 24 hours, both rates are around 1.1%. After

that, both rates decrease only gradually for minimum uptimes of 30 and

Evaluation 81

Table 4.5: Join rate (%) as function of minimum uptime (h)

Minimum Uptime Min. 1st Qu. Median Mean 3rd Qu. Max.

0 1.64 3.61 4.52 4.70 5.71 10.64

4 1.18 2.88 3.71 3.77 4.55 8.06

8 0.72 2.33 3.02 3.07 3.74 6.86

12 0.45 1.98 2.59 2.69 3.29 6.35

16 0.20 1.65 2.28 2.36 2.93 6.13

20 0.17 1.23 1.71 1.80 2.29 5.09

24 0.00 0.65 1.01 1.10 1.44 4.29

30 0.00 0.53 0.86 0.97 1.30 3.93

36 0.00 0.46 0.79 0.90 1.23 3.76

48 0.00 0.30 0.62 0.73 1.01 4.55

36 hours. A minimum uptime of 48 hours exhibits the lowest churn rates

of around 0.7%.

Figure 4.5 visualizes these results using box-and-whisker plots [79]. The

box part contains all values within the second and third quartile of the data

set with the strong line being the median. The dashed lines contain non-

outlier values in an interval of 1.5 times the inter-quartile range below the

first quartile and the same distance above the third quartile. Outliers are

depicted as circles.

As an intermediate result, minimum uptimes of 24 hours or more seem

to be most promising for realizing the proposed distributed directory be-

cause of the low churn rates. However, even though higher minimum

uptimes would further reduce churn rates, they did the same to directory

size, thus increasing the share of descriptors a single directory node is

responsible for. There is a trade-off between lower churn rates (better de-

scriptor availability) and larger directory sizes (better distribution of trust).

82 Distributed Descriptor Storage

Table 4.6: Leave rate (%) as function of minimum uptime (h)

Minimum Uptime Min. 1st Qu. Median Mean 3rd Qu. Max.

0 0.79 3.89 4.70 4.69 5.43 10.03

4 1.40 3.13 3.69 3.77 4.32 7.23

8 0.87 2.41 2.95 3.05 3.62 8.18

12 0.60 2.01 2.58 2.67 3.21 7.37

16 0.42 1.69 2.26 2.34 2.84 6.91

20 0.13 1.26 1.71 1.79 2.25 5.29

24 0.00 0.66 0.99 1.09 1.46 3.87

30 0.00 0.52 0.88 0.97 1.32 4.15

36 0.00 0.46 0.80 0.90 1.23 4.82

48 0.00 0.30 0.62 0.73 1.02 3.81

4.6.2 Descriptor Availability

The second part of this evaluation deals with descriptor availability in the

proposed distributed directory. Descriptor availability is defined here as

the percentage of descriptors that a client can possibly fetch within a pe-

riod of one hour. If the set of directory nodes would never change and

nodes would never fail or be restarted, all previously stored descriptors

could be downloaded by clients and descriptor availability would be 100%.

There are at least two reasons for a reduction of descriptor availability:

different consensuses and restarted directory nodes.

Client and hidden server might work with different network status consen-

suses, thus having different views of the network. Consensuses are valid

for three periods, and neither servers nor clients are required to use a fresh

consensus for publishing or fetching hidden service descriptors. Conse-

quently, a hidden server could store a descriptor on a directory node that

is unknown to the client, or the client could request a descriptor from a

directory node that is unknown to the hidden server. As a result, both

leaving and joining nodes reduce descriptor availability.

Another reason for descriptor unavailability are restarted directory nodes.

Evaluation 83

●
●
●

●

●

●

●

●

●●
●
●

●

●●
●
●●
●●

●

●

●
●
●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●
●●

●

●●
●

●

●

●

●●●●●

●

●●●

●
●

●
●●

●

●

●
●

●

●

●●●●
●●●●

●

●●

●

●
●

●

●
●

●

●

●
●●●●

●

●●
●●●

●
●

●

● ●●

●

●●

●
●

●

●

●●
●
●
●

●

●●
●

●●●

●

●

●
●

●

●

●●●●
●●
●
●●●
●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●
●
●

●●
●●
●
●

●
●
●

●●

●

●●
●

●

●●
●

●

●

●
●●●

●

●●

●

●
●●
●

●
●●

●

●

●●

●

●

●
●

●

●

●
●
●

●●
●●

●

●

●

●

●

●
●
●

●

●●
●

●●

●

●

●●●
●

●
●
●●

●●

●

●
●●
●

●

●

●

●

0 4 8 12 16 20 24 30 36 48

0
2

4
6

8
10

Joining nodes

Minimum uptime (h)

C
hu

rn
 r

at
e

(%
)

●

●

●

●●●

●

●●
●

●

●●
●
●

●
●●●
●
●
●
●
●

●●
●
●

●●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●

●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●●

●●
●

●

●
●

●
●

●

●

●

●

●●
●●

●●●

●●

●

●
●
●●●●●
●●
●
●●

●

●
●
●
●●●●
●

●

●●●
●
●
●

●●●

●

●●

●●

●●

●

●●
●

●

● ●●

●

●●

●
●

●

●●●
●●●●●●●

●

●●

●

●
●●
●

●

●
●● ●

●●

●

●●

●

●

●
●
●
●●

●

●

●

●●●

●

●●
●●
●

●

●●
●●

●

●
●●●●

●
●

●

●●
●
●
●

●

●

●
●
●

●

●

●

●
●

●

●
●●●●

●
●
●

●

●

●
●●●

●
●●
●●●●●
●

0 4 8 12 16 20 24 30 36 48

0
2

4
6

8
10

Leaving nodes

Minimum uptime (h)

C
hu

rn
 r

at
e

(%
)

Figure 4.5: Churn rates as functions of minimum uptime

Even though the directory nodes make descriptors persistent, so that they

would survive a restart, a restarted node could have been unavailable dur-

ing either the publish or a fetch request. Restarted nodes show up in the

consensuses as nodes that leave the network and rejoin within the same

period. While most restarted nodes rejoin immediately, there is no way

to determine the exact node downtime. Therefore, in a conservative es-

timation, restarted directory nodes need to be counted as failing nodes,

reducing the descriptor availability, too.

Figure 4.6 contains an example for determining descriptor availability

where the hidden server uses an older consensus for storing a descriptor

than the client uses to fetch it. In this example, node 6CD1 has left the

network and is not contained in the consensus used by the client. While

the server would have stored descriptors with identifiers between 5C86

and 6CD1 on node 6CD1, the client would attempt to fetch them from

node A1C8. Likewise, node BA3B has joined the network without knowl-

edge of the server, but as part of the consensus that is used by the client.

The server would have stored all descriptors in the interval of A9EF to

CE9A on node CE9A, but the client would expect descriptors with identi-

84 Distributed Descriptor Storage

Server

1C03

3063

3889

5C85

6CD1

A1C8

A9EE

CE9A

F758

Client

1C03

3063

3889

5C85

A1C8

A9EE

BA3B

CE9A

F758

6CD1 (only in

server consensus)

A1C8

(in both

consensuses)

A9EE

(in both

consensuses)

BA3B

(only in client

consensus)

CE9A

(in both

consensuses)

1C03

(restarted)

3063 (in both

consensuses)

3889 (in both

consensuses)

5C85 (in both

consensuses)

F758

(in both

consensuses)

Figure 4.6: Example for determining descriptor availability using two dif-

ferent network status consensuses

fiers between A9EF to BA3B to be stored on node BA3B. In the example,

node 1C03 was restarted before the end of the considered period, so that

descriptors in the interval from F759 to FFFF and from 0000 to 1C03 are

considered as unavailable, too. The descriptor availability, as the share of

available identifiers in the whole identifier ring, is 72.9% in this example.

The descriptor availability in the period from p to p + 1 depends to a

large extent on the compared consensuses. Both client and server could

use three different consensuses to determine responsible directory nodes:

A fresh one that was recently published at time p, one that was published

at time p − 1 and is at least one period old, or one that was published at

time p − 2 and is already more than two periods old.23 This leads to a

23 There are at least two cases in which either server or client could use even older consen-

suses than that of p−2: First, the system clocks of either client or server could be slow, so

that an invalid consensus of p− 3 might still be in use; this is a rare case and will not be

considered to determine useful system parameters here. Second, the server could have

published a descriptor based on the consensus of p−3 or earlier, but has confirmed that

the changes in p− 2 or later did not affect responsibility of the descriptor; in this case it

Evaluation 85

p− 2 p− 1 p p + 1 p + 2 p + 3

1

2

3

4

5

6

7

8

9

Figure 4.7: Possible combinations of consensuses used by hidden server

(dark gray) and client (light gray)

total number of 9 consensus combinations as shown in Figure 4.7. These

combinations will be referred to using the numbers 1 (client and server

both use consensus p) to 9 (client and server both use consensus p− 2).

From the 9 possible combinations, three pairs behave similarly when it

comes to descriptor availability: these are combinations 2 and 4, 3 and 7,

and 6 and 8. When considering two consensuses S published at pS used

by the server and C published at pC used by the client, this symmetry can

be explained: It does not make a difference for calculation of descriptor

availability whether pS precedes pC and a relay has joined in C, or pC

precedes pS and the relay has left in S. In both cases descriptors in the

identifier range that the relay is responsible for are not available to clients.

Further, nodes that have been restarted between pS and p+1 are counted

as unavailable, too. Surprisingly, reference to S in this calculation does

not hurt symmetry: If a relay has been restarted after pS but before pC ,

it is not included in C, because it does not meet the minimum uptime

is safe to assume that the server could also have used p− 2, p− 1, or p for publication.

86 Distributed Descriptor Storage

requirement. The other way round, if a relay has been restarted after

pC but before pS , it is not included in S for the same reason. If a relay

has been restarted after both pS and pC , it is safe to consider only S to

determine if a relay has been restarted between pS and p + 1. As a result,

the number of consensus combinations can be reduced to six.

Table 4.7 shows descriptor availabilities of the consensus combinations

with a fixed minimum relay uptime of 24 hours. Figure 4.8 displays these

data in a box-and-whisker plot. These results confirm the intuition that the

consensus combination has a significant influence on descriptor availabil-

ity. In particular there are two main observations: The first observation is

that the higher the distance of time between server and client consensus

is, the lower is the average descriptor availability. For example, the mean

descriptor availability of combination 3 is worse than that of combination

2 which in turn is worse than that of combination 1. The same applies

to the combinations 4 to 6 and 7 to 9 with combinations 5 and 9 having

the best descriptor availabilities, respectively. This decrease in descrip-

tor availability can be explained by the fact that the effects of joining and

leaving relays accumulate with higher time distance of consensuses.

The second observation is that the farther a server consensus lies in the

past, the worse is its average descriptor availability for a fixed client con-

sensus. For example, the average availabilities of combinations 1, 4, and 7

are in each case decreasing. This effect can be explained by accumulation

of restarted nodes between the creation time of the consensus used by the

server and p + 1.

The consensus combination must be taken into account when perform-

ing this evaluation, but cannot be controlled by system parameters (be-

sides changing the number of periods that a consensus is valid, which

is not really an option). In the further analysis, a single representative

consensus combination shall be fixed in order to keep the evaluation sim-

ple. Combination 7 exhibits the worst performance in terms of descriptor

availability. It is therefore suitable for finding conservative parameters

Evaluation 87

Table 4.7: Descriptor availabilities (%) depending on consensus combina-

tion (1 to 9) with minimum relay uptime of 24 hours

Consensus combination Min. 1st Qu. Median Mean 3rd Qu. Max.

1 95.71 98.54 98.98 98.89 99.34 100.00

2, 4 91.55 96.13 96.90 96.78 97.56 99.37

3, 7 88.39 93.95 94.93 94.82 95.81 98.32

5 93.15 97.33 97.94 97.85 98.51 99.83

6, 8 90.21 95.01 95.92 95.78 96.69 98.91

9 91.33 96.18 96.96 96.84 97.66 99.58

●
●●

●

●

●
●

●

●

●●●●
●●
●●

●

●●●

●

●
●

●

●
●

●

●

●
●●
●●

●

●●

●
●●

●
●

●

●

●
●

●

●

●
●●

●

●●

●
●

●

●
●
●
●●●
●

●

●

●

●●●●●
●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●●

●

●
●●
●

●●

●

●

●●●

●
●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●
●●
●
●

●

●
●●
●

●
●

●
●
●

●

●

●

●

●
●
●

●●

●

●
●
●

●
●

●●●●
●

●

●

●

●

●

●

●
●●●●

●

●●●●

●
●

●

●●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●●
●

●

●●●
●

●
●

●

●●

●●

●
●
●

1 2, 4 3, 7 5 6, 8 9

88
90

92
94

96
98

10
0

Consensus combination

D
es

cr
ip

to
r

av
ai

la
bi

lit
y

(%
)

Figure 4.8: Descriptor availability as a function of consensus combination

88 Distributed Descriptor Storage

Figure 4.9: Descriptor availability in the period from Feb 14, 2008, 14:00

to 15:00 for consensus combination 7 and minimum uptime of 24 hours

for minimum uptime and number of replicas. From this follows that in

the following discussion the server consensus is already two periods old,

whereas the client consensus has been freshly published.

Figure 4.9 shows an example of the descriptor availability for combi-

nation 7 and a minimum uptime of 24 hours. The figure visualizes de-

scriptor availability of the time between Feb 14, 2008, 14:00 and 15:00

with the server consensus from Feb 14, 12:00 and the client consensus

from Feb 14, 14:00. The resulting descriptor availability is 93.8% (parts in

light gray). Loss of descriptor availability (parts in dark gray) results from

leaving (2.3%), joining (2.8%) and restarted nodes (1.1%). In total there

were 645 relays meeting the minimum uptime requirement in the 12:00

consensus and 657 in the 14:00 consensus.

Beyond measuring the share of available identifier ranges, the share of

unavailable ranges can be subdivided into the three possible reasons for

descriptor unavailability: joining, leaving, and restarted nodes. Table 4.8

splits up reasons for descriptor unavailability for the fixed consensus com-

bination 7 and a minimum relay uptime of 24 hours. While both joining

Evaluation 89

Table 4.8: Shares of unavailability (%) for different reasons with fixed con-

sensus combination 7 and minimum relay uptime of 24 hours

Reason Min. 1st Qu. Median Mean 3rd Qu. Max.

Joining Nodes 0.18 1.48 1.98 2.09 2.62 5.29

Leaving Nodes 0.17 1.46 2.00 2.11 2.60 6.79

Restarted Nodes 0.00 0.55 0.89 0.99 1.33 4.27

and leaving nodes account for about 2.1% of descriptor unavailability each,

restarted nodes make only about 1.0% of the descriptors unavailable.

The next step is to evaluate the influence of minimum uptime on de-

scriptor availability. If joining and leaving nodes account for the major

part of descriptor unavailability and churn rates shrink with higher min-

imum uptimes (as shown in the last section), higher minimum uptimes

should also result in higher descriptor availability. Table 4.9 shows de-

scriptor availabilities as a function of minimum uptimes for the fixed con-

sensus combination 7. When no minimum uptime is required, descrip-

tor availability is at only 80.6% in the mean, which means that about 1

out of 5 descriptors gets lost. Descriptor availability grows quickly with

higher minimum uptime requirements to 94.8% for 24 hours minimum

uptime. After that, descriptor availability grows less quickly to 96.4% for

a minimum uptime of 48 hours. Figure 4.10 displays the data using box-

and-whisker plots. These results confirm the intermediate finding that

a minimum uptime of 24 hours is a good trade-off between descriptor

availability and directory size.

For a fixed minimum uptime and therefore descriptor availability, it is

possible to determine the number of replicas that are required to ensure

a certain availability of a descriptor. The more replicas are stored, the

higher is the probability that at least one replica of a descriptor remains

available and the service can be accessed. But a higher number of repli-

90 Distributed Descriptor Storage

Table 4.9: Descriptor availabilities (%) depending on minimum uptimes

(h) for fixed consensus combination 7

Minimum Uptime (h) Min. 1st Qu. Median Mean 3rd Qu. Max.

0 70.85 77.84 80.72 80.57 83.33 88.20

4 74.60 81.37 83.22 83.15 85.00 89.48

8 79.30 84.54 85.95 85.90 87.39 92.23

12 79.22 86.18 87.56 87.53 89.02 93.08

16 79.44 87.38 88.99 88.95 90.68 94.83

20 85.23 90.29 91.60 91.50 92.84 96.34

24 88.39 93.95 94.93 94.82 95.81 98.32

30 88.85 94.46 95.34 95.28 96.25 99.09

36 88.96 94.84 95.73 95.62 96.56 99.40

48 88.94 95.62 96.60 96.44 97.43 99.47

●

●●

●●●●●●
●

●

●

●
●

●

●
●

●
●●
●
●
●

●

●●●
●●●●●●●

●
●●●●●●

●●●

●●
●
●
●

●

●
●
●

●

●

●

●
●●
●●
●●
●
●
●●●

●
●●
●●
●●
●
●
●●●

●●

●

●●
●

●
●

●

●●

●
●

●●
●●

●
●
●
●●●
●
●●
●
●●

●

●
●
●●

●
●●
●●
●
●

●

●

●
●

●

●●
●●●●●●●●●●●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●
●

●

●●

●
●●
●●

●
●
●

●

●

●

●
●
●

●●●●

0 4 8 12 16 20 24 30 36 48

70
75

80
85

90
95

10
0

Minimum uptime (h)

D
es

cr
ip

to
r

av
ai

la
bi

lit
y

(%
)

Figure 4.10: Descriptor availability as a function of minimum uptimes

Evaluation 91

1 2 3 4 5 6

0.
01

0.
05

0.
50

5.
00

Number of Replicas

D
es

cr
ip

to
r

U
na

va
ila

bi
lit

y
(%

)

Minimum Uptime (h)

16 (p = 81.26%)
20 (p = 85.47%)
24 (p = 88.67%)
30 (p = 89.48%)
36 (p = 90.29%)
48 (p = 90.39%)

Figure 4.11: Descriptor unavailability as a function of number of replicas

cas also proportionally influences the number of messages and circuits

that a hidden server needs to build. Under the assumption that replicas

are stored under completely independent identifiers, the overall descriptor

availability a is a function of the descriptor availability of a single replica

p and the number of stored replicas r: a = 1 − (1 − p)r. Likewise, de-

scriptor unavailability u can be calculated as: u = (1− p)r. The previously

found values for descriptor availability can be inserted for the descriptor

availability of a single replica p; the 0.001-quantiles of the empirical dis-

tributions are used here with the rationale that obtained results hold for

99.9% of all empirical cases. Figure 4.11 contains plots of descriptor un-

availabilities as functions of minimum uptime and number of replicas.

The dashed line visualizes a targeted overall descriptor unavailability of

0.1%. For a minimum uptime of 24 hours, this value is reached at a repli-

cation rate of 3.17, rounded up to 4.

To summarize, the evaluation has shown that a minimum relay uptime

of 24 hours reduces the directory size to 677 nodes in the mean as com-

pared to a total number of 1,423 nodes in the network. In return, the

remaining nodes exhibit relatively low churn rates of around 1.1%. The

92 Distributed Descriptor Storage

percentage of descriptors that a client can possibly fetch within a period

of one hour is 94.8% in the mean. As a result, a number of 4 replicas are

required to achieve an overall descriptor availability of over 99.9%.

4.7 Implementation

The proposed design has been implemented and deployed in the public

Tor network. Most of the implementation work has been performed as

part of the Google Summer of Code 2007 program between April and

August 2007. The design changes have been described in more detail

and discussed with the Tor developers in two Tor proposals [36, 37]. In-

tegration into the Tor source code took place between September 2007

and January 2008 with the first fully functional implementation being re-

leased on November 10, 2007. Since then, multiple minor improvements

and bugfixes have been included continuously. At the time of writing on

September 30, 2008, there are 37 directory nodes and approximatively 734

hidden services using the new design. Two months later, on November

30, 2008, the number of directory nodes has increased to 84.

This section contains an overview of the implementation without going

into the details of the source code. Tables A.1 and A.2 on pages 195 and

following contain lists of all patches that have been included to add new

features or fix bugs in the context of this implementation.

The following description contains the file formats and message con-

tents that are exchanged to compile a hidden service directory list and to

publish and fetch a hidden service descriptor. All presented formats are

examples which are specified in more detail in the updated specification

documents [63, 65]. The section concludes with brief evaluations of direc-

tory usage that were performed in September and November 2008, one

year after including the design in the Tor source code.

Implementation 93

Nickname gabelmoo

Address 88.198.7.215

ORPort 443

SocksPort 0

DirPort 80

HidServDirectoryV2 1

ContactInfo 1024D/F7C11265 Karsten Loesing <karsten.loesing@gmx.net>

ExitPolicy reject *:*

// ...

Figure 4.12: Configuration file of a hidden service directory node

Compiling the Hidden Service Directory List. Tor relays that should take

part in the distributed directory need to set the configuration option Hid-

ServDirectoryV2 1 in their configuration file. Until Tor version 0.2.1.6-

alpha that was released on September 30, 2008, this option has a default

value of 0, so that relay operators need to explicitly activate this functional-

ity. Later releases have a changed default value of 1. Figure 4.12 contains

an example configuration of a relay that will be used throughout the rest

of this section.

Relays that are configured as hidden service directory nodes add this

information to their router descriptors that they upload to the directory

authorities. They do this even if their uptime is smaller than the mini-

mum uptime of 24 hours which is ensured by the directory authorities.

Figure 4.13 shows a router descriptor that the relay uploaded on March

24, 2008, 8:51 UTC. Here, the publication time does not coincide with the

startup time; the real uptime of the relay at publication time of the descrip-

tor is 1,709,794 seconds, which means that the last restart took place on

March 4, 2008. The line opt hidden-service-dir indicates that the re-

lay is ready to store and serve hidden service descriptors. The fingerprint

6833... is equal to the node identity which is later used to determine

responsibility for storing descriptors.

The directory authorities memorize the router descriptors and include

94 Distributed Descriptor Storage

router gabelmoo 88.198.7.215 443 0 80

platform Tor 0.2.1.0-alpha-dev (r13792) on Linux x86_64

opt protocols Link 1 Circuit 1

published 2008-03-24 08:51:11

opt fingerprint 6833 3D07 61BC F397 A587 A0C0 B963 E4A9 E99E C4D3

uptime 1709794

bandwidth 2097152 2097152 1375382

opt extra-info-digest 727BB1FF2C7848D68592E2A3B482B9B82CEE3147

opt caches-extra-info

onion-key

-----BEGIN RSA PUBLIC KEY-----

// ...

-----END RSA PUBLIC KEY-----

signing-key

-----BEGIN RSA PUBLIC KEY-----

// ...

-----END RSA PUBLIC KEY-----

opt hidden-service-dir

contact 1024D/F7C11265 Karsten Loesing <karsten.loesing@gmx.net>

reject *:*

router-signature

-----BEGIN SIGNATURE-----

// ...

-----END SIGNATURE-----

Figure 4.13: Server descriptor of a hidden service directory node

Implementation 95

network-status-version 3

vote-status consensus

consensus-method 2

valid-after 2008-03-24 12:00:00

fresh-until 2008-03-24 13:00:00

valid-until 2008-03-24 15:00:00

voting-delay 300 300

// ...

r gabelmoo aDM9B2G885elh6DAuWPkqemexNM YIOUhGiUCJmf18zoxWexVvV7sbg

2008-03-24 08:51:11 88.198.7.215 443 80

s Authority Fast Guard HSDir Named Running Stable V2Dir Valid

v Tor 0.2.1.0-alpha-dev (r13792)

// ...

Figure 4.14: Extract from network status consensus

summaries of them in the network status documents which they vote on

every hour. The authorities further try to maintain connections to all re-

lays to ensure the minimum uptime of 24 hours. Only those relays which

are configured as hidden service directories and which are available for at

least 24 hours are assigned the HSDir flag in the network status votes and

consensus. Figure 4.14 shows the network status consensus from March

24, 2008, 12:00 UTC that contains an entry for the relay that was men-

tioned above. The line beginning with r contains the base64-encoded [29]

node identity aDM9.... The line beginning with s contains the flags that

the authorities assigned to the node, including the HSDir flag.

Publishing and Fetching Descriptors. Hidden services can be configured

to have their descriptors published on the central directory servers, in the

distributed directory, or both. The current default at the time of writing

this thesis is publication to both directories in parallel. Users can change

this by setting HiddenServiceVersion to either 0 for the central directory

or 2 for the distributed directory, overriding the default value 0,2. At some

time in the future this default value might be changed to 2.

96 Distributed Descriptor Storage

Before publishing a descriptor, a hidden server first needs to determine

the current descriptor identifiers. Figure 4.15 shows an example descrip-

tor that was published on March 24, 2008, 12:35 UTC. The identity of the

hidden service is 05620F93F1A6C9E64686 which is the hash of the per-

manent key and which leads to the onion address avra7e7ru3e6mrug.

onion. Both date and service identity are used to calculate the current

time period 0000368A. The shown descriptor is the second replica, thus

having a replica index of 01. An application of the SHA-1 hash func-

tion on time period and replica index leads to the secret identifier part

D107... which is also included in the descriptor as base32-encoded [29]

value 2ed5.... In the last step, service identity and secret identifier part

are concatenated and put into a hash function. The result is the descrip-

tor identifier 662D... which is contained in the first line of the descriptor

as mywy..., encoded in base32. The descriptor is ready for upload to the

responsible hidden service directory, which is the node as shown above

with node identity 6833....

When a client attempts to establish a connection to the hidden server,

it first needs to fetch its descriptor. The current default is to fetch de-

scriptors from both the central directory servers and from the distributed

directory. There is no way to configure this behavior, but at some time in

the future the code might change to fetch only descriptors from the dis-

tributed directory. The steps to determine the current descriptor identifier

are similar to those when publishing a descriptor. A client would fetch the

descriptor in Figure 4.15 by sending a fetch request for descriptor identi-

fier mywy... to the directory with node identity 6833....

Directory Statistics. The following statistics indicate the dissemination

of the distributed directory in the public Tor network. First, Figure 4.16

shows the development of the number of directory nodes beginning from

public deployment on November 12, 2007. Since then the distributed di-

rectory was used in a beta state for about 10 months without being widely

Implementation 97

rendezvous-service-descriptor mywyh2hxyvytkol64piqzub2hxdznt4o

version 2

permanent-key

-----BEGIN RSA PUBLIC KEY-----

// ...

-----END RSA PUBLIC KEY-----

secret-id-part 2ed5uk7uh2sq7t5kkhws6hqt2mlumo4p

publication-time 2008-03-24 13:35:37

protocol-versions 2,3

introduction-points

-----BEGIN MESSAGE-----

// ...

-----END MESSAGE-----

signature

-----BEGIN SIGNATURE-----

// ...

-----END SIGNATURE-----

Figure 4.15: Version 2 hidden service descriptor

publicized. On September 11, 2008, a discussion on the users’ mailing list

led a number of Tor relay operators to change their node configuration

and enable directory node functionality on their relays. On September

30, 2008, the first development version has been released that makes re-

lays act as hidden service directory nodes by default and does not require

to open the directory port in order to do so anymore. On November 30,

2008, 84 of 1,191 relays are running as hidden service directory nodes. It

is expected that the number of directory nodes grows steadily and even-

tually approaches the total number of relays as assumed in the previous

evaluation.

The second statistic in Figure 4.17 considers the number of requests

that were recorded on a single hidden service directory node between

September 25 and October 1, 2008. In this period, there were 37 direc-

tory nodes in the network in the mean. This comparably large number of

directory nodes makes it difficult to extrapolate the number of requests to

98 Distributed Descriptor Storage

Date

N
um

be
r

of
 d

ire
ct

or
y

no
de

s

Nov 12 Jan 1 Mar 1 May 1 Jul 1 Sep 1 Nov 1

0
20

40
60

80

Figure 4.16: Development of directory nodes from November 12, 2007 to

November 30, 2008

the distributed directory as a whole. For publish requests, there are two

differences in the implementation as compared to the description here

which are subject to change but need to be considered for this statistics:

the replication rate is 6 instead of 4, and descriptors are re-published every

hour. From this follows that the total number of hidden services being

published in the distributed directory is roughly 6 times the number of

publish requests to this node which are 734 hidden services in the mean.

For fetch requests it is even harder, if not impossible, to estimate the over-

all number of requests to the distributed directory because of clients retry-

ing failed requests.

4.8 Conclusion

To conclude, this chapter presented a novel distributed directory design

to realize long-term recipient pseudonyms. The main requirements were

Conclusion 99

Time

R
eq

ue
st

s
(p

er
 h

)

Sep 25 Sep 26 Sep 27 Sep 28 Sep 29 Sep 30 Oct 1

0
50

10
0

15
0

Request Type

Publish
Fetch

Figure 4.17: Requests processed by one directory node (per hour) between

September 25 and October 1, 2008

to provide high availability and scalability, security properties like authen-

ticity of entries, censorship resistance, and concealing activity, as well as

support for private entries. A comparison of previous work has shown that

earlier designs only supported subsets of these properties. The same also

applies to the existing design of a hidden service directory in Tor which

relies on a small number of central servers. The proposed design works by

distributing the directory among hundreds of Tor relays. The design bears

close resemblance to the distributed hash table Chord [76], although rout-

ing and replication have been adjusted to better meet the stated security

properties. Possible security vulnerabilities have been discussed includ-

ing measures to counter some of them. An evaluation based on archived

network statuses and descriptors has shown the theoretical size of the dis-

tributed directory. This evaluation has also led to useful parameters for

minimum uptime requirements to directory nodes and replication level

of descriptors. The proposed design has been implemented and deployed

100 Distributed Descriptor Storage

in the public Tor network. It might replace the centralized design of the

hidden service directory at some point in the future. Even though the

proposed design is fitted to the requirements of Tor, the basic principles

should be applicable to other pseudonymous service designs as well.

5 Client Authorization

The main focus of pseudonymous services is to hide the location of the

service provider. In addition to that some, but not all, designs ensure au-

thenticity of the service provider using a certain pseudonym towards the

client. But so far no design has ensured authenticity and authorization

of the client accessing a pseudonymous service. It may sound contradic-

tory to the purpose of anonymous communication systems that clients

could become linkable due to their using of authorization credentials. Per-

forming client authentication and authorization reduces the protection of

clients from anonymity to pseudonymity towards the service which is cer-

tainly not desired for the majority of services. But there are applications

where it is advantageous to have client authorization towards a service, the

private services that are motivated in this thesis being only one example.

Possible benefits are improved denial-of-service protection, fine-grained

access control, and individual quality of service.

It would be possible to simply add client authorization after establishing

a connection to a pseudonymous service, but this approach has disadvan-

tages: non-authorized clients could attempt to access a pseudonymous

service, or they could illegitimately collect information about its activity

or usage. It is therefore preferable that a service that performs client au-

thorization reveals only as much information as necessary for authorized

clients to access it. The main idea here is to perform client authoriza-

tion already as part of the connection establishment process. The result

is that such a service would not only be location-hidden, but also literally

invisible to non-authorized clients.

There are few mentions of client authorization for pseudonymous ser-

102 Client Authorization

vices in previous work. The Tor design paper [11] and the Tor specifica-

tion documents [65] mention client authorization for Tor hidden services.

However, a working design has never been implemented in Tor. Øver-

lier and Syverson [57] revisit the topic and give a few hints of how client

authorization could be performed, but do not describe a working design,

either. An earlier version of the design proposed here has been presented

on HotPETs 2008 [45].

This chapter is structured as follows: The next section discusses desir-

able properties of a pseudonymous service performing client authoriza-

tion. Section 5.2 compares two different approaches for adding client

authorization as a separate layer on top of an established connection to

a pseudonymous service and shows the problems of these approaches.

Section 5.3 proposes a basic extension of the Tor hidden service protocol

to support client authorization, which is efficient, but which does not at-

tempt to hide service activity and usage. Section 5.4 further extends this

design to also hide service activity and usage. Section 5.5 presents an

analysis of possible security properties of the new approach. Section 5.6

sketches some facts of the implementation. Section 5.7 concludes.

5.1 Requirements

There are some basic requirements to pseudonymous services with client

authorization: At first, the original goal to hide the location of the server

remains unchanged. Further, the server shall perform authorization, so

that non-authorized clients are prevented from accessing a service. Be-

sides these basic requirements, a pseudonymous service that performs

client authorization should also fulfill two more specific requirements:

The first requirement is to prevent unauthorized access attempts. Access

attempts performed by non-authorized users should be blocked as early

as possible. These access attempts do not only waste resources, but could

also be used to perform an attack on the server. Øverlier and Syverson

Existing Client Authorization Approaches 103

took advantage of the fact that a server answers all client requests to reveal

its location [56]. Further, swamping a pseudonymous server with client

requests might be an effective attack to make the service unavailable. The

best protection against these attacks is to prevent connection establish-

ment in the first place.

The second requirement is to conceal service activity and usage. Non-

authorized users must not be able to learn about service activity. In some

cases service activity is consistent with the service provider’s online ac-

tivity. An adversary could exploit knowledge about service activity over

time to learn useful information like timezone or personal online behav-

ior of the service provider. One particular requirement here is simplicity

to remove authorization from clients. In such a case, a service that once

permitted access to a user should appear unavailable once authorization

for that user is removed. Being able to remove a user without trace is use-

ful for temporarily granting access to a service. Besides concealing service

activity, service usage shall also be protected. Nobody except the service

provider should be able to generate profiles of client requests to a service,

even if requests cannot be attributed to specific clients.

5.2 Existing Client Authorization Approaches

In principle, client authorization can be performed with every pseudony-

mous service design. Every potentially authorized client would establish

a connection to the pseudonymous service and run an authorization pro-

tocol. If the client succeeds, it is allowed to send and receive application

data. If the client fails, the connection is torn down.

It is important to notice that a pseudonymous server in such a scenario

needs to actually run a subsequent protocol to authorize clients. The ser-

vice provider should not rely on the fact that the service is hidden, so that

only authorized clients can connect in the first place. In practice, many

service providers do not require client authorization if they deem the ser-

104 Client Authorization

vice address to be known to trusted clients only. Guha and Francis [26]

have found that most private HTTP servers using dynamic DNS addresses

do not perform subsequent authorization, but rely on the mere fact that

their hostname is not leaked. But the authors used several techniques

to enumerate hostnames of dynamic DNS providers, hence proving the

original assumption false.

Another important assumption is that the authorization process itself

does not leak information about the service. Not-yet-authorized clients

should not gain any information from a failed authorization attempt about

the nature or contents of a service. These information include service

name or description as part of the authorization protocol. Otherwise, an

adversary could utilize this information to find possible targets for subse-

quent attacks. The assumption for the following discussion is that services

use a unified interface for their authorization protocol. As a result, an ad-

versary would not have an incentive to attack one of these services without

having further information. Such an attack would be untargeted against

all possible services in the system, which is not a useful threat to defend

against.

There are (at least) two different approaches to implement pseudony-

mous services with subsequent client authorization: In the first approach,

a service provider sets up a single service for all users and performs user

authorization after successful connection establishment. A second ap-

proach is to configure a separate service for each client in addition to a

later authorization when the connection is established. In the following,

these two approaches are discussed in more detail together with the pos-

sible security issues they raise.

5.2.1 Single Service for All Users

In the first approach a service provider sets up a single pseudonymous

service for all users and performs user authorization after the connection

Existing Client Authorization Approaches 105

is established. All clients use the same service address, but each client

has separate authorization credentials for the subsequent authorization

protocol. Whenever the service provider wants to grant access to a new

user, he hands out his service address and new credentials. The other

way round, when the service provider wants to remove authorization for

a specific client, he removes the credentials from the list of permitted

clients.

There are a number of security problems in this approach: An adver-

sary can perform unauthorized access attempts by opening an unrestricted

number of connections to the service and attempting to access it before

failing at subsequent client authorization. With every established connec-

tion a non-authorized client might waste resources of the server that are

used for connection establishment. This attack can be performed by all

former clients that were removed from the list of authorized clients but

who still know the service address.

Former clients can also track service activity even if they are not autho-

rized to access the service anymore. The easiest way to do so is to periodi-

cally try to establish a connection to the service and conclude that a service

is active if they succeed. It may also be sufficient to periodically request

contact information and derive activity from an included timestamp or the

mere fact that the contact information is updated.

Finally, a former client could monitor anonymous service usage when ob-

serving connection establishment to the known service address. In most

systems this requires controlling part of the network infrastructure, which

is harder than tracking service activity, but not impossible.

5.2.2 Separate Service For Each Client

An alternative approach for client authorization for pseudonymous ser-

vices is to establish a separate service for each client. In this setting every

client connects to a distinct service address and presents its credentials

106 Client Authorization

there. The service provider hands out a new service address and autho-

rization credentials to a new user. In order to remove authorization, the

service provider stops providing the corresponding service.

From this follows that the attacks as described for the first approach do

not apply. The only entities that can link a service address to a service

provider are the service and one client. As soon as the service is stopped,

the removed client cannot learn anything about the service provider, be-

cause she does not know the service addresses of other clients accessing

the service.

However, the effort that is required to set up a separate service for each

client can be tremendous. The costs for maintaining contact points and

pseudonyms grows linearly with the number of clients. These costs limit

the number of clients that can reasonably be authorized and puts signifi-

cant load on the network.

Further, a new problem arises: A service provider who offers more

than one service usually advertises them in the network at the same time.

These events give hints to the network, that two or more services might be

run by the same provider.24 An authorized client could learn about this

relation by linking its own pseudonym to others. Even when authoriza-

tion for a client is removed, the client can still attack or profile the service

by using one of the other service addresses.

5.2.3 Separate Service For Groups of Clients

Between the two extremes of using a single service for all users and a sep-

arate service for every user, one could also offer a pseudonymous service

for a group of users. Øverlier and Syverson [57] proposed grouping users

and permit access to a service based on the group a user is in. Group-

24 In case of Tor hidden services, the hidden server could pick the same introduction point

or store hidden service descriptors on the same directory node for more than one service

in quick succession.

Basic Pseudonymous Client Authorization Protocol 107

ing users helps balancing out the advantages and disadvantages of both

approaches. However, such a hybrid approach is not discussed further,

because it does not add any new aspects besides of those of the two previ-

ous approaches.

5.2.4 Conclusions from Existing Approaches

The previous discussion has revealed inherent weaknesses of performing

client authorization after establishing a connection to a pseudonymous

service. As an alternative, client authorization could already be performed

during connection establishment. The result is that non-authorized cli-

ents do not learn as much information about a service. The modifications

to include client authorization in the connection establishment process

are demonstrated with the Tor hidden service protocol [11]. Some of the

changes are specific to Tor hidden services, but the design principles be-

hind them could be adapted to other pseudonymous communication sys-

tems as well.

Two modified hidden service protocols are described in the following:

First, a basic protocol is presented that has the goal to fulfill the security

requirements as good as possible while using as few additional resources

as necessary. Second, a stealth protocol is discussed that aims at providing

the maximum possible security properties even at the expense of limited

scalability.

5.3 Basic Pseudonymous Client Authorization Protocol

The main goal of the first client authorization protocol for Tor hidden

services, the basic protocol, is to deny access to unauthorized clients, in-

cluding introduction points and directory nodes as neutral network com-

ponents. Unauthorized clients shall not be able to establish a connection

to a hidden server and start exchanging application data. As a further

requirement, unauthorized access attempts shall be blocked as early as

108 Client Authorization

possible. The hidden server should not be forced to use limited resources

for unauthorized clients, especially with regard to building or extending

circuits. Another requirement that can only be fulfilled to a certain extent

is to limit propagation of service activity and usage in the network, that is,

to introduction points and directory nodes. The fewer entities can observe

actions related to a certain service identity, the fewer can create profiles of

service activity or usage.

5.3.1 New Introduction Key for Introduction Points

The first modification is to reduce the information that an introduction

point learns about a hidden service. An introduction point is not required

to learn the identity of a hidden service, but only an ephemeral identity cre-

ated by the hidden service to perform its task, which is to match incoming

client requests with a previously registered hidden service. A client needs

to learn about that identity before contacting the introduction point and

be assured that it belongs to the hidden service. But there is no need for

the identity that an introduction point learns to be equal to the service

identity or even to persist for longer than a single introduction point es-

tablishment. Using a one-time identity for establishing an introduction

point prevents the relay from recognizing a hidden service. The result is

that even an introduction point cannot fetch the current descriptor of the

hidden service and make an anonymous access attempt using one of the

other introduction points.

When establishing an introduction point, the hidden server creates a

new asymmetric introduction key and sends the public key to the intro-

duction point instead of the public service key in the ESTABLISHINTRO

cell. The implementation of an introduction point does not need to be

modified for this change. In fact, an introduction point cannot tell an in-

troduction key and a service key apart and might assume that it works on

behalf of continuously changing hidden services.

Basic Pseudonymous Client Authorization Protocol 109

The hidden server includes the public introduction keys of all estab-

lished introduction points in the hidden service descriptor that it pub-

lishes to the directory nodes. The client learns about the introduction

points and corresponding introduction keys from the directory and can be

sure that the introduction point works on behalf of the service that it wants

to connect to from the descriptor signature. The client uses the introduc-

tion key to create the INTRODUCE1 cell that it sends to the introduction

point. Again, the introduction point does not notice that it is an intro-

duction key and no service key, so that its behavior during introduction

remains the same. Finally, the hidden server uses the introduction key

instead of its permanent key to decrypt introduction requests in received

INTRODUCE2 cells.

5.3.2 Encryption of Introduction Points in Hidden Service Descriptor

The second modification to the hidden service protocol is to encrypt the

list of introduction points in hidden service descriptors. The intention is

to prevent the directory nodes and non-authorized clients from establish-

ing a connection to a hidden server. Without knowing which relays the

hidden server uses as introduction points for a hidden service, an unau-

thorized client cannot send an introduction request to the hidden server.

Even when guessing which relays might work as introduction point for

the service or by flooding the network, a client that is not aware of the

introduction key cannot create a valid INTRODUCE1 cell that gets passed

by the introduction point.

While it may be appealing to encrypt the complete descriptor and not

only the list of introduction points, this cannot be done here. The directory

node still needs to understand certain parts of a descriptor to be able to ver-

ify legitimacy of storing the descriptor under the claimed identifier. These

indispensable parts include the public service key and the secret identifier

part as introduced in the last chapter. If these parts were encrypted, too,

110 Client Authorization

an adversary could attempt to store an arbitrary descriptor under a given

descriptor identifier without the directory node being able to detect it. As

discussed in Section 4.4.3, this would make the hidden service unavailable

to clients: In case that only one descriptor is stored, clients would have no

way to reach the legitimate hidden service anymore. In case of storing all

descriptors on the directory, clients would have to download them all to

filter out the legitimate ones, which is a race that clients would inevitably

lose.

The task of encrypting introduction points needs to fulfill certain re-

quirements: The storage overhead for encrypting the introduction points

in a descriptor for a possibly large number of clients should be as small

as possible. In addition to this, nobody should be able to tell the exact

number of or detect changes to the set of authorized clients.

The protocol as described here makes use of symmetric keys which are

called client cookies in the following. A hidden server generates client

cookies for its clients and distributes them outside of Tor. When gen-

erating a hidden service descriptor, the service starts with encrypting the

introduction-point part with a randomly generated symmetric session key.

A symmetric block cipher is used here, more precisely AES [54] in counter

mode [14] with a randomly generated initialization vector. Afterwards, the

service encrypts the session key for all authorized clients using their client

cookies, again with AES. The service generates client identifiers for all au-

thorized clients by applying a hash function on the concatenation of client

cookie and the initialization vector that has been used for encryption. The

first four bytes of a client identifier are prepended to the encrypted ses-

sion key, so that clients can efficiently search for the session key that was

encrypted for them. In the rare case that two or more client identifiers

are equal, clients need to decrypt all session keys that could have been

encrypted for them and try to decrypt and parse the introduction points

with them. If the number of authorized clients is not a multiple of 16,

the service adds fake entries consisting of random numbers to conceal

Basic Pseudonymous Client Authorization Protocol 111

Table 5.1: Encryption of introduction points for basic client authorization

protocol

Field Description

Client blocks Number of clients divided by 16, rounded up to next integer

For each client

Client identifier Hash of client cookie and initialization vector

Session key Session key encrypted with client cookie

End of client part

Padding Random data to fill client identifiers and session keys for

clients up to next multiple of 16

Initialization vector Initialization vector for AES encryption

Introduction Points List of introduction points encrypted with session key

the exact number of clients. Encrypted session keys are ordered by client

identifiers in order to conceal addition or removal of authorized clients.

Table 5.1 shows the encryption scheme for introduction points.

5.3.3 Client Authorization at Hidden Server

The last change to the hidden service protocol is authorization at the hid-

den server. Even though encryption of introduction points in hidden

service descriptors ensures that only authorized clients learn about the

introduction points and corresponding introduction keys, a removed cli-

ent might still access the hidden service until all established introduction

points have changed. Further, the introduction points could attempt to

access the service if no further authorization was required at the hidden

server by generating an INTRODUCE2 cell on their own. As a side ef-

fect, authorization at the hidden server enables the hidden server to selec-

tively remove authorization of a client. When clients identify themselves

at a hidden server using the credentials they obtained before, the hidden

server can attribute possible misuse to one of its clients and remove au-

112 Client Authorization

thorization. If the hidden server would not be able to do so, a single rogue

authorized client could make the service useless for everyone.

The client includes its client cookie in the encrypted introduction re-

quest that it sends to the introduction point in the INTRODUCE1 cell and

that is forwarded to the hidden server in the INTRODUCE2 cell. The hidden

server checks whether a contained client cookie is valid before extending

a circuit to the specified rendezvous point.

The service also needs to prevent replay attacks performed by rogue

introduction points. An introduction point could attempt to replay valid

introduction requests to force the hidden server to repeatedly extend new

circuits to the enclosed rendezvous point. While this would not allow the

introduction point to circumvent authorization, it would waste resources

of the service and could be used to track down the location of the hidden

server [56]. As a defense, the hidden server memorizes the first part of

the Diffie-Hellman [10] handshake of valid requests and drops duplicates.

The service requires that the timestamp of an INTRODUCE2 cell is no more

than 30 minutes in the past or future and that the first part of the Diffie-

Hellman handshake has not been used in the past 60 minutes.

5.3.4 Summary of Basic Pseudonymous Client Authorization Protocol

The basic client authorization protocol changes the messages involving in-

troduction points and directory nodes, namely ESTABLISHINTRO, INTRO-

DUCE1, and INTRODUCE2 cells as well as the hidden service descriptor

format. Introduction points do not learn the identity of a hidden service

as a result of using freshly created introduction keys. Directory nodes and

unauthorized clients do not learn the set of introduction points that is en-

crypted for authorized clients only. Introduction points are not allowed

to access the hidden server over the introduction circuit themselves. Only

authorized clients are allowed to establish a connection to a hidden server.

The protocol change does not require adding any new protocol steps, but

Stealth Pseudonymous Client Authorization Protocol 113

only changing the contents of exchanged messages.

5.4 Stealth Pseudonymous Client Authorization Protocol

The basic authorization protocol exhibits better security properties than

existing solutions that perform client authorization after connection es-

tablishment. However, the common service descriptor that is shared by

all authorized clients still reveals too much information for some services.

Whoever knows the identity of a given hidden service can periodically re-

quest the service descriptor from the directory and conclude service activ-

ity from recent descriptor updates. Further, a directory node that observes

fetch requests for a given service descriptor can generate usage patterns

for the hidden service.

The stealth client authorization protocol for hidden services aims at

concealing service activity and usage from unauthorized entities. Simi-

larly to the second approach of performing client authorization after con-

nection establishment, access to hidden services is issued on a per-user

basis. Every authorized client knows a separate service identity to access

the service. When the server decides to remove authorization of a client, it

stops publishing descriptors for that identity. The removed client cannot

attribute observed descriptor requests to service usage, because the other

clients use different service identities to access the service.

The main drawback of the stealth protocol is its limited scalability.25

On the one hand, the same introduction parts can be reused for all au-

thorized clients, thus keeping the number of concurrently open circuits

constant. But on the other hand, publishing distinct service descriptors

produces significant additional network load. This requirement limits the

number of clients that a hidden server can authorize using the stealth

25 Applying a hybrid approach with grouping users could mitigate these scalability prob-

lems. In such an approach the hidden server would publish separate descriptors for the

groups and perform authorization based on client-specific authorization data.

114 Client Authorization

protocol. Special precautions need to be taken to hide relations between

service identities when publishing hidden service descriptors. These pre-

cautions include storing descriptors on distinct directory nodes and with

random delays, so that linking of descriptors is at least made more diffi-

cult for an adversary.

5.4.1 Client-specific Service Identities

The first design change of the stealth authorization protocol is to generate

client-specific hidden service descriptors. The descriptors for different

clients of a service shall not be linkable to each other. Therefore, a hidden

server creates a separate asymmetric client key for each client replacing the

service key that is used to generate a hidden service descriptor. As a result,

all published descriptors seem to originate from distinct services. With

the distributed directory as described in the previous chapter, descriptors

with different identities are likely to be stored on distinct directory nodes.

Using distinct identities for authorized clients of a service is an impor-

tant first step, but it does not suffice to hide links between identities. At

least three problems remain: The first problem is that a directory node

that once learns about an identity can subsequently track activity of that

identity by attempting to download descriptors published for the identity.

As a result, the directory node can detect if different descriptors are pub-

lished roughly at the same time and link them. The second problem is

that all descriptors published by one service contain the same set of intro-

duction points. While this helps improving scalability of the approach, it

also reveals links between descriptors. The third problem is simultaneous

publication of two or more descriptors to the same directory node or to

collaborating directory nodes. When observing such a simultaneous pub-

lication, an adversary can link the identities in the future. Solutions for

these three problems are presented in the following.

Stealth Pseudonymous Client Authorization Protocol 115

5.4.2 Private Entries in Descriptor Directory

The fact that the descriptor is only downloaded by a single client allows to

make use of private entries as described in Section 4.4.3. Both service and

client can share a secret descriptor cookie that is required to generate de-

scriptor identifiers. As a result, directory nodes that learn about the iden-

tity of a hidden service descriptor are not able to download future descrip-

tors or find other replicas of the descriptor. Further, they cannot generate

a new node identity key and hope to become responsible for the descriptor

in the future. This property is ensured by the secure hash function that

is used to generate the secret identifier part. The one-way property of the

hash function prevents the directory node from extracting the descriptor

cookie from the secret identifier part. But without knowing the descriptor

cookie, neither a directory node nor any other entity can determine the

next secret identifier part and thereby future descriptor identifiers.

descriptor-id = H(public-key-id || secret-id-part)

secret-id-part = H(descriptor-cookie || time-period || replica-index)

Even though descriptor identifiers change in an unpredictable way, a

storing directory node can still verify the legitimacy of a descriptor to be

stored under a given identifier. Therefore, the directory node verifies the

descriptor signature and attempts to generate the descriptor identifier us-

ing the contained secret identifier part. An adversary with a different pub-

lic key would be unable to find a secret identifier part that results in the

same descriptor identifier.

5.4.3 Encryption of Introduction Points

All service descriptors that a service publishes for its clients contain the

same set of introduction points. Sharing introduction points for multi-

ple clients significantly reduces the efforts to set up a service with stealth

client authorization. However, the fact that multiple service descriptors

116 Client Authorization

contain the same set of introduction points and introduction keys would

reveal a link between them. Therefore, the introduction point part needs

to be encrypted for the client. Encryption the introduction points also pre-

vents the directory nodes from attempting to access a service themselves.

As opposed to the basic client authorization protocol, the list of introduc-

tion points only needs to be encrypted for a single client. The symmetric

descriptor cookie, which is also used to generate the descriptor identifier,

is used as encryption key here.

5.4.4 Delayed Descriptor Publication

With the changes so far it is almost impossible to link two or more hidden

service descriptors for different clients to be issued for the same hidden

service. The only problem that remains is simultaneous publishing of two

or more descriptors to the same directory node or to collaborating direc-

tory nodes. For one thing, they contain the same or very close timestamps.

For another thing, the upload requests arrive in short order.

Descriptor uploads are performed in one or more upload rounds with

each of them lasting for one upload period of, for example, 30 seconds.

The hidden server prepares the descriptors for all clients to determine to

which directory nodes they would be uploaded. The service ensures that

at most one descriptor is uploaded to any directory node in the current up-

load round; the other descriptors are postponed to the next round. When

uploading descriptors, the hidden server does not send upload requests

all at once, but distributes upload times over the upload period at random.

After an upload round is complete, the service starts over with the next

one, considering all those descriptors that have not been uploaded yet.

Certainly, this does not prevent linking entirely, but it makes it harder.

There is a conflict between hiding links between clients and making a

service available in a timely manner.

Security Analysis 117

5.4.5 Summary

The stealth client authorization protocol extends the basic protocol by as-

signing each client a separate service identity to access the hidden service.

The server publishes separate service descriptors for its clients that are

generated using distinct client keys instead of the service key. While this

reduces scalability to a certain extent, the same set of introduction points

can be reused for all clients, so that the service only needs to keep a con-

stant number of circuits open. The descriptors are stored as private entries

in the descriptor directory using a previously shared descriptor cookie. As

a result, directory nodes cannot track existence of a descriptor over time or

try to become responsible for future descriptors of a service. The descrip-

tor cookie is also used to encrypt the introduction points that are contained

in the descriptor for the requesting client. The upload of descriptors for

all clients is delayed for random times in order to hide relations between

the identities that clients use to access the hidden service.

5.5 Security Analysis

At the beginning of the chapter it was found that the attempts to perform

client authorization after connection establishment to a pseudonymous

service reveal a number of security problems. These include unautho-

rized access attempts and tracking of service availability and usage. A se-

curity analysis shall evaluate whether the two proposed protocol changes

improve these security problems and which problems do remain.

The security analysis comprises four different protocols: The first two

are connection establishment to a single service or a separate service for

each client combined with subsequent client authorization. In these pro-

tocols, the unchanged Tor hidden service protocol is used, that is, the

protocol with server-based descriptor storage and without using freshly

118 Client Authorization

generated introduction keys [11].26 The other two protocols are the basic

and the stealth authorization protocol as described above.

An important part of a security analysis is to define the capabilities of

the adversary. In the following, three classes of adversaries are distin-

guished depending on their current or past permissions to access a ser-

vice: authorized clients, removed clients, and non-authorized clients. An

authorized client has the permission to access the service under investi-

gation at the time of evaluating security properties. A removed client was

once authorized by the service under investigation, but the service has

removed authorization by the time of the evaluation. A non-authorized

client was never authorized to access the service, but has learned about

the service somehow, for example, when acting as introduction point or

directory node. This classification has at least two implications: The first

implication is that only authorized and removed clients know about the

provided contents or the type of a service and might have a direct mo-

tivation to attack the service; the non-authorized client only knows that

the service exists. An adversary that is a non-authorized client collabo-

rating with either an authorized or a removed client is classified as the

latter type. The second implication is that a non-authorized client does

not necessarily have less information than a removed client: if the service

uses multiple identities, the non-authorized knows at least about an ac-

tively used service identity, while the removed client might only know the

service identity that was assigned to it when it was authorized. The three

adversary classes have in common that they all know a current or past

service identity. Adversaries who do not know any hidden service identity

are considered to be too limited to effectively mount an attack on hidden

services as discussed here. They are therefore excluded from the analysis.

26 The distributed directory and introduction keys also improve security properties of ser-

vices that do not perform built-in client authorization. However, the goal of this analysis

is to compare the protocol as it was deployed prior to this thesis with the proposed pro-

tocol changes.

Security Analysis 119

Besides this classification, an adversary can have more knowledge about

the service. If the server uses multiple identities for its clients, the adver-

sary might know the identities that are used by other, currently authorized

clients. Further, the adversary might have the capabilities to attack or con-

trol a limited number of relays to act as introduction point or directory

node in the distributed hidden service directory.

The other part of performing a security analysis is to define possible

targets of an adversary. These are the security properties that shall be pro-

tected. The following analysis comprises five possible attacks: accessing

a service without permission, performing a denial-of-service attack, cen-

soring a service, and tracking either service activity or client requests to

a service. For each attack, the required steps by an adversary as well as

possible protections by a service are discussed. Table 5.2 at the end of

this section summarizes the attacks and shows how effective protections

against them are.

5.5.1 Access Service without Permission

The basic protection that all protocols shall provide is to prevent clients

without authorization from accessing the service, including both removed

and non-authorized clients.

In the first two protocols, the subsequent authorization step ensures

that unauthorized requests are not permitted. Only clients with current

authorization data are able to pass this step. In the second protocol that

uses separate services, a removed client further needs to know the service

identity of another, currently authorized client to make an access attempt.

The basic and stealth protocols stop unauthorized access attempts even

earlier. In the basic protocol an adversary fails at decrypting the introduc-

tion points and introduction keys that are contained in a service descrip-

tor. Hence, the adversary would not know where to send the INTRODUCE1

cell and what public introduction key to use to generate it.

120 Client Authorization

In the stealth protocol, an adversary would fail even one step prior to

that, that is, when trying to download the service descriptor without know-

ing the descriptor cookie of an authorized client. Even if an adversary in

the stealth protocol runs a directory node that is responsible for storing

a service descriptor by chance, the introduction points are encrypted and

unreadable for the adversary.

5.5.2 Perform Denial-of-Service Attack

Even though it is not possible to gain access to a service without the re-

quired authorization data, an adversary might want to mount a denial-of-

service attack against that service. Therefore, the adversary sends a mul-

titude of introduction requests, forcing the hidden server to build circuits

to the contained rendezvous points. If the frequency of requests exceeds a

certain level, the service is unable to answer legitimate requests in time or

at all. A similar attack has been performed by Øverlier and Syverson [56]

to reveal the location of a hidden server.

In the first protocol that performs client authorization after connection

establishment to a single service, almost everyone who has once learned

about the service identity can perform this attack. The server has no way of

attributing the attack to one of its clients. In the second protocol that uses

separate services for authorized clients this situation is only improved to

a certain extent. The service can distinguish the service identity that is at-

tacked and could attribute misuse to the client this identity was assigned

to. However, the attack can also be performed by removed clients that

have learned about the service identity that is used by another client or by

arbitrary, non-authorized clients. From this follows that the conclusion

to remove authorization for the presumably attacking client may be false.

While the adversary would not achieve the original goal of making the ser-

vice unavailable for all clients, single legitimate clients would be affected

by the adversary’s denunciation.

Security Analysis 121

The two protocols proposed here exhibit better protection against deni-

al-of-service attacks. If an authorized client would mount such an attack,

the service could reliably attribute misuse to the client and safely remove

authorization. Removed and non-authorized clients cannot perform the

attack, because they cannot even get past one of the introduction points for

the same reason as discussed for accessing a service without permission.

5.5.3 Censor Service

Another way of making a service unavailable is to disturb legitimate cli-

ents in their attempts to establish a connection to it. An adversary could

try to make the service descriptor unavailable or control the introduction

points and drop introduction requests.

In the case of a single service with subsequent client authorization, an

adversary could attempt to force the central directory servers to stop serv-

ing descriptors of a given service. In the original protocol it is sufficient

to prevent a single directory server from serving descriptors to achieve at

least partial censorship. Another way to censor a single service is to run

relays and wait to be picked by the service for establishing all introduction

points on them. When clients send introduction requests to the service,

the relays can refuse to forward them to the service. Neither of these two

attacks would be noticed by a service.

Using separate services for different clients makes these two attacks

significantly harder, if not impossible. An adversary would need to know

all service identities to be censored. For one thing, the efforts that are

required to force the directory servers to censor multiple descriptors might

be slightly higher than to censor only one descriptor. For another thing,

all services use a different set of introduction points, so that controlling

all of them by chance is almost impossible.

The possible attacks in the basic authorization protocol are different.

An adversary can attempt to control all directory nodes in the distributed

122 Client Authorization

directory that are responsible for the service descriptor. In this case the

countermeasures of the distributed directory against censoring services

as described in the previous chapter come into play. If the adversary is an

authorized client, she can try to control all introduction points and block

introduction requests there for the other clients. If the adversary is not

authorized, she would not know whether her own relays have been picked

as introduction points. She would not be able to decrypt the introduction

points contained in the service descriptor and compare introduction keys.

An adversary being an authorized client has the same capabilities to

censor a service in the stealth protocol as in the basic protocol. This prop-

erty is the only one in which the stealth protocol is more vulnerable than

the approach to set up separate services. The reason is that only a sin-

gle set of introduction points is established as compared to a separate set

for each client. In contrast to this, the protection against removed and

non-authorized clients is by far better in the stealth protocol. Such an ad-

versary cannot run her own relays and hope to be picked as introduction

points, because she has no way to confirm that she works for the service.

A minor exception is a recently removed client being the adversary: This

adversary could attack the known introduction points to make the service

unavailable. However, as soon as the hidden service has established new

introduction points, it is available to the other clients again. Further, nei-

ther removed nor non-authorized client as adversary can guess positions

of future service descriptor of other identities used by the service. Thus,

no such adversary can control the responsible directory nodes on purpose,

but only hope to become responsible by chance.

5.5.4 Track Service Activity

One of the main goals of improving client authorization for pseudony-

mous services was to prevent tracking of service activity. This goal does

not apply to currently authorized clients who need this information in

Security Analysis 123

order to legitimately establish a connection. The focus is rather on re-

moved clients who shall not be able to observe service activity after their

authorization is removed. Non-authorized clients shall not be given the

possibility to track service activity of a yet-unknown service, either, which

they could later combine with other information they might gain about

the service.

The first protocol based on a single service lacks any protection against

tracking service activity. Any adversary who has once learned the service

identity can periodically download the service descriptor. An update of

the service descriptor indicates service activity. The adversary can also

attempt to establish a connection to the service to confirm that it is active.

Alternatively, the adversary can run own relays and wait for one of them

to be picked as introduction point to track service activity.

The second protocol based on separate services is exposed to the same

threats concerning service activity. As soon as the adversary knows at least

one identity that the service uses, she can periodically download service

descriptors and attempt to establish connections to them. Running own

relays and waiting to be picked as introduction point works even better in

this protocol, because the server needs to establish separate introduction

points for all its clients.

The basic authorization protocol does not improve the protection of ser-

vice activity much. The only difference to the first two protocols is that the

adversary cannot establish a connection to the service to confirm activity,

because introduction points are encrypted in the descriptor.

The stealth protocol, finally, does protect service activity. An adversary

needs to know at least one currently used service identity and has to run

own directory nodes. She then waits to become responsible for one of the

service descriptors to observe descriptor publications. Similar to the basic

protocol, the adversary cannot attempt to connect to the service to confirm

activity. Even if an adversary can put significant resources on tracking

service activity (and is willing to do so), the result is a rather coarse-grained

124 Client Authorization

activity profile with a number of missing intervals.

5.5.5 Track Client Requests

The last possible attack is tracking client requests. An adversary might be

interested in knowing the frequency and pattern of requests to a given ser-

vice. Adversaries include currently authorized clients as well as removed

or non-authorized clients.

For the first protocol that performs client authorization subsequent to

connection establishment, the adversary needs to control at least one of

the introduction points of a service by chance. In this case the adversary

learns about all requests that are performed using this introduction point.

While these constitute only a certain share of all client requests, they suf-

fice to obtain a general pattern. Another, less likely option is to force the

directory server operators to reveal this information.

In the protocol based on separate service, the probability of running

one of the introduction points increases. However, the adversary can only

observe requests by one client with every controlled introduction point in

this way.

In the basic protocol, an authorized client as adversary learns about

client requests when controlling either introduction points or directory

nodes. An adversary that is currently not authorized cannot make use of

data collected at introduction points. She cannot know whether the in-

troduction point acts on behalf of the service. Running a directory node

is even more effective in this case, because the adversary can become re-

sponsible for future service descriptors on purpose.

The stealth protocol makes it harder to track client requests for removed

and non-authorized clients, but not for authorized clients. An authorized

client as adversary can run relays and wait to be picked as introduction

point. With all clients using the same set of introduction points, the ad-

versary can track client requests rather easily. Clients without current

Implementation 125

authorization need to run relays in hope to be picked as directory nodes

for some of the identities used by the service. They can then learn from

fetch requests for a descriptor that clients attempt to access the service.

This attack works only for a small number of client requests for known

identities used by the service.

5.5.6 Summary

In summary, the two proposed protocols exhibit better protection than

the existing approaches to establish a connection to a service and perform

authorization subsequently. Both existing approaches are vulnerable to

denial-of-service attacks which is solved in the two new protocols. The

stealth protocol protects service activity and usage to a certain extent, but

not completely, so that an adversary with sufficient resources can still ob-

serve fragments of service activity and usage. Table 5.2 summarizes the

results of the security analysis.

5.6 Implementation

The two proposed client authorization protocols as extensions of the hid-

den service protocol have been designed and implemented between April

2007 and September 2008. First, the prerequisites have been created dur-

ing the Google Summer of Code 2007 program. These include intro-

duction keys as a means to hide service identity from the introduction

points and descriptor cookies for storing private entries in the distributed

descriptor storage [36]. In September 2007, an infrastructure for client

authorization in hidden services has been proposed. This proposal also

includes the basic and stealth protocols as two instances of authorization

protocols for hidden services [31]. The implementation work was mainly

done in summer 2008 and added to the codebase between August and

September 2008. Table A.3 contains a list of the patches. Both hidden

servers and clients need to update to Tor version 0.2.1.6-alpha to make

126 Client Authorization

Table 5.2: Evaluation of attacks on pseudonymous services performing

client authorization and effectiveness of protections against these

Single

Service

Separate

Service

Basic

Authorization

Stealth

Authorization

Unauthorized access

Removed client ⊕⊕1 ⊕⊕1,2 ⊕⊕3 ⊕⊕2,3,4

Non-authorized client ⊕⊕1 ⊕⊕1 ⊕⊕3 ⊕⊕3,4

Denial-of-service attack

Authorized client 		5 	6 ⊕⊕7 ⊕⊕7

Removed client 		5 	2,6 ⊕⊕3 ⊕⊕2,3,4

Non-authorized client 		5 	6 ⊕⊕3 ⊕⊕3,4

Censor service

Authorized client ⊕8,9 ⊕⊕8,9,10 ⊕9,11 ⊕9

Removed client ⊕8,9 ⊕⊕2,8,9,10 ⊕11 ⊕⊕2,12

Non-authorized client ⊕8,9 ⊕⊕8,9,10 ⊕11 ⊕⊕12

Track service activity

Removed client 		13,14,15 		2,13,14,15 		13,14 ⊕2,4

Non-authorized client 		13,14,15 		13,14,15 		13,14 ⊕4

Track client requests

Authorized client 	14 	14 		14,16 	14

Removed client 	14 	2,14 		16 ⊕2,4

Non-authorized client 	14 	14 		16 ⊕4

		 trivial attack with almost no protection

	 realistic attack with only weak protection

⊕ realistic protection against an attack

⊕⊕ strong protection against an attack or not possible by design

Implementation 127

Table 5.2 – continued from previous page

1 Server is protected by subsequent authorization protocol.

2 Adversary knows service identities of currently authorized clients.

3 Server is protected by encryption of introduction points for authorized clients.

4 Adversary controls one of the directory nodes that stores a service descriptor by chance.

5 Server cannot attribute misuse to one of its clients.

6 Server could attribute misuse to one of its clients and remove authorization which might

be wrong.

7 Server can reliably attribute misuse to one of its clients and remove authorization.

8 Adversary forces directory server operators to censor service descriptor.

9 Adversary controls all introduction points by chance.

10 Server is protected by the fact that all clients use different set of introduction points.

11 Adversary controls all directory nodes that store a service descriptor on purpose.

12 Adversary controls all directory nodes that store a service descriptor by chance.

13 Adversary periodically downloads service descriptor.

14 Adversary controls at least one introduction point by chance.

15 Adversary can attempt to establish connection to service.

16 Adversary controls at least one directory node that stores a service descriptor on purpose.

128 Client Authorization

use of the authorization protocols. In contrast to this, relays are not re-

quired to upgrade. This fact should significantly accelerate deployment of

the new features.

The remainder of this section gives an overview of the implementation

by showing examples of configurations and message formats. In the ex-

ample, a user, Bob, provides a hidden service and grants access to two

users, Alice and Carol. The example shows how Alice configures her Tor

client and accesses the service. The use of both basic and stealth protocol

are presented. Bob starts by configuring his Tor client to provide a hidden

service with the basic client authorization protocol:

HiddenServiceDir /home/karsten/myhiddenservice

HiddenServicePort 80 127.0.0.1:8000

HiddenServiceAuthorizeClient basic alice, carol

This configuration instructs the Tor client to set up a hidden service

with data directory /home/karsten/myhiddenservice that listens on the

virtual port 80 and forwards incoming requests to the local service that

runs on port 8000. The service generates authorization data for the ba-

sic authorization protocol for two users alice and carol and makes the

service accessible for these authorized clients only. The service generates

authorization data and stores them in a file client_keys with the follow-

ing content:

client-name alice

descriptor-cookie L7DVicgw5z8Q85M4bloL0A==

client-name carol

descriptor-cookie YVXDZBHRh05qwmA5ql9X9g==

The service provider then can give out authorization data for his service

to Alice and Carol. These data include the onion address and the client

cookie (labeled descriptor cookie in the above file). The data are combined

in another file hostname:

pnli33ynmrbt5p4l.onion L7DVicgw5z8Q85M4bloL0A # client: alice

pnli33ynmrbt5p4l.onion YVXDZBHRh05qwmA5ql9X9g # client: carol

Implementation 129

Alice configures her Tor client to access Bob’s service using the given

authorization data. Therefore she adds a line to her configuration file:

HidServAuth pnli33ynmrbt5p4l.onion L7DVicgw5z8Q85M4bloL0A

Whenever she tries to access the specified onion address, her Tor client

will use the given client cookie to decrypt the introduction points and send

an introduction request to Bob’s service.

If Bob wants to make use of the stealth authorization protocol, he needs

to configure his service accordingly. He may only specify up to 16 clients

in the stealth protocol as opposed to 512 in the basic authorization proto-

col:

HiddenServiceDir /home/karsten/myhiddenservice

HiddenServicePort 80 127.0.0.1:8000

HiddenServiceAuthorizeClient stealth alice, carol

The service generates client keys and descriptor cookies for all autho-

rized clients and writes them to the file client_keys:

client-name alice

descriptor-cookie NLTXwrXuwHi4WRjAsZlyMg==

client-key

-----BEGIN RSA PRIVATE KEY-----

// ...

-----END RSA PRIVATE KEY-----

client-name carol

descriptor-cookie zIn16MC4qJnd939Jl5oTzA==

client-key

-----BEGIN RSA PRIVATE KEY-----

// ...

-----END RSA PRIVATE KEY-----

The service is then available for Alice and Carol under distinct onion

addresses and descriptor cookies. These are written to the hostname file:

vh4t3oqu22umc5pm.onion NLTXwrXuwHi4WRjAsZlyMh # client: alice

6vstfml34qouxz5w.onion zIn16MC4qJnd939Jl5oTzB # client: carol

130 Client Authorization

Alice configures her Tor client to use the authorization data when try-

ing to access Bob’s service in the same way as above. The difference is

that the Tor client needs to include the descriptor cookie when trying to

download the service descriptor which is not the case in the basic autho-

rization protocol. The descriptor cookie contains the information that the

authorization data is used for the stealth protocol as opposed to the basic

protocol: The 22 characters-long base64-encoded [29] string may contain

up to 22× 6 = 132 bits of which 128 bits are used for the cookie. The re-

maining 4 bits are used to identify the authorization protocol. This is why

the last character of the authorization string in the hostname file differs

from the descriptor cookie in the client_keys file.

The ability to configure hidden services with client authorization has

been added to the Tor controller Vidalia.27 The necessary implementation

work was performed by Domenik Bork in the Google Summer of Code

2008 program.28 The motivation is to make it easier for users to provide

and access hidden services with client authorization. Figure 5.1 shows

the configuration of a hidden service with basic client authorization. Fig-

ure 5.2 shows how clients configure their Tor clients to use authorization

data to access a hidden service.

5.7 Conclusion

This chapter has motivated the use of pseudonymous services with client

authorization which are offered to a limited set of clients. An analysis of

two approaches to use pseudonymous services with subsequent client au-

thorization has shown several security problems that might turn out to be

privacy-relevant for the service provider. Two extensions of the Tor hidden

27 See the Vidalia homepage: http://www.vidalia-project.net/ (last checked: Dec

17, 2008)

28 See the accepted project application: http://code.google.com/soc/2008/eff/

appinfo.html?csaid=86500DD2D78BB5D9 (last checked: Dec 17, 2008)

Conclusion 131

Figure 5.1: Configuration of client authorization using Vidalia

service protocol have been presented that are designed to better support

client authorization during the connection establishment process. A sub-

sequent security analysis has shown possible attacks on the protocols and

protections against them. The two new protocols have been implemented

and deployed in the public Tor network.

132 Client Authorization

Figure 5.2: Configuration of access to hidden services using Vidalia

6 Performance of Pseudonymous Services

The performance of pseudonymous services is inherently worse than that

of services that can be contacted directly. The first reason for this is that

the multi-hop routing in anonymous communication systems adds delay

and reduces bandwidth of relayed traffic. The second reason is that offer-

ing and accessing pseudonymous services require more steps than pro-

viding anonymity for clients accessing a public service. However, from a

user perspective, pseudonymous services should meet minimum perfor-

mance requirements which users can rely on. It is assumed that none of

the delay in offering or accessing pseudonymous services is introduced

by the system on purpose to defeat traffic analysis, but that all delay is the

result of normal system operation.

Wendolsky and others [80] performed a comparative study of client-

anonymous connections in Tor and in the AN.ON system [3]. They found

that latencies of connections averaged to 4 seconds. They concluded from

the studies by Köpsell [33] that these 4 seconds were the acceptable time

that users are willing to wait: Whenever the number of users grows, the

network load goes up and the average latency in the network increases,

too. This bad performance deters less anonymity-aware users from using

the system, so that the number of users decreases and the average latency

improves again. This process stabilizes at a given number of users and

corresponding average latency. While 4 seconds may sound high for the

delay to connect to a service, pseudonymous services exhibit a delay that is

a multiple of that. Performance problems may be considered the primary

reason why pseudonymous services are not as popular as they could be.

There are a number of questions that shall be answered in the context

134 Performance of Pseudonymous Services

of performance of pseudonymous services: How can the performance of

pseudonymous services be measured? What is the performance that users

experience in a deployed anonymous communication network? Which

are the steps that are responsible for the bad performance? Is it possible

to improve these steps in order to achieve a better overall performance of

pseudonymous services?

The following analysis focuses on the performance of Tor hidden ser-

vices. Most of this work has been conducted between May and December

2008 as part of the NLnet project to Speed Up Tor Hidden Services.29 Dur-

ing this project a number of bugs in the Tor code could be fixed that were

responsible for unnecessary delays of hidden services. Table A.4 on page

199 lists these bugfixes. Further, some changes to the hidden service pro-

tocol have been implemented and evaluated during this project [43]. Ta-

ble A.5 on page 200 contains a list of these design changes. The analysis

and the reasons for proposing these changes will be the subject of this

chapter.

In the next section, a measurement setup is presented for performance

measurements in the Tor network. Sections 6.2 and 6.3 cover the pro-

cesses of making a hidden service available in the network and estab-

lishing a connection to it. They contain an analysis of performance of

these tasks including several substeps and a discussion of possible design

changes to improve performance. The challenge is to retain security prop-

erties while not to increase network load too much. Section 6.4 concludes

the chapter.

6.1 Measurement Setup

The performance of Tor hidden services can best be measured by setting

up and controlling a small number of Tor clients and relays that are con-

29 See also the project page: https://www.torproject.org/projects/hidserv.html

(last checked: Dec 17, 2008)

Measurement Setup 135

nected to the public Tor network. These nodes are then configured to

participate in advertising a hidden service in the network or establishing a

connection to it. In such a setting, one Tor client could be used to provide

the hidden service and another one to request it. The Tor relays could act

as introduction points, rendezvous points, or directory nodes; it is nec-

essary, however, to change the Tor code to enforce using the own nodes

for these tasks rather than randomly picked ones. It is neither required

nor desirable to control all relays in circuits that either of the Tor clients

builds. To the contrary, the obtained measurements reflect reality of the

public Tor network better when the measurement nodes are never con-

nected directly, but always mediately over public Tor relays. In this case

all controlled Tor nodes can run on the same local machine, configured

with different ports and data directories.

The Tor processes can be configured to write detailed log statements to

log files in their data directories. These can be used to track the most im-

portant events in making a hidden service available or accessing it. Times

for single substeps can be measured by subtracting timestamps of log

statements with a precision of up to 1 millisecond. In most cases these

log statements should be sufficient to measure the substeps of the hidden

service protocol. If intermediate steps are required or if log statements

should contain more information, the Tor code can be extended; this was

not necessary for the measurements performed in this thesis. The result-

ing data can then be analyzed with standard statistics software, like GNU

R [79], as it was done in this thesis.

Tor nodes can be configured to either become part of the public Tor

network or to create one’s own private Tor network. The latter implies

setting up one’s own directory servers and overriding the default directory

servers in the configurations of all participating Tor nodes. This process of

setting up private Tor networks has been simplified and accelerated in the

course of this thesis [38]. Setting up a private Tor network may be useful

in order to test new features or to measure performance under laboratory

136 Performance of Pseudonymous Services

conditions. However, the goal here was to obtain data and improve user

experience in a realistic environment.

The task of configuring Tor processes and controlling their execution

can be cumbersome. For some measurements it is necessary to create

new Tor processes with new data directories and separate port config-

urations, so that they can run in parallel to other measurement runs.

Therefore, the Java API PuppeTor30 has been developed as part of this

dissertation project. PuppeTor facilitates automatic configuration of Tor

processes, including setting up private Tor networks. PuppeTor further

contains a minimal HTTP server and HTTP client to automatically per-

form requests. The data directory of Tor processes controlled by Pup-

peTor are stored in a common working directory that is created for every

execution of a program using PuppeTor. This organization facilitates the

subsequent analysis of log files. It is not required to execute all Tor pro-

cesses for a measurement setup with PuppeTor. In some cases it makes

more sense to configure some Tor processes manually to run throughout

the complete measurement time and start the remaining processes for ev-

ery measurement using PuppeTor. The PuppeTor API has more recently

been extended by Sebastian Hahn to a distributed test environment as

part of the Google Summer of Code 2008 program.31

Figure 6.1 shows the basic types of the PuppeTor API. The Network

is the central type that manages all controlled Tor nodes as well as cli-

ent and server processes. Tor nodes are subdivided into the three types

ProxyNode, RouterNode, and DirectoryNode. The standard configura-

tion of a ProxyNode is to act as Tor client, that is, without relaying traf-

fic for other users. The RouterNode contains a standard configuration

30 The source code is available in the Tor repository at https://svn.torproject.org/

svn/puppetor/trunk (last checked: Dec 17, 2008)

31 See the accepted project application: http://code.google.com/soc/2008/eff/

appinfo.html?csaid=3A225E2DCCBA5B3A (last checked: Dec 17, 2008)

Measurement Setup 137

ClientApplication

+ startRequests ()

+ stopRequest ()

+ getSocksPort ()

+ getTargetName ()

+ getTargetPort ()

Network

+ createClient ()

+ createDirectory ()

+ createProxy ()

+ createRouter ()

+ createServer ()

+ getAllDirectoryNodes ()

+ getAllRouterNodes ()

+ getAllProxyNodes ()

+ getAllNodes ()

+ getNode ()

+ shutdownNodes ()

+ startNodes ()

+ writeConfigurations ()

NetworkFactory

+ createNetwork ()

ServerApplication

+ startListening ()

+ stopListening ()

+ isListening ()

+ getServerPort ()

ProxyNode

+ addHiddenService ()

+ addConfiguration ()

+ replaceConfiguration ()

+ removeConfiguration ()

+ getNodeState ()

+ shutdown ()

+ startNode ()

+ writeConfiguration ()

+ getSocksPort ()

+ getControlPort ()

+ getConfiguration ()

RouterNode

+ getDirPort ()

+ getOrPort ()

+ getFingerprint ()

DirectoryNode

+ getDirServerString ()

+ addApprovedRouters ()

HiddenService

+ determineOnionAddress ()

+ getServiceName ()

+ getServicePort ()

+ getVirtualPort ()

NodeState

+ CONFIGURATION_WRITTEN

+ CONFIGURING

+ RUNNING

+ SHUT_DOWN

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

Figure 6.1: Basic types of the PuppeTor API

of a Tor relay. The DirectoryNode comprises the configuration tem-

plate of a Tor directory server. The same executable file is used for all

three roles which differ only in their configuration. A HiddenService in-

cludes all configurations that are necessary to offer a hidden service. The

NodeState contains one out of four node states. The network may also

contain client or server processes. The ClientApplication implements

a minimal HTTP client that sends one or more HTTP requests to a given

target and at a given interval. The ServerApplication contains a mini-

mal HTTP server that answers HTTP requests.

Figure 6.2 shows an example application that uses PuppeTor to config-

ure and control a single Tor process as part of the public Tor network. In

138 Performance of Pseudonymous Services

1. Network network = NetworkFactory.createNetwork("servpub", 7000);

2. ProxyNode proxy = network.createProxy("proxy");

3. proxy.addHiddenService("hidServ");

4. network.writeConfigurations();

5. network.startNodes(3 * 1000);

6. Thread.sleep(30 * 60 * 1000);

7. network.shutdownNodes();

Figure 6.2: Example application for measuring service publication times

this example, a Tor client is configured to offer a hidden service and run

for 30 minutes. The code starts with creating a Network instance. The

network is passed the initial port 7000 that is used to automatically assign

consecutive port numbers to Tor nodes, hidden services, and server pro-

cesses. In the next line a ProxyNode is instantiated with automatically

assigned port numbers for its control port and its SOCKS port. In line

3 a hidden service is added to the node configuration with automatically

assigned service port and virtual port. The complete configuration is writ-

ten to disk in line 4. In line 5 the node is started with a timeout of 3

seconds for opening its control port. The executing PuppeTor thread then

sleeps for 30 minutes while the Tor process publishes its service. Even

though the hidden server could accept client requests, there is no server

process in this example listening on the service port that is configured for

the hidden service. Finally, the example is terminated after 30 minutes by

shutting down the node in line 7.

6.2 Service Publication

The first measurement deals with hidden service publication. The ser-

vice publication time is the time that is necessary to establish a hidden

service in the Tor network and make it available for clients. This process

includes four substeps: In the first step, the Tor client downloads direc-

Service Publication 139

tory information about available relays from the directory servers. After

having downloaded at least 25% of all router descriptors, the Tor client es-

tablishes introduction points for its hidden service in the second step. In

the third step, the Tor client waits for the established introduction points

to become stable, that is, no new introduction points are established for

a given time. Finally, in the fourth step, the Tor client opens circuits to

the directories and uploads its hidden service descriptor. The total ser-

vice publication time as defined here begins with starting the Tor process

and ends with the first directory acknowledging receipt of a hidden service

descriptor.

6.2.1 Measurements

Service publication times were measured by creating new Tor clients

which offer one hidden service each. Hidden services were configured

to use the distributed hidden service directory as described in this the-

sis. Tor clients were started with empty data directories, so that they do

not have any current information about the network available before the

measurements. Processes were started at an interval of 1 minute and

stopped after 30 minutes. In this case, PuppeTor was used to config-

ure the Tor processes to use separate data directories and to shut them

down after 30 minutes. All processes were run on an Intel Core Duo 1.83

GHz laptop with 2 GB RAM running Linux and connected via DSL with

2 Mbit/s downstream and 192 Kbit/s upstream. Measurements were per-

formed between July 10, 2008, 15:35 and July 11, 9:29 using Tor version

0.2.1.2-alpha-dev (r15806). Within this time, 1,068 data samples could be

collected of which 2 runs failed and were excluded from later analysis.

The later analysis of measured data consists of extracting service pub-

lication times and the times for the four substeps from the Tor log files.

Figure 6.3 shows an excerpt of one of the log files with the log statements

that are relevant for the analysis. The service publication time can be cal-

140 Performance of Pseudonymous Services

1. Jul 10 15:40:01.705 [notice] Tor 0.2.1.2-alpha-dev (r15806) opening

new log file.

2. Jul 10 15:40:06.659 [notice] We now have enough directory

information to build circuits.

3. Jul 10 15:40:07.682 [info] rend_services_introduce(): Picked router

dmass as an intro point for 2ml2xon5ch2l2j57.

4. Jul 10 15:40:08.692 [info] rend_services_introduce(): Giving up on

dmass as intro point for 2ml2xon5ch2l2j57.

5. Jul 10 15:40:08.851 [info] rend_services_introduce(): Picked router

b1qi954bcq34ob as an intro point for 2ml2xon5ch2l2j57.

6. Jul 10 15:40:13.548 [info] rend_service_intro_has_opened():

Established circuit 11709 as introduction point for service

2ml2xon5ch2l2j57

7. Jul 10 15:40:15.575 [info] rend_service_intro_established():

Received INTRO_ESTABLISHED cell on circuit 11709 for service

2ml2xon5ch2l2j57

8. Jul 10 15:40:46.028 [info] upload_service_descriptor(): Sending

publish request for hidden service 2ml2xon5ch2l2j57

9. Jul 10 15:40:48.951 [info] connection_dir_client_reached_eof():

Uploaded rendezvous descriptor (status 200 ("Service descriptor

stored"))

Figure 6.3: Log statements of publishing a service in the network

culated by subtracting the timestamp of the first log statement from the

timestamp of the last log statement; in the example the service publication

time is 47.2 seconds which is rather quick as compared to the other runs.

Table 6.1 contains statistics of measured service publication times and

its substeps which are explained below. Figure 6.4 visualizes all measured

service publication times in a histogram. The measured mean time for

service publication is 77.5 seconds, and 75% of all services were published

within less than 80 seconds. However, there is also a small number of

service publications that took between 200 and 800 seconds and which

lead to high variability of service publication time. The highest service

publication time in the measurements is 867 seconds.

Service Publication 141

Table 6.1: Measured service publication times (s)

Min. 1st Qu. Median Mean 3rd Qu. Max.

Download directory 1.936 4.636 7.148 26.440 31.810 798.000

Est. intro. points 2.220 9.728 13.000 15.620 18.840 75.170

Stabilize descriptor 13.290 30.750 31.040 31.000 31.320 31.990

Upload descriptor 0.359 1.767 3.192 4.429 5.320 100.300

Total 39.460 51.620 61.440 77.490 79.470 866.500

The separation of service publication time into its four substeps is

meant to help understand the empirical distribution of measured times.

The measured times for the substeps are also contained in Table 6.1. Fig-

ure 6.5 displays histograms of all four substeps. The four substeps are

explained in the following.

The first step in publishing a hidden service is to download enough di-

rectory information to build circuits. The event that enough directory in-

formation have been downloaded is reported in the second log statement

in Figure 6.3. The download includes the network status consensus and a

fraction of at least 25% of all descriptors of running relays. The statistics

for this substep show that downloading directory information is respon-

sible for the high variability in service publication. While the mean time

to download directory information is 26.4 seconds, the maximum time is

798 seconds. The sum of maximum values of all other substeps is slightly

higher than 200 seconds, so that all higher values must result from high

directory download times. The reason for these extreme values has turned

out to be a very slow directory server: clients that downloaded the network

status consensus from that directory server were delayed for a couple of

minutes, while others succeeded within seconds. At the other end of val-

ues, the fastest directory download has been completed in 1.9 seconds.

In the next step the Tor client establishes introduction points for its hidden

service. Therefore, the Tor client starts building circuits to three randomly

142 Performance of Pseudonymous Services

Time (s)

F
re

qu
en

cy

0 200 400 600 800

0
50

10
0

15
0

20
0

25
0

30
0

Figure 6.4: Measured service publication times

chosen relays as stated in log statement 3. If for some reason a circuit

cannot be built or an introduction point not be established, the relay is

given up as introduction point as shown in log statement 4. In this case,

the Tor client picks another relay and starts establishing an introduction

point on that relay instead. When a circuit is established as shown in log

statement 6, the Tor client sends an ESTABLISHINTRO cell over the circuit

requesting the relay to act as introduction point. The relay answers with

an INTROESTABLISHED cell which is indicated in log statement 7. The

substep of establishing introduction points as measured here ends with

the last successful establishment of an introduction point before making

the first attempt to publish a descriptor.

In the measured data, establishing introduction points is performed in

15.6 seconds in the mean. The histogram shows that the frequency of

introduction point establishment decreases starting with times around 15

seconds until approximately 50 seconds. Subsequently, there is a small

Service Publication 143

Download directory

0 200 400 600 800

Establish introduction points

0 20 40 60

Stabilize descriptor

15 20 25 30

Upload descriptor

0 20 40 60 80 100

Figure 6.5: Components of service publication (x axes contain time (s), y

axes frequency)

increase of cases between 60 and 66 seconds. The explanation for the

increase at 60 seconds is a circuit creation timeout of 60 seconds: if cir-

cuit creation to one of the introduction points times out at 60 seconds

and a subsequent attempt succeeds shortly afterwards, the latter event

might conclude the introduction point establishment step; this further im-

plies that previously established introduction points were not stable long

enough to publish a descriptor. The maximum establishment time of in-

troduction points is 75.2 seconds.

The third substep of service publication is the stabilization time. The in-

tention is to wait for a certain time after the last introduction point estab-

lishment to publish a hidden service descriptor that is not likely to change

shortly after publication. In the logs, the stabilization time is measured as

144 Performance of Pseudonymous Services

the difference between the last introduction point establishment event in

log statement 7 and the attempt to upload a descriptor in log statement 8.

The current stabilization time is hard-coded to 30 seconds which can also

be seen in the statistics. The minor deviation of one second to a mean

value of 31 seconds results from implementation details, and a few values

smaller than 30 seconds are attributable to a minor bug in the code.

The fourth and final substep is uploading the hidden service descriptor to

the directories. The Tor client opens circuits to all directory nodes that are

responsible for storing replicas of its descriptor. If pre-built circuits are

available, the Tor client cannibalizes them and extends them by another

hop. Otherwise, new 3-hop circuits are built to the directory nodes. Af-

ter the circuit is open, the Tor client sends the hidden service descriptor

which is acknowledged by the directory node. The descriptor upload time

as measured here begins with the local decision to publish a descriptor in

log statement 8 and ends with the first acknowledgment message received

from a directory node in log statement 9.

The first descriptor upload is completed within only 4.4 seconds in the

mean, and the vast majority of uploads succeeds within 30 seconds or less.

However, there are single descriptor uploads that take over 60 or even up

to 100 seconds. This value is surprisingly high, as multiple descriptor

uploads are performed in parallel. The values over 60 seconds indicate a

general problem in establishing circuits that are only overcome by timing

out circuit establishments and making a second attempt. It turned out

that there was a bug in the code resulting in failure of approximately 15%

of all upload requests. In rare cases, all 6 replicas fell victim to this bug,

so that neither of them could succeed at the first time.

6.2.2 Improvements

One of the goals of the measurements is to identify performance bottle-

necks and to propose improvements. While service publication time may

Service Publication 145

not be as important from a user perspective as connection establishment

time, users expect their services to be available in a reasonable amount of

time. It is important, however, to make only those changes that do not put

excessive additional load on the network.

Downloading enough directory information to build circuits as the first

substep of service publication exhibits a high mean time of 26.4 seconds

and high variability with a maximum time of 798 seconds. Ensuring that

directory servers have a minimum bandwidth is part of the solution to

avoid extreme values in this substep. While it would make sense to fur-

ther investigate and improve this substep, it is independent of the hidden

service protocol and therefore out of scope at this point. The next substep,

establishing introduction points, with a mean value of 15.6 seconds on

the contrary is in scope. An acceleration of this step, especially avoiding

extreme values of 60 seconds or more, is one option to speed up service

publication. The third substep, stabilization time, is another candidate

for lowering service publication time. It might be possible to reduce the

fixed stabilization time of 30 seconds if variability of introduction point

establishment can be reduced, too. The mean time of the last substep,

uploading the descriptor, seems reasonable with only few options to im-

prove. The extreme values of up to 100 seconds seem to result from a bug

that has been fixed.

Build More Introduction Circuits than Needed

The high variability in establishing introduction points comes from the

fact that the set of three introduction points is only considered stable when

the third introduction point is established. That means that service pub-

lication time is determined by the slowest of the three introduction point

establishments. If one of the circuit creations or cell transfers is delayed

or fails and times out, service publication is delayed, too.

One approach to prevent single introduction point establishments from

146 Performance of Pseudonymous Services

delaying the whole process is to parallelize this step. Instead of establish-

ing only three circuits, the Tor client could build four, five, or six circuits

to prospective introduction points and use only the first three opened in-

troduction circuits to establish introduction points. The Tor client would

only send ESTABLISHINTRO cells to the first three succeeding circuits and

establish introduction points on them. The other relays to which circuits

have been built would never learn that they were meant to act as intro-

duction points. They would be kept for other purposes, like for being

extended to rendezvous points and answering client requests later on. As

a result, the additional network load is minimal, because these circuits

would most likely have been built anyway.

The effect has been simulated based on the previously measured data.

Therefore, 3,196 introduction circuit establishments have been extracted

from the log files. These contain the times when an introduction point is

picked, when the introduction circuit is opened, and when the INTROES-

TABLISHED cell is received. If an introduction point is given up and a

new relay must be picked as replacement, this still accounts for the first

attempt to establish the introduction point. Otherwise, considered intro-

duction point establishment times would be lower than they really are.

Afterwards, simulations were performed with 10,000 runs each. In every

run, n introduction point establishments were picked at random. From

these, the three establishments with fastest introduction circuit opening

times were selected. Only those introduction points were considered to be

published in the first descriptor that were established before the stabiliza-

tion time of 30 seconds expired. The last of these establishment times was

then used as result of the simulation run. Simulations were performed for

n = 3 . . . 6.

The results of the simulations are shown in Table 6.2. The simulation

of choosing 3 out of 3 introduction points has been performed to compare

simulation results with the original data. The mean time of the simula-

tion of 15.0 seconds is quite close to the measured value of 15.6 seconds.

Service Publication 147

Table 6.2: Simulated establishment times for the first 3 out of n introduc-

tion circuits

Introduction Points Min. 1st Qu. Median Mean 3rd Qu. Max.

3 0.466 9.040 12.460 14.990 18.500 73.630

4 0.549 8.023 10.550 12.340 14.730 70.880

5 1.410 6.876 8.822 9.924 11.420 67.230

6 0.602 6.053 7.810 8.430 9.915 43.500

The mean times of choosing 3 out of 4, 5, and 6 introduction points are

12.3, 9.9, and 8.4 seconds respectively. As a result, the overall service pub-

lication time would be accelerated by 2.7, 5.1, or 6.6 seconds in the mean,

depending on n. Maximum establishment times would be reduced from

73.6 seconds to 70.1, 67.2, and 43.5 seconds respectively.

This change has been implemented and included in the Tor source

code. A hidden server starts building 5 introduction circuits and picks

only the first 3 that succeed for introduction point establishment. The

reason for starting with 5 introduction circuits is that the Tor client would

have built 2 internal circuits anyway to use them as rendezvous circuits

later on. As a result, this change improves service publication time with-

out affecting network load at all.

Change the Stabilization Time

The stabilization time of 30 seconds is another major substep that might

be improved to reduce service publication time. Stabilization time as one

of four substeps accounts for the largest share of service publication time

with a mean time of 31 seconds. The choice of 30 seconds originally

emerged from a guess of the developers. It has not been evaluated yet

whether a shorter period might also suffice to upload a stable descriptor

and make the service available more quickly. The other way round, it has

148 Performance of Pseudonymous Services

not been investigated whether a longer delay might significantly reduce

the number of necessary descriptor publications.

The measured data have been examined to derive theoretical service

publication times for stabilization times between 1 and 90 seconds. There-

fore, the logs of all previously measured runs were looked at. The intro-

duction point establishment events (log statement 7 in Figure 6.3) were

considered as events that restart the stabilization time. The first time

when the stabilization time has elapsed was considered as the theoretical

upload time of the first descriptor. This time excludes the upload time that

is required to open a circuit and send the descriptor, which is assumed to

be independent of the stabilization time.

Figure 6.6 shows theoretical mean times before uploading the first de-

scriptor for stabilization times between 1 and 90 seconds. As reference

point, the mean time before uploading the first descriptor for a stabi-

lization time of 30 seconds is 71.8 seconds. Given the 77.5 seconds ob-

served mean service publication time and subtracting mean descriptor up-

load time of 4.4 seconds and the implementation-specific deviation from

30 seconds stabilization time of 1 second, the difference between theoreti-

cal and observed service publication time is 0.3 seconds. The graph shows

that mean times are almost linear for stabilization times in the interval

from 10 to 50 seconds. Between 50 and 60 seconds there is a steep incline

before times continue increasing linearly. Dividing stabilization time in

half to 15 seconds would reduce mean time before the first descriptor

upload by 17.8 seconds, while doubling stabilization time to 60 seconds

would increase it by 43.6 seconds.

At the same time, reducing stabilization time leads to an increase in up-

loaded descriptors. Figure 6.7 visualizes the mean number of published

descriptors within the first 30 minutes. For stabilization times between

10 and 50 seconds, the mean number of uploaded descriptors grows poly-

nomially as a function of stabilization time. With a stabilization time of

30 seconds the Tor client needs to upload 1.4 descriptors in the mean,

Service Publication 149

●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0
50

10
0

15
0

Stabilization time before descriptor upload (s)

M
ea

n
tim

e
un

til
 fi

rs
t d

es
cr

ip
to

r
pu

bl
ic

at
io

n
(s

)

Figure 6.6: Theoretical mean times before first descriptor upload (circles)

as a function of stabilization time (dashed line)

while this would change to 1.5 descriptors for a stabilization time of 15

seconds; an increase by approximately 10% (before rounding). Between

50 and 60 seconds, the mean number of uploaded descriptors drops to

around 1.1 descriptors and stays almost constant for higher stabilization

times. As a result, the number of descriptor publications could be re-

duced by roughly 20% (before rounding) when increasing stabilization

time from 30 to 60 seconds.

As a result, there is a clear trade-off between the two objectives of pub-

lishing the first descriptor as quickly as possible and keeping the total

number of descriptor publications low. While saving 17.8 seconds of ser-

vice publication time when cutting down stabilization time to 15 seconds

sounds promising, an incline of descriptor publications of 10% violates

the stated policy of not increasing network load. This is why this change

has not been included in the Tor source code.

150 Performance of Pseudonymous Services

●

●

●

●

●

●
●

●
●

●
●●

0 20 40 60 80

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Stabilization time before descriptor upload (s)

M
ea

n
nu

m
be

r
of

 u
pl

oa
de

d
de

sc
rip

to
rs

Figure 6.7: Theoretical number of uploaded descriptors (circles) as a func-

tion of stabilization time with fixed lower bound of 1.0 upload (dashed

line)

6.3 Connection Establishment

The second part of measurements covers connection establishment, that

is, the time that it takes for a client to establish a connection to a hid-

den server. Quick connection establishment times with low variability are

an important requirement from a user perspective. Connection establish-

ment begins when a user requests to open a connection to a hidden service

and ends with establishment of a TCP connection between client and hid-

den server. Between these two events, multiple substeps need to be per-

formed in order to establish a connection. The client first needs to open

a directory connection and fetch a hidden service descriptor from one of

the directories. After receiving the hidden service descriptor, the client

establishes a rendezvous point and opens an introduction circuit in par-

allel. Next, the client sends an introduction request over the introduction

Connection Establishment 151

circuit that is forwarded by the introduction point to the hidden server.

The hidden server opens a circuit to the rendezvous point and sends a

rendezvous message over it that is forwarded by the rendezvous point to

the client. Finally, the client establishes an application-level stream over

the rendezvous circuit that is acknowledged by the hidden server. Upon

receiving this acknowledgement, the connection to the hidden server is

established and the client can start sending application data.

6.3.1 Measurements

The measurement setup aims at measuring overall connection establish-

ment times as well as 14 substeps. Therefore, all relevant points that are

required for establishing a connection to a hidden server were controlled

for the measurements to have access to their logfiles. These points in-

clude two Tor clients, one providing the hidden service and the other one

accessing it, and two Tor relays, one acting as introduction point and one

as rendezvous point. The source code has been modified to select the own

introduction point and rendezvous point rather than picking relays at ran-

dom. The only point that was not controlled in the setup is the directory

server. While it would also have been possible to change the source code

to force both client and hidden server to use a controlled node as directory,

the expected additional results did not justify the required effort.

The three Tor processes for hidden service, introduction and rendez-

vous point were started prior to the measurements and kept running for

the complete measurements. New clients were configured using Pup-

peTor with separate data directories and started at an interval of 25 min-

utes. Clients were allowed to download directory information and build

circuits for 75 seconds before requesting them to establish a connection

to the hidden server. Client, hidden server, and rendezvous point were

run on a virtual root server with AMD Opteron 2.0 GHz processor and

400 MB RAM guaranteed running Linux. The introduction point was run

152 Performance of Pseudonymous Services

on a distinct server with AMD Athlon 2.0 GHz processor with 1 GB RAM

running Linux. All four points used Tor version 0.2.0.7-alpha.

Measurements were conducted between April 22, 2008, 16:00 and May

13, 22:20 by Christian Wilms [82] who generously made the log files avail-

able for further analysis in this thesis. Throughout this time, 1,197 con-

nection establishment attempts were made of which 1,153 were successful

(96.3%). 44 attempts failed for different reasons and were excluded from

the statistical analysis. The own introduction point was used in 1,038

cases and the own rendezvous point in 1,070 cases.

Table 6.3 contains statistics of measured connection establishment

times and its substeps. The mean time for establishing a connection to

a hidden server is 33.8 seconds. While single attempts are performed in

only 3.6 seconds at the minimum, the longest successful connection es-

tablishment took 191 seconds. Figure 6.8 shows a histogram of overall

connection establishment times. One remarkable point in the histogram

is the short but steep incline of values between 60 and 80 seconds. A dis-

tribution fit has shown that connection establishment times can best be

described with a Frechét distribution, which is an extreme value distribu-

tion, for values less than 60 seconds and an exponential distribution for

times greater than 60 seconds [41].

The total connection establishment times are useful to obtain an idea

of the overall performance. But in order to understand the reasons for

high delay and to suggest improvements, a more in-depth analysis of sub-

steps is inevitable. Figure 6.9 visualizes relations of measured substeps

for connection establishment. The numbers 10 to 29 constitute events in

the log files on either client, rendezvous point, introduction point, or hid-

den server. The corresponding log messages of a successful connection

establishment can be found in Figures 6.10 to 6.13. The labeled arrows

denote measured substeps. Table 6.3 contains statistics of the measured

substeps. Figure 6.14 shows histograms of the measured times. These

substeps are discussed in more detail in the following.

Connection Establishment 153

Table 6.3: Measured connection establishment times (s)

Min. 1st Qu. Median Mean 3rd Qu. Max.

Open directory conn. 0.042 0.564 1.516 5.639 4.033 111.600

Fetch descriptor 0.061 0.558 1.431 2.521 2.738 106.900

Open rend. circuit (C) 0.000 0.000 0.001 2.322 0.001 85.880

ESTABLISHREND. 0.010 0.110 0.267 0.918 0.776 56.100

REND.ESTABLISHED 0.003 0.071 0.204 0.737 0.901 32.770

Open intro. circuit 0.035 0.625 1.763 7.058 4.300 100.900

INTRODUCE1 0.010 0.340 0.744 1.100 1.144 42.170

INTRODUCEACK 0.017 0.218 0.765 1.404 1.471 24.150

INTRODUCE2 0.013 0.236 0.570 1.401 1.154 37.260

Open rend. circuit (S) 0.095 1.741 3.132 5.703 6.310 48.530

RENDEZVOUS1 0.021 0.552 1.106 2.455 2.116 37.150

RENDEZVOUS2 0.003 0.092 0.228 0.712 0.798 26.230

BEGIN 0.193 1.316 1.980 3.411 3.108 79.040

CONNECTED 0.074 0.918 1.587 3.019 2.965 57.320

Total 3.561 14.920 23.740 33.810 41.660 191.200

The first step in establishing a connection to a previously unknown hid-

den service is to open a directory connection to one of the three directory

servers.32 If a general-purpose circuit is already available, the client canni-

balizes it and extends it by one hop to the directory server. Otherwise, the

client builds a new 3-hop circuit ending at the directory server. After the

circuit is open, the client sends a BEGINDIR cell to initialize a directory

connection. The directory replies with a CONNECTED cell. The mean time

of these three steps is 5.6 seconds. This time is biased to a certain extent

by a small number of extreme values. There is a fixed timeout of 120 sec-

onds for opening the directory connection and fetching the descriptor in

the next step. The timeout leads to a maximum observed value of 112 sec-

32 The measurements have been performed with the server-based directory design, not with

the distributed design proposed in this thesis.

154 Performance of Pseudonymous Services

Time (s)

F
re

qu
en

cy

0 50 100 150

0
20

40
60

80

Figure 6.8: Total connection establishment time

onds for opening the directory connection. 16 of the 44 failed connection

attempts were aborted due to the expiration of this timeout which makes

this step the number one reason of failures.

In the next step, the client attempts to fetch the hidden service descriptor

from the directory server. This step consists of sending a descriptor fetch

message via the directory connection and waiting for the descriptor con-

tained in the reply message. The measured time is the round-trip time

of both messages, because the directory servers were not part of the mea-

surement setup. This operation takes 2.5 seconds in the mean with only a

few extreme values. The same 120-seconds timeout as for opening the di-

rectory connection leads to a maximum observed value of 107 seconds for

fetching the descriptor. In 10 cases the connection establishment process

failed, because the descriptor did not arrive before the timeout expired.

4 connection establishment attempts failed, because the descriptor could

not be found on the directory server. The reason for this is most likely a

Connection Establishment 155

Client Service

Directory Node

Rendezvous Point
Introduction Point10

11

12

13

15

16

18

19

22

23

24

25

26

28

29

Open directory connection

Fetch descriptor

O
p
en

in
tr

o
du

ct
io

n
ci

rc
ui

t

Open rendezvous circuit (C)

EstablishRendezvous

RendezvousEstablished

Int
rod

uce
1

Intro
duce

Ack
Introduce2

Open rendezvous circuit (S)

Rendezvous1

Rendezvous2

Begin

Connected

T
ot

al

Figure 6.9: Measured steps in connection establishment process

restart of the requested directory server in the hour before the request.

After receiving a valid service descriptor and learning about at least one

introduction point the client can take the next steps. These consist of es-

tablishing a rendezvous point and opening a circuit to one of the introduc-

tion points in parallel. The client starts with opening a rendezvous circuit.

In the vast majority of cases the client cannibalizes an existing circuit and

uses the last node in the circuit as rendezvous point. In these cases the

operation returns immediately. The mean time for opening a rendezvous

circuit is 2.3 seconds which is greatly influenced by the peak shortly after

60 seconds. 1,112 of 1,154 values are below 60 seconds with their max-

156 Performance of Pseudonymous Services

10. Apr 23 20:21:24.456 [info]

connection_ap_handshake_rewrite_and_attach(): Got a hidden service

request for ID ’xpw5lcjsag7u6l6w’

11. Apr 23 20:21:36.393 [info]

connection_edge_process_relay_cell_not_open(): ’connected’ received

after 1 seconds.

12. Apr 23 20:21:37.905 [info] connection_dir_client_reached_eof():

Received rendezvous descriptor (size 402, status 200 ("OK"))

13. Apr 23 20:21:37.906 [info] rend_client_rendcirc_has_opened():

rendcirc is open

14. Apr 23 20:21:37.906 [info] rend_client_send_establish_rendezvous():

Sending an ESTABLISH_RENDEZVOUS cell

15. Apr 23 20:21:38.240 [info] rend_client_introcirc_has_opened():

introcirc is open

16. Apr 23 20:21:38.811 [info] rend_client_rendezvous_acked(): Got

rendezvous ack. This circuit is now ready for rendezvous.

17. Apr 23 20:21:39.078 [info] rend_client_send_introduction(): Sending

an INTRODUCE1 cell

18. Apr 23 20:21:39.469 [info] rend_client_introduction_acked():

Received ack. Telling rend circ...

19. Apr 23 20:21:46.791 [info] rend_client_receive_rendezvous(): Got

RENDEZVOUS2 cell from hidden service.

20. Apr 23 20:21:47.097 [info] connection_ap_handshake_attach_circuit():

rend joined circ 1353 already here. attaching. (stream 10 sec old)

21. Apr 23 20:21:47.098 [info] connection_ap_handshake_send_begin():

Address/port sent, ap socket 18, n_circ_id 1353

22. Apr 23 20:21:52.801 [info]

connection_edge_process_relay_cell_not_open(): ’connected’ received

after 5 seconds.

Figure 6.10: Log statements of connection establishment as observed on

a client

Connection Establishment 157

23. Apr 23 20:21:38.494 [info] Established rendezvous point on circuit

3307 for cookie 4815A117

24. Apr 23 20:21:45.680 [info] Completing rendezvous: circuit 26085

joins circuit 3307 (cookie 4815A117)

Figure 6.11: Log statements of connection establishment as observed on

a rendezvous point

25. Apr 23 20:21:39.305 [info] Received an INTRODUCE1 request on circuit

49661

Figure 6.12: Log statements of connection establishment as observed on

an introduction point

26. Apr 23 20:21:39.857 [info] rend_service_introduce(): Received

INTRODUCE2 cell for service "xpw5lcjsag7u6l6w" on circ 64317.

27. Apr 23 20:21:39.873 [info] rend_service_introduce(): Accepted intro;

launching circuit to "$094C0337F5A03A9D62B35358DDD9F3A8E48FF23B"

(cookie 4815A117) for service xpw5lcjsag7u6l6w.

28. Apr 23 20:21:44.042 [info] rend_service_rendezvous_has_opened():

Done building circuit 64529 to rendezvous with cookie 4815A117 for

service xpw5lcjsag7u6l6w

29. Apr 23 20:21:49.458 [info] connection_exit_begin_conn(): begin is

for rendezvous. configuring stream.

Figure 6.13: Log statements of connection establishment as observed on

a hidden server

158 Performance of Pseudonymous Services

Open directory connection

0 20 40 60 80 100

Fetch descriptor

0 20 40 60 80 100

Open rendezvous circuit (C)

0 20 40 60 80

Send EstablishRendezvous cell

0 10 20 30 40 50

Send RendezvousEstablished cell

0 5 10 15 20 25 30

Open introduction circuit

0 20 40 60 80 100

Figure 6.14: Components of connection establishment (x axes contain

time (s), y axes frequency)

Connection Establishment 159

Send Introduce1 cell

0 10 20 30 40

Send Introduce2 cell

0 10 20 30

Send IntroduceAck cell

0 5 10 15 20 25

Open rendezvous circuit (S)

0 10 20 30 40 50

Send Rendezvous1 cell

0 10 20 30

Send Rendezvous2 cell

0 5 10 15 20 25

Figure 6.14 – continued from previous page

160 Performance of Pseudonymous Services

Send Begin cell

0 20 40 60 80

Send Connected cell

0 10 20 30 40 50

Figure 6.14 – continued from previous page

imum value at 1.5 seconds. The reason is a timeout of 60 seconds that

starts after receiving the hidden service descriptor. If the connection to the

hidden server has not been established within this time, a second attempt

is made which includes establishing a new rendezvous point. Hence, the

42 extreme values can be explained as being the times between starting

the first attempt and succeeding in the second attempt.

In the next step the designated rendezvous point needs to learn about

its acting as rendezvous point and therefore has to be told the rendezvous

cookie. The client sends an ESTABLISHRENDEZVOUS cell over the rendez-

vous circuit which is then answered by the rendezvous point with a REN-

DEZVOUSESTABLISHED cell. The mean transfer times of these cells are

0.9 and 0.7 seconds, respectively. There are only very few extreme values

in both transfer times. In cases when the client made a second connection

attempt, only the second transfer time of these cells has been included in

the statistics, so that there are no values greater than 60 seconds.

In parallel to establishing the rendezvous point, the client tries to open a

circuit to one of the introduction points. While pre-built circuits can be can-

nibalized for this purpose, too, they need to be extended by an additional

hop to the introduction point. If no circuit is available for cannibalization,

a new 3-hop circuit is built ending at the introduction point. Opening an

introduction circuit takes 7.1 seconds in the mean which is again biased

Connection Establishment 161

by the values greater than 60 seconds. The 60-seconds timeout leads to

giving up circuit establishment to the introduction point and starting all

over again. This situation occurred in 63 of 1,153 connection attempts.

After the rendezvous point is established and the introduction circuit

is open, the client sends an INTRODUCE1 cell along the introduction cir-

cuit containing the address of the rendezvous point and the rendezvous

cookie. Upon receipt the introduction point forwards the INTRODUCE2 part

of it to the service and replies with an INTRODUCEACK cell to the client.

The mean values for these steps are 1.1, 1.4, and 1.4 seconds, respectively.

As with transfer times of ESTABLISHRENDEZVOUS and RENDEZVOUSES-

TABLISHED cells, there are only very few extreme values.

The hidden server, upon receiving an INTRODUCE2 cell, opens a ren-

dezvous circuit to the rendezvous point specified in the INTRODUCE2 cell.

In most cases the service can cannibalize an existing circuit and extend it

by one hop. Otherwise, the service builds a new 3-hop circuit ending at

the rendezvous point. The mean time to open the rendezvous circuit is

5.7 seconds. The distribution of values is comparable to opening the intro-

duction circuit on client side for values below 60 seconds. The difference

between these two steps is that failing rendezvous circuits are not retried

by the hidden service. In case of a failure the client retries the request.

After the rendezvous circuit is open, the hidden server sends a RENDEZ-

VOUS1 cell over the circuit to the rendezvous point. It contains the ren-

dezvous cookie which is validated by the rendezvous point. If it matches

with the cookie of a previously received ESTABLISHRENDEZVOUS cell, the

rendezvous point strips off the rendezvous cookie and forwards the cell as

RENDEZVOUS2 cell to the client. The mean transfer times of RENDEZ-

VOUS1 and RENDEZVOUS2 cells are 2.5 and 0.7 seconds.

When receiving the RENDEZVOUS2 cell, the client knows that the ren-

dezvous circuit has been extended to the hidden server. However, this

does not complete connection establishment yet. The client still needs to

send a BEGIN cell over the rendezvous circuit to open a TCP stream for the

162 Performance of Pseudonymous Services

transported application protocol. Upon receiving a BEGIN cell, the service

opens a connection to the actual service and responds to the client with a

CONNECTED cell. The receipt of the latter finally concludes the connection

establishment process. Sending the two cells takes 3.4 and 3.0 seconds,

respectively. Later analysis has revealed that sending the BEGIN cell is ar-

tificially delayed by 0.5 seconds on average due to a bug, so that the means

of both transfer times in a fixed version would be roughly the same.

The steps after sending the INTRODUCE1 cell and before receiving the

RENDEZVOUS2 cell happen invisibly for the client. The client relies on

a request timeout of 60 seconds that starts with receiving the descriptor

to detect failures. If this timeout expires before a RENDEZVOUS2 cell is

received, the request is given up and a second attempt is made. In total,

a client makes two requests before assuming that a hidden service is un-

available. The remaining 14 failed connection attempts all were delayed

or failed at either of these steps. In a few cases the RENDEZVOUS1 arrived

at the rendezvous point which, however, could not forward it, because the

client had already closed the circuit.

6.3.2 Improvements

The analysis of substeps has revealed that the primary bottlenecks of con-

nection establishment are those steps in which circuits need to be opened

to previously unknown nodes. These critical steps include opening a di-

rectory connection and an introduction circuit on client side as well as a

rendezvous circuit on server side. These steps take 5.6, 7.1, and 5.7 sec-

onds in the mean, respectively. In most cases these steps consist of can-

nibalizing a previously built 3-hop circuit and extending it by a fourth hop

to a directory node, introduction point, or rendezvous point. The extend

step exhibits huge variance and failure rate which leads to necessary re-

tries. All three steps are on the critical path of connection establishment,

so that a way to reduce these bottlenecks would most likely lead to an im-

Connection Establishment 163

provement of connection establishment times. Possible solutions could

be eliminating circuit opening steps, reducing timeouts to detect failures

earlier, or starting multiple attempts in parallel.

The second category of substeps that account for large delays are send-

ing cells over circuits with many hops. Both BEGIN and CONNECTED cells

are transported over a 6-hop circuit between client and server. The mean

times for these steps are 3.4 and 3.0 seconds. While it seems logical that a

cell transfer takes more time the longer the circuit is, it might be useful to

think about combining cells to eliminate cell transfers on the critical path

of connection establishment.

Again, it is important that improvements do not increase the general

load on the network excessively. Further, changes need to retain the same

security properties as the original protocol.

Reduce Timeout and Parallelize Directory Connection and Descriptor

Fetch

The clients in the performed measurements request the hidden service

descriptor from the centralized hidden service directory. They make a sin-

gle attempt by sending their request to one of the three directory servers

at random. If the request fails or times out, it is not repeated at the other

directory servers. The result is that 26 out of 44 failures in the measure-

ments do not succeed within the timeout of 120 seconds. In 4 cases the

hidden service descriptor is not found on the requested directory server.

The decentralized hidden service directory as proposed in this thesis

changes this to a certain extent. Clients retry their fetch requests at all

directory nodes that are responsible for storing a replica of the hidden

service descriptor. These retries are required to overcome node failures

and single corrupt directory nodes. While retries do not prevent single

requests from timing out, they reduce failure cases due to not finding a

descriptor.

164 Performance of Pseudonymous Services

The next step could be to introduce a timeout for descriptor fetches, so

that failures are detected more quickly than in the current 120 seconds.

Another approach would be fetching descriptors in parallel from two or

more directory nodes. Parallel fetches could also be delayed by a certain

time to give the first fetch request the chance to succeed before generating

additional network load by making a second attempt. An advantage of the

decentralized directory is the fact that the additional requests would be

distributed to all directory nodes, not only to three servers.

Alas, the effects of timeouts and parallelization cannot be quantified

with the measured data. The three hidden service directory servers have

different characteristics as compared to the nodes in the distributed direc-

tory. It is expected that a higher percentage of directory requests fails in

the distributed directory which is then compensated by retried requests.

While it can be assumed that timeouts and parallelization reduce descrip-

tor fetch times, an evaluation is up to future work.

Reduce Timeout and Parallelize Opening Client-Side Introduction Circuit

The same improvements as for directory connections can also be dis-

cussed for the opening time of client-side introduction circuits. As op-

posed to directory fetches, clients utilize a timeout of 60 seconds for open-

ing an introduction point before making a second attempt. However, the

probability of an attempt to succeed after 30 seconds decreases signifi-

cantly. Figure 6.15 visualizes the fraction of successfully extended intro-

duction circuits for given times. In this graph, only the 93.8% of attempts

that succeed in the first try are shown; attempts that succeed in the second

try or fail are excluded. Merely 12 of 1,093 introduction circuits have been

opened after 30 seconds, which is a fraction of only 1.1%.

The effect of reduced timeouts for opening introduction circuits on

overall connection establishment has been simulated using the previously

measured data. Table 6.4 shows simulated introduction circuit opening

Connection Establishment 165

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (s)

F
ra

ct
io

n
of

 o
pe

ne
d

in
tr

od
uc

tio
n

ci
rc

ui
ts

●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●● ●● ●● ● ● ●● ●● ●●

Figure 6.15: Empirical cumulative distribution function of opening client-

side introduction circuits

times for various timeouts between 5 and 60 seconds. The overall timeout

remains 120 seconds as in the original protocol, but with shorter timeouts

more than 2 attempts can be made, and retries can be started earlier. The

mean time of using a timeout of 60 seconds is 8.5 seconds and by that

1.5 seconds higher than the originally measured mean time of 7.1 sec-

onds. One possible explanation is that the simulation also includes val-

ues close to 120 seconds which affect the mean value. Such values have

been excluded from the original measurements with only successful con-

nection establishment attempts; if opening the introduction circuit took

most of the 120 seconds, the subsequent steps were not likely to succeed

within the remaining time. The mean times for timeouts of 45, 30, or 15

seconds are 7.9, 6.5, and 4.9 seconds. Further, the maximum times are

reduced from 120 seconds to 116, 112, and 88 seconds. This reduction

also increases the probability that connection establishment succeeds in

later steps before the 120-seconds timeout runs out.

166 Performance of Pseudonymous Services

Table 6.4: Simulated introduction circuit opening times (s) for reduced

timeouts (s)

Timeout Min. 1st Qu. Median Mean 3rd Qu. Max.

5 0.035 0.699 1.951 3.393 5.222 42.210

10 0.035 0.697 1.968 4.182 5.486 70.900

15 0.035 0.705 1.962 4.885 5.532 88.410

20 0.035 0.713 1.979 5.459 5.486 102.000

25 0.035 0.689 1.951 5.938 5.479 117.900

30 0.035 0.699 1.968 6.465 5.499 112.400

45 0.035 0.713 1.987 7.895 5.499 115.800

60 0.035 0.692 1.942 8.520 5.379 119.800

At the same time, smaller timeouts might lead to discarding circuits

that would have been completed with a higher timeout. Table 6.5 shows

the number of attempts to open introduction circuits for different time-

outs. The mean number of circuits that are necessary to contact an intro-

duction point are 1.077 for the current timeout of 60 seconds and 1.095,

1.107, and 1.152 for timeouts of 45, 30, and 15 seconds. The result is an

increase of circuit establishments of 1.7%, 2.8%, or 7.0% for these three

reduced timeouts.

Another approach to accelerate opening of introduction circuits is to

open a second circuit in parallel to a different introduction point. Such a

parallel request can be done after a certain delay, so that the network load

is not doubled or multiplied. If the first circuit does not succeed within

a given time, it is not given up, but another attempt is started in parallel.

Whichever circuit extension succeeds first is used for introduction, while

the other circuits are torn down. The difference to simply reducing the

timeout is that circuits might still succeed when other attempts are made

in parallel.

Table 6.6 shows simulated introduction circuit opening times for paral-

Connection Establishment 167

Table 6.5: Simulated introduction circuit opening attempts for reduced

timeouts (s)

Timeout Min. 1st Qu. Median Mean 3rd Qu. Max.

5 1.000 1.000 1.000 1.372 2.000 9.000

10 1.000 1.000 1.000 1.198 1.000 8.000

15 1.000 1.000 1.000 1.152 1.000 6.000

20 1.000 1.000 1.000 1.128 1.000 6.000

25 1.000 1.000 1.000 1.112 1.000 5.000

30 1.000 1.000 1.000 1.107 1.000 4.000

45 1.000 1.000 1.000 1.095 1.000 3.000

60 1.000 1.000 1.000 1.077 1.000 2.000

lel attempts with delays from 5 to 60 seconds. The mean values for delays

of 45, 30, and 15 seconds are 7.8, 6.5, and 4.8 seconds. These values are

slightly lower than the times for reduced timeouts, which are 7.9, 6.5,

and 4.9 seconds, but not significantly. The maximum times for a delay

of 15 seconds is 76.6, and by that 11.8 seconds lower than with a reduced

timeout of 15 seconds.

Table 6.7 shows the number of attempts that are made in the simulated

cases with different delays. Mean values are 1.095, 1.105, and 1.146 for de-

lays of 45, 30, and 15 seconds. Again, these mean values are only slightly

lower than those for reduced timeouts of 45, 30, and 15 seconds.

The two approaches to reduce timeouts and to perform further attempts

in parallel after a certain delay can be combined with the delay being lower

than the timeout. The result would be that a certain number of parallel

attempts would be performed in quick succession while limiting the num-

ber of parallel attempts at a time. Possible parameters could be a delay of

15 seconds for parallel attempts and a timeout of 30 seconds.

Lenhard [35] has performed measurements of connection establish-

ment to hidden services in low-bandwidth environments. In those mea-

168 Performance of Pseudonymous Services

Table 6.6: Simulated introduction circuit opening times (s) for delayed

parallel circuit establishment (s)

Delay Min. 1st Qu. Median Mean 3rd Qu. Max.

5 0.035 0.713 1.991 3.110 5.174 30.380

10 0.035 0.699 1.968 4.036 5.479 50.110

15 0.035 0.692 1.968 4.780 5.491 76.640

20 0.035 0.713 1.979 5.376 5.491 82.160

25 0.035 0.683 1.962 5.922 5.486 116.400

30 0.035 0.713 1.979 6.467 5.512 114.800

45 0.035 0.713 1.968 7.839 5.486 115.400

60 0.035 0.705 1.979 8.606 5.412 119.800

Table 6.7: Simulated introduction circuit opening attempts for delayed

parallel circuit establishment (s)

Delay Min. 1st Qu. Median Mean 3rd Qu. Max.

5 1.000 1.000 1.000 1.325 2.000 7.000

10 1.000 1.000 1.000 1.185 1.000 6.000

15 1.000 1.000 1.000 1.146 1.000 6.000

20 1.000 1.000 1.000 1.124 1.000 5.000

25 1.000 1.000 1.000 1.112 1.000 5.000

30 1.000 1.000 1.000 1.105 1.000 4.000

45 1.000 1.000 1.000 1.095 1.000 3.000

60 1.000 1.000 1.000 1.078 1.000 2.000

Connection Establishment 169

surements clients were connected via cell phone or telephone networks

when connecting to a hidden service. The evaluation has revealed that the

90th percentile of introduction circuit opening times is 38.2 and 35.3 sec-

onds for cell phone and telephone network, respectively, compared to

20.4 seconds for a broadband connection. Lenhard suggests to use a time-

out of 45 for opening the client-side introduction circuit. This approach

seems to be reasonable given that users might want to access hidden ser-

vices via both broadband and low-bandwidth connections.

The changes have been implemented and included in the Tor source

code. At the time of writing, a client uses a timeout of 30 seconds instead

of 60 for opening a circuit to an introduction point and starts a second

attempt in parallel after a delay of 15 seconds. However, following the

findings by Lenhard, the 30-seconds timeout should be increased to 45

seconds. The idea is to accelerate connection establishment for clients on

fast connections while still allowing clients on slow connections to com-

plete requests within the given timeout.

The proposed optimizations apply only to opening client-side circuits

and should not be adopted to the server-side rendezvous circuit. A hidden

service might be requested by many clients at the same time. The server

should therefore not spend more resources than necessary, but rely on

clients to perform retries in time. If a hidden server would use multi-

ple circuits per client, this would also make denial-of-service attacks on

hidden servers more attractive for an adversary.

Combine Introduction and Rendezvous Circuits

The most radical design change to improve connection establishment

goes back to an idea from Øverlier and Syverson [58]. They proposed two

modified hidden service protocols that reduce the number of involved re-

lays in connection establishment. Their ideas rely on the concept of valet

nodes [57] that constitute an additional protection of introduction points,

170 Performance of Pseudonymous Services

but which are not essential for their protocol modifications. The proto-

col changes as described here are adapted to the original hidden service

protocol without the valet node concept.

The first protocol change combines a large part of the client-side intro-

duction and rendezvous circuits to a single circuit. The rendezvous point

is established on the third hop on a circuit before it is extended by a fourth

hop to the introduction point. Upon receiving an introduction request, the

hidden server opens a rendezvous circuit to the third hop of the client-side

circuit. The result is a 6-hop circuit between client and service that is used

exclusively for one client-service connection. However, this protocol still

requires three circuit extensions as the original protocol does. Therefore,

it is unlikely that the protocol improves connection establishment times.

The only effect is that the client consumes 2 circuits instead of 3 which

does not affect connection establishment times, as new circuits can be

created in the background. This first protocol change is therefore not con-

sidered in the following discussion.

The second protocol change goes a step further and combines the roles

of introduction point and rendezvous point. The hidden servers continue

to establish introduction points, and clients keep opening circuits to them

in order to establish a connection. But in contrast to the original protocol

there is no distinct rendezvous point. The same 6-hop circuit that is used

for introduction is also used for the rendezvous cells and transporting the

actual application streams. This change saves the circuit extension step to

the rendezvous point and is therefore a good candidate to reduce the delay

in connection establishment. A possible design that combines the roles of

introduction and rendezvous point in the original hidden service protocol

has been specified in the course of this thesis [42]. A pre-evaluation of

this design change performed by Wilms [82] has revealed that it reduces

connection establishment times by 8.3 seconds or 24.4% in the mean.

The downsides of the second protocol change are multiple security is-

sues that need to be solved. One of the original reasons for the separation

Connection Establishment 171

of introduction and rendezvous points was that a relay shall not be made

responsible for relaying data on behalf of a certain hidden service [11]. Re-

sponsibility changes when the same introduction point learns about the

hidden service and is later used to relay (encrypted) application data. Two

changes to the protocol can ensure that an introduction point can deny

knowledge of the hidden service identity that it works for: The first change

is using a fresh introduction key for each introduction point as proposed

in the previous chapter. As a result the introduction point does not learn

the hidden service identity automatically. But the introduction point could

still access the hidden service and find out from the content what kind of

data it transports. Therefore, as the second change, the hidden server

could include an introduction cookie in the hidden service descriptor and

require clients to include it in the encrypted INTRODUCE2 cells. This way

an introduction point cannot access the hidden service anymore to find

out what contents are served. Hence, the introduction point cannot be

made responsible for storing possibly unwanted contents. However, there

are still open questions to legal liability that require more discussion.

Another possible security problem is that an adversary who can attack

an introduction point, for example by performing a distributed denial-of-

service attack [15], does not only eliminate one access point to the hidden

service. The attack would also terminate all current client connections to

the hidden server using that introduction point.

The combination of introduction and rendezvous circuit further reduc-

es the number of unknown relays on service side for the connection be-

tween client and service from 3 to 2. With a separate rendezvous point

that is chosen by the client, the service cannibalizes an existing 3-hop cir-

cuit and extends it to the rendezvous point. In the changed design the

combined introduction and rendezvous point as the third hop of a circuit

built by the service is known to the client, and thereby to a possible ad-

versary. This change facilitates traffic analysis attacks where an adversary

attempts to trace back a circuit to its origin to locate a hidden server. On

172 Performance of Pseudonymous Services

the other hand, an extension of service-side introduction circuits from 3 to

4 might reduce the performance improvement that was gained with this

design change.

Combine Introduction with Opening Application-Level Stream

The last proposed design change addresses the BEGIN and CONNECTED

cells that need to be sent over the 6-hop circuit between client and hidden

server. These two cells are required to attach an application-level stream to

the circuit, so that application data can be sent and received. However, it

is the main purpose of building a circuit between client and hidden server

to attach at least one application-level stream to it. The idea is to drop

necessity of sending these two cells and integrate their contents in the IN-

TRODUCE2 and RENDEZVOUS2 cells. The hidden server could cache the

BEGIN cell that is part of the INTRODUCE2 cell and use it upon receiv-

ing the first data packet from the client. The client would conclude from

the CONNECTED cell that is included in the RENDEZVOUS2 cell that the

stream is open and start sending application data to the hidden server.

This design change would save 3.4− 0.5 + 3.0 = 5.9 seconds in the mean

(transmission time of the BEGIN cell, corrected by the bug that caused a

delay of 0.5 seconds, plus transmission time of the CONNECTED cell). An

evaluation of this design change is up to future work.

6.4 Conclusion

In this chapter a setup has been proposed to measure performance of op-

erations in the Tor network with special focus on hidden services. The

basic approach is to run a few Tor nodes as part of the public Tor net-

work, perform the desired operations, and evaluate the resulting log files.

In this regard, the Java API PuppeTor has been presented as a tool for

automatically configuring and executing Tor processes.

Conclusion 173

Two operations of Tor hidden services have been analyzed in detail,

namely making a hidden service available in the network and establishing

a connection to it. The measurements have shown that service publica-

tion takes 77.5 seconds in the mean. The main reason is a fixed stabi-

lization time of 30 seconds that has the purpose of reducing the number

of descriptor uploads whenever the set of introduction points changes.

The next cause is the time for downloading directory information which

takes 26.4 seconds on average. Establishing introduction points takes

15.6 seconds in the mean. Improvements have been suggested to accel-

erate the establishment of introduction points and the stabilization time.

The changes to introduction point establishment have been implemented

and included in the Tor source code.

Further, the process of establishing a connection to a hidden server has

been analyzed in more detail. The overall process takes 33.8 seconds in

the mean. The main bottleneck in this process is opening circuits to previ-

ously unknown relays. In total there are three substeps which are affected

by this problem, two of them on client side and one on hidden server side.

Improvements have been proposed for the two client-side steps of open-

ing circuits to directory nodes and introduction points. Further, two major

changes to the hidden service protocol have been described, one of them

combining introduction and rendezvous point and the other one combin-

ing the introduction process with opening the first application stream.

The improvements to opening circuits to introduction points on client

side have been implemented and added to the Tor source code.

The major causes of bad performance of Tor hidden services have been

identified and some of them enhanced. Some performance bottlenecks

are inherited from the nature of multi-hop routing in anonymous com-

munication networks. In these cases hidden services would benefit from

improvements to the circuit-building process. Although the focus of these

measurements is on Tor hidden services, it can be expected that similar

174 Performance of Pseudonymous Services

designs would have similar performance problems and should therefore

take the results of this analysis into account.

7 Related Work

Up to this point, the description comprised background work and the con-

tribution of this thesis. The work presented in the background chapters

was selected in order to provide the necessary details to understand the

contribution chapters. In addition to the background work there is more

work that is related to the contribution but which is not necessarily re-

quired for understanding. Some of this work has been mentioned briefly

in the contribution chapters. This related work shall be described in this

chapter to complete the picture of the state of the art of research on pseu-

donymous services, especially Tor hidden services. Where applicable, the

presented related work is compared with the contribution of this thesis.

7.1 Private Hidden Services

Øverlier and Syverson [57] propose an extension of Tor hidden service de-

scriptors to support private hidden services which is probably the closest

related work to this thesis. By coincidence, their work has been devel-

oped almost at the same time as a similar approach by the author of this

thesis [39]. The latter has been published only two months prior to the

work of Øverlier and Syverson at a non-related conference. Both develop-

ments are therefore considered as independent. The fact that two simi-

lar approaches on providing private hidden services have been developed

roughly at the same time underlines the importance of the problem.

Øverlier and Syverson propose the extension of Tor hidden service de-

scriptors to so-called contact information tickets. These tickets have two

important security properties: Only those clients which have been told

176 Related Work

the onion address of a hidden service can locate the tickets and under-

stand the contained list of introduction points. Furthermore, if required,

the hidden server can issue tickets for specific clients only and exchange a

secret cookie with them to locate the ticket and understand its content. If

required, ticket identifiers can change periodically in order to hide when

the service was offered for the first time. These properties are achieved by

using the service descriptor index hash(address +′ 1′ + cookie + date)

for storing and locating tickets and hash(address +′ 2′ + cookie + date)

for encrypting its content. Without knowing the input to these hash func-

tions, one cannot generate current or future identifiers or encryption keys.

In order to verify updated tickets at the directory, the authors propose to

use a reverse hash chain scheme. The initial publication of a ticket is ac-

companied by an iterated hash value vn = hashn(v) with v = address +′

1′ + cookie + date. Subsequent updates k = n − 1 . . . 1 contain the pre-

decessor in the hash chain of the last publication vk = hash(vk−1) with

v1 = v. This scheme ensures that only the hidden server is able to up-

date its ticket at the directory servers. The authors briefly discuss to store

tickets in a distributed hash table instead of the directory servers.

The idea to encrypt contact information tickets bears an important prob-

lem that is mentioned but not solved by the authors: Although the direc-

tory servers can detect false updates using the reverse hash chain scheme,

they cannot detect false initial publications. An adversary that learns about

a valid lookup identifier could easily store a false descriptor with own pro-

tection against false updates. Even though clients would not accept this

descriptor, the hidden service would be unavailable for them. Such a sit-

uation can occur when a hidden service is unavailable for a certain time

and the lease for a previously stored descriptor expires. In that case a di-

rectory server cannot verify future descriptors anymore and has to believe

that the false descriptor is legitimately stored under the given identifier.

(The other way round, if directory servers would store descriptors or iter-

ated hash values for an unlimited time, another adversary could mount an

Locating Hidden Servers 177

attack on the directory servers by publishing large numbers of useless de-

scriptors.) This situation could also occur when an adversary pre-occupies

the slots for identifiers with date components in the future. The approach

that was taken in this thesis is to leave some parts of the descriptor con-

tent unencrypted, so that directory servers can verify that descriptors have

been created by the holder of the claimed hidden service identity. The

drawback, however, is that this makes descriptors linkable to a certain ex-

tent. A solution that provides confidentiality and authentication is left to

future work.

7.2 Locating Hidden Servers

The primary security property that hidden services provide is to hide the

location of the hidden servers. An adversary shall not be able to link the

identity of a hidden service to the location of the server that provides the

hidden service. Consequently, most proposed attacks on hidden services

aim at locating hidden servers. These attacks include a variation of the

predecessor attack [83] and exploit the fact that Tor hidden servers build

circuits to rendezvous points for all connection requests. These attacks

can be accelerated by manipulating the path selection process of Tor. Fur-

ther, Murdoch [51] presents a way to locate hidden servers by their clock

skew. These attacks and related approaches for countermeasures are dis-

cussed in the following.

Predecessor Attack. The predecessor attack has first been described for

the Crowds system by Reiter and Rubin [68]. Later, Syverson and oth-

ers [77] examined a related attack that worked in Onion Routing systems.

Wright and others described the predecessor attack for various anony-

mous communication systems in [83] and have further formalized it in

[85]. Even though Tor hidden services had not been deployed at this time,

the attack on the original Onion Routing design [25] has similar properties

178 Related Work

as a predecessor attack on Tor.

The predecessor attack exploits the fact that the initiator of a connection

selects a new path through the network in regular intervals. An adversary

that controls a limited number of nodes in the network has a certain prob-

ability that one or more of her nodes are selected in some of these paths.

The goal of the adversary is to be selected at the first and last position of a

path in order to link the initiator with the responder of a connection. The

adversary records the predecessors of the first controlled node in a path.

Whichever predecessor is observed most often is most likely the initiator

of the connection. For multiple observations, this probability can only

increase over time.

Wright and others propose a defense for the predecessor attack by re-

moving randomness from part of the node selection process [84]. They

introduce so-called helper nodes that are fixed at certain positions for all

selected paths. There can be fixed helper nodes for the first position, for

the last position, or for both first and last positions. The rationale is that

if either or even both positions are occupied by helper nodes, the adver-

sary cannot succeed with the predecessor attack. This defense is limited

by the fact that an initiator could select a node controlled by the adver-

sary as helper node. This would defeat the protection and even facilitate

the attack. However, the probability of an initiator picking a bad node

as helper node is fixed while the probability of a successful predecessor

attack increases over time.

Øverlier and Syverson [56] applied the predecessor attack to Tor hid-

den services. This attack does not even require to control two relays in

a circuit, but only one. The authors exploit the fact that a hidden service

needs to build new circuits to the rendezvous points that are selected by

clients that wish to contact the hidden service. For every circuit the hid-

den server selects three relays at random. The goal of the adversary is to

be picked as first relay in such a circuit. The authors further make use

of the fact that Tor selects relays for circuit creation based on their self-

Locating Hidden Servers 179

advertised bandwidth capacity and uptime. They changed the source code

to have their relay advertise far more bandwidth than it really has in order

to improve the probability of being selected by the hidden server. There

is no need to control the last relay in this attack, because the adversary

also runs the client which is able to detect traffic patterns in the connec-

tion to the hidden service. Traffic analysis is facilitated by the fact that

the authors reduced the circuit length to the rendezvous point from 3 to

1 by changing the source code. As a result, there are four relays between

hidden service and client of which the rendezvous point is selected by the

adversary and the relay next to the client is controlled by the adversary,

too, if the attack succeeds. In a variation of the attack the authors further

control the rendezvous point. This variation allows the adversary to deter-

mine the position of her controlled relay in the path more quickly. As a

countermeasure to their attack, the authors propose to adopt the concept

of helper nodes, which are called entry guards in Tor. Entry guards are

selected once during the first startup of a Tor process and are fixed for all

later path selections.

This attack shows a major problem with Tor hidden services: A hidden

server is forced to create new circuits to rendezvous points in order to an-

swer client requests. Although the hidden server can select the relays for

these circuits itself, this can be exploited by an adversary. Entry guards are

an effective countermeasure against this threat. In addition to that, hid-

den services that perform client authorization as described in this thesis

are protected against this attack as well.

Manipulation of Path Selection Process. Another problem which facili-

tates attacks on the location of hidden services is the fact that an adversary

can advertise relays with false bandwidth capacities and uptimes. By doing

so, the attacker influences the path selection process of victims, making it

more likely that they pick relays which are controlled by the adversary.

When creating a new circuit, the Tor clients randomly select a series

180 Related Work

of relays from the network status. The way how relays are selected is re-

ferred to as the path selection algorithm. In an early deployment state of

the Tor network, relays were selected with uniform probability in order

to achieve maximum anonymity. With the increase of relays run by vol-

unteers this algorithm had to be changed, because the relays had very

different bandwidth and uptime properties. A uniform selection leads

to performance bottlenecks, as the relays with small resources have been

overloaded soon while the resources of others were not fully used. As a

solution, the path selection algorithm was changed so that clients weight

relays by their available bandwidth that is listed in the network status.

Øverlier and Syverson [56] have first exploited the fact that available

bandwidth is self-advertised by the relays. They changed the source code,

so that their relay advertised a much higher bandwidth and uptime than

it really had in order to be selected more often by clients. Bauer and oth-

ers [2] also make use of this vulnerability in order to perform the pre-

decessor attack in the Tor network for non-hidden-service connections.

They further reduce the necessary resources of an adversary by perform-

ing traffic analysis only based on circuit establishment messages. In cases

when circuit establishment messages reveal that an attack cannot be suc-

cessful, they abort the establishment process and force the victim to build

a new circuit, possibly one that can be attacked successfully. They find

from practical evaluations in a private Tor network that in a network of 60

honest relays and 6 relays controlled by an adversary, 46% of all circuits

could be compromised. However, this excludes the use of entry guards.

Borisov and others [4] quantify the loss of anonymity caused by compro-

mised relays that selectively disrupt circuits which an adversary cannot

compromise.

Bauer and others [2] propose a few countermeasures against adversaries

lying about their resources. Directory servers could check uptime by peri-

odically sending a heartbeat message to relays and put a cap on the maxi-

mum uptime that they believe in. Further, directory servers should verify

Locating Hidden Servers 181

bandwidth claims by periodically sending probes and actively measure the

bandwidth. The authors further suggest that the maximum number of re-

lays that may be run on a single IP address should be limited to prevent

Sybil attacks [13]. Snader and Borisov [74] propose improvements to mea-

suring available bandwidth of Tor relays and to select paths accordingly.

They state that bandwidth should be measured by each relay keeping track

of the peak bandwidth that it has seen for directly connected relays. In

contrast to active measurements, this does not put an extra load on the

network for probing.

Murdoch and Watson [53] simulate the consequences of different path

selection algorithms on security and performance of anonymous commu-

nication systems like Tor. They discuss an adversary who has access to

a botnet and therefore controls a large number of IP addresses with each

of them having only small bandwidth. They come to the conclusion that

the bandwidth-weighted path selection algorithm in Tor exhibits both best

performance and best security properties against a botnet-based attack.

The authors’ conclusion makes clear how difficult it is to design a path

selection algorithm that gives sufficient protection against different kinds

of adversaries.

Clock-Skew Attack on Tor Hidden Services. Murdoch [51, 52] proposed

another attack to reveal the location of a hidden server that is unrelated

to the predecessor attack. This attack relies on the fact that the skew of

computer clocks changes with varying CPU temperatures. The author de-

scribes an attack in which an adversary influences CPU temperature of a

hidden server by putting high load on them for a certain period of time.

High load forces the server to perform many cryptographic operations

which in turn increase CPU temperature. In periods when no requests

are sent, the CPU cools down again. The result is a recognizable pattern in

clock skew that can be observed by an adversary. Murdoch assumes that

the adversary can establish direct TCP connections to candidate servers

182 Related Work

who might provide the hidden service. The adversary then can compare

TCP timestamps to see whether these servers are under high load or not.

As a result, the adversary can confirm which of these servers hosts the

hidden service with a certain probability. Zander and Murdoch [86] have

improved the technique to reveal hidden services using the same attack

principle. The result is that clock-skew attacks can be performed faster

with fewer network traffic. An effective protection against this attack is

to impede direct connections to a hidden server. This protection can be

achieved by simple firewall or network address translation. Fortunately,

hidden services do not require the hidden server to accept incoming con-

nections from clients, but only to establish outgoing connections to relays.

7.3 Attacks on Availability of Hidden Services

In addition to locating attacks, hidden services also need to resist attacks

with the attempt to make them unavailable for legitimate clients. The

Tor design paper [11] states that hidden services are protected against dis-

tributed denial-of-service attacks and that attackers are forced to attack the

whole network because they do not know the IP address of the hidden

server. However, multiple attacks on the availability of hidden services

have been discussed in the literature or observed in the deployed Tor net-

work.

Attacks on Introduction Points. The first points of attack on a hidden

service are its introduction points. Øverlier and Syverson [57] propose an

extension of the Tor hidden service protocol to better protect introduction

points from distributed denial-of-service attacks. So-called valet nodes are

the central concept of their proposal: A valet node lies between the client

and an introduction point and has the purpose of hiding the location of

the introduction point from the requesting client. The client establishes

a connection to a valet node and sends to it the encrypted location of an

Attacks on Availability of Hidden Services 183

introduction point. The valet node decrypts this location and extends the

circuit to the introduction point which in turn forwards messages to the

hidden service. Therefore, the hidden server generates a fresh service key,

sends the private key to the introduction point and the public key to the

clients within hidden service descriptors. This enables a client to validate

authenticity of a node being an introduction point for a hidden service,

but without revealing the identity of that node.

Although the valet node approach constitutes an interesting extension

of Tor hidden services, it is questionable whether introduction points are

subject of attacks. If an adversary manages to shut down an introduction

point, the hidden server notices this immediately and can establish a new

introduction point on another relay. The hidden server then advertises

this change by uploading a new hidden service descriptor containing the

updated list of introduction points. Further reasons against integration

of valet nodes to the protocol changes described here are the resulting

complexity of both design and implementation and additional delay to

connection establishment.

Attacks on Hidden Servers. Distributed denial-of-service attacks on the

hidden services are a more serious threat. An adversary can exploit the

fact that a hidden server needs to create new circuits to rendezvous points

to answer requests. The adversary would send fake connection requests

to the hidden service, so that the hidden server cannot answer legitimate

requests anymore. The reason is that building circuits requires to per-

form expensive public-key cryptography which limits the number of cir-

cuits that a Tor client can build at a time. Further, the hidden server is un-

able to distinguish between legitimate and false requests. The necessary

resources of the adversary can be reduced even further by reducing circuit

length to an introduction point from 3 to 1. In October 2008, the first

denial-of-service attacks on hidden services could be observed and were

brought to attention in the official Tor IRC chatroom. There is no evi-

184 Related Work

dence that the attackers performed their attack as described here, but it is

quite likely that they did so. There are no defenses against this attack yet,

besides requiring client authorization as described in this thesis which,

however, is not applicable for all hidden services. A possible mitigation

might be to radically change the hidden service protocol by removing the

step where the hidden server builds a circuit to a rendezvous point [58];

but this would introduce a couple of new problems as discussed in Sec-

tion 6.3.2.

Attacks on Tor Relays. Fraser and others [15] discuss distributed denial-

of-service attacks on Tor relays. They exploit the fact that starting to estab-

lish a TLS connection is an expensive operation for a Tor relay, but not for

the initiator of the connection. An adversary who can send a large number

of TLS connection requests to a relay might be able to prevent legitimate

participants from establishing a connection to that relay, thus making it

unavailable. The authors propose a mitigation of such attacks by using cli-

ent puzzles. These make TLS connection establishments more expensive

for clients and the attack too expensive and therefore unattractive for an

adversary. Distributed denial-of-service attacks on relays are not directly

related to hidden services. But an adversary could attack entry guards or

introduction points that are used by a hidden service and force it to pick

new ones, possibly controlled by the adversary. Such an attack on intro-

duction points is prevented by the client authorization protocols proposed

in this thesis, because an adversary—besides an adversary being an au-

thorized client—is unable to locate the introduction points of a service.

7.4 Applications Based on Hidden Services

The main application for hidden services is assumed to be web services.

This assumption cannot be proven, though, because there is no way to

investigate the applications provided using hidden services. The only way

Applications Based on Hidden Services 185

to do so would be to illegitimately collect onion addresses and attempt to

access them, which has not been done here. A similar study has been

performed by McCoy and others [48] to observe usage of Tor by possibly

illegitimately sniffing user traffic on Tor exit nodes and observing clients

connecting to entry nodes. For hidden services such an approach raises

even more ethical questions.

A few applications other than web services have been publicly an-

nounced which are built on top of hidden services. Two of these appli-

cations are described here which are related to this thesis by illustrating

possible applications of private services.

Torchat. The torchat project33 that was started in November 2007 is a

server-less instant messaging system on top of Tor hidden services. All

users in the torchat system set up an own hidden service and are uniquely

identifiable by the onion address of their service. Users exchange onion

addresses and contact other users by establishing connections to their hid-

den services. As a result, the system hides locations of all users, keeps

their communication confidential, and hides relations between users. The

project does not, however, take special precautions to hide presence of its

users once they have disseminated their onion address. Anyone who has

learned about a user’s onion address can track that user’s presence with-

out her authorization or even knowledge. The extensions to perform client

authorization for hidden services would benefit the security properties of

torchat significantly.

OnionCat. The OnionCat project34 uses Tor hidden services to build an

IP-based virtual private network. OnionCat was first announced on the

33 See the project homepage: http://code.google.com/p/torchat/ (last checked: Dec

17, 2008)

34 See the project homepage: http://www.abenteuerland.at/onioncat/ (last checked:

Dec 17, 2008)

186 Related Work

Tor mailing list in June 2008. Participants set up a hidden service which

constitutes their identity in the virtual private network. They further set

up an OnionCat instance which acts as a transparent proxy between their

computer and the hidden services of other participants. OnionCat maps

80-bit onion addresses to 128-bit IPv6 addresses. OnionCat permits the

execution of arbitrary IP-based protocols rather than TCP-based protocols.

An OnionCat participant contacts another OnionCat user by opening a

connection to that user’s hidden service which is identified by a given

IPv6 address. All further IP communication between the two participants

is then tunneled through the hidden service connection.

The OnionCat approach is to create an anonymous global network

which permits connections between all participants. However, this raises

concern with regard to security: An adversary could easily connect to any

OnionCat user and attempt to attack the services behind it. Further, users

leak their presence when running OnionCat and have no possibility to re-

strict their hidden service and the IP-based services behind it to certain

users only. Again, utilization of hidden services with client authorization

is a possible solution to these security problems.

This chapter has presented work that is related to the contribution of

this thesis. Related work includes approaches to make Tor hidden services

more private, various attacks on either revealing the location of hidden

services or making them unavailable, and proposed applications based on

hidden services. The next chapter concludes this thesis.

8 Conclusion

The motivation for this thesis was the insight that Internet services which

are provided by private persons require specific protections which are less

important for services provided by enterprises or organizations. The first

use case for private services that came to mind were server-less instant

messaging systems. They permit users to exchange presence information

and text messages directly rather than using an allegedly trusted server.

Server-less instant messaging systems return control over presence status

information to the users and protect them from leaking this information

to untrusted entities. In addition to that, there are all kinds of services

that private persons might want to provide, including web servers, IRC

servers, file servers, and so on. Whenever a service is linked to a private

person, all information about the service can be used to reveal information

about its provider as well.

The approach to this problem was to use privacy-enhancing technolo-

gies to achieve better protection for private services. Privacy-enhancing

technologies, especially anonymous communication networks, help pro-

tect the link between content of communication and communicating en-

tities. The approach was to provide a private service as pseudonymous

service in an anonymous communication system. Such an approach pre-

vents anyone from finding the real location of the computer that provides

the service, thus not allowing untrusted entities to correlate the service to

the person who provides it. This property is a necessary prerequisite in

the attempt to hide privacy-relevant attributes such as service activity or

frequency of clients accessing the service. Further, it prevents an adver-

sary from mounting an attack on the private service in the attempt to shut

188 Conclusion

it down.

An analysis of privacy-enhancing technologies with the ability to pro-

vide pseudonymous services has revealed that none of the existing designs

meets all requirements of private services. The first requirement is low-

latency message transfer that allows for interactive protocols. The design

further needs to support long-term responder pseudonyms, that is, users

may offer a service under a persistent name which cannot be linked to

the location of the server. These requirements narrow down the selection

of existing designs to the TAZ/Rewebber system [23], the Pseudonymous

IP network [19], the Invisible Internet Project (I2P), and Tor hidden ser-

vices [11]. From these four designs, the latter three would be candidates

for interactive services, while the TAZ/Rewebber system was designed

for static content, like web pages. None of the remaining three candi-

dates supports private services by design, as services might leak activity

to unauthorized clients or become victim to distributed denial-of-service

attacks. There is no way to configure a service so that it can exclusively be

used by authorized clients. From the three systems, Tor hidden services

have turned out to be the best candidate for an extension towards private

services. Tor is actively used by hundreds of thousands users, has an ac-

tive community, and the Tor developers are open to discuss changes and

accept patches if proven to be useful.

Contribution. This thesis has presented three contributions to improve

Tor that are necessary to implement private services with hidden services

as primary building block: distributed storage for hidden service descrip-

tors, client authorization as part of the hidden service protocol, and per-

formance improvements of service publication and connection establish-

ment.

The first contribution of this thesis is a distributed storage for hidden ser-

vice descriptors. The centralized storage based on three directory servers

has turned out to lack some important requirements that are necessary

189

to support private services. First and foremost, the centralized design

does not permit private entries which can only be located and understood

by authorized clients. A distributed storage permits to store entries on

changing nodes which are only known to the server and authorized cli-

ents. Distribution helps conceal hidden service activity and usage which

would become apparent from observing requests to central directory serv-

ers. Encryption of at least part of the entries provides for an effective

defense against unauthorized access attempts on private services. A dis-

tributed approach is further more resistant against censoring particular

services which could be performed easily in a centralized setting. Finally,

a distributed design has the potential to scale to larger numbers of stored

entries and requests which is a property that a centralized approach does

not have.

The proposed distributed storage design bears some resemblance to

distributed hash tables, in particular to Chord [76]. Storage nodes are as-

signed unique identifiers in the same identifier space as hidden service

descriptors. The architecture of Tor permits to make use of a router list to

determine responsibility and routing of requests. As a result, directory

nodes are not required to exchange routing information among them-

selves. They further do not share stored entries in order to mitigate the

risk of disseminating private entries to untrusted directory nodes. Relying

on a central routing table that is only updated every three hours requires

the storage nodes to be notably stable. It further requires a certain amount

of replication to compensate node failures and untrustworthy nodes. Pos-

sible security problems have been discussed including some measures to

counter them. An evaluation of the Tor node population over a time of

almost three months has shown, among other things, that the longer a

Tor relay is connected to the network, the smaller is the probability that

it leaves within the next three hours. Especially relays with a minimum

uptime of 24 hours exhibit a very low churn rate and are therefore suit-

able for being used in a distributed storage. The evaluation further helped

190 Conclusion

deduce a useful replication rate that is necessary to guarantee a reason-

able overall availability with high probability. The proposed design has

been implemented and deployed in the public Tor network in November

2007. One year later, on November 30, 2008, 84 of 1,191 Tor relays are

running as hidden service directory nodes. This makes it presumably one

of the largest deployed directory for long-term responder pseudonyms at

the time of writing.35

The second contribution of this thesis aims at performing client autho-

rization as part of the hidden service protocol which is required for private

services for several reasons: Non-authorized clients need to be excluded

from accessing the service. While this would also have been achieved

by performing client authorization after connection establishment, such

an approach has disadvantages: Non-authorized clients would be able to

make access attempts to a service before the actual authorization takes

place. Non-authorized access attempts make the service vulnerable to all

kinds of attacks, including locating [56] and distributed denial-of-service

attacks. Another problem that arises from performing client authorization

subsequently after connection establishment is that information about

service activity and usage is disseminated to various untrusted points in

the network. These include introduction points, directory nodes, and for-

mer clients. An approach that conceals service activity and usage may

reveal as few information about the identity of a hidden service. An exten-

sion of the hidden service protocol is necessary to perform client autho-

rization as part of the connection establishment process.

This extension has been subdivided in two parts: The first protocol

extension focuses on hiding the hidden service identity from the intro-

duction points, encrypts the list of introduction points in hidden service

descriptors, and requires clients to authorize themselves when establish-

35 Possible exceptions to this are peer-to-peer-based systems, like I2P, where all users par-

ticipate in storing descriptors.

191

ing a connection to the service. This extension is a compromise between

improved security properties and efficiency in the sense of requiring no

more messages than the original protocol. The second protocol extension

uses client-specific hidden service identities, makes use of private entries

as supported by the distributed storage, encrypts the list of introduction

points in hidden service descriptors, and delays descriptor publication so

that links between client identities are hidden to a certain extent. This pro-

tocol exhibits the best security properties at the price of limited scalabil-

ity. A security analysis has evaluated both protocol extensions compared

to approaches using the unchanged hidden service protocol and subse-

quent client authorization. The necessary modifications for both proto-

col changes have been implemented and included in the development re-

leases of Tor. This pseudonymous services design is the first to support

client authorization. While client authorization may not be desired for the

majority of services, there may be future applications that can make good

use of them. Private services constitute only one example. Moreover, it

might be useful to perform client authorization even for public services as

a means to gain better protection against denial-of-service attacks.

The third contribution of this thesis focuses on performance improve-

ments of hidden service publication and connection establishment. Set-

ting up and accessing a hidden service performs considerably worse than

doing so with a directly accessible Internet service. One reason is that

relaying traffic over multiple hops adds a large amount of delay to con-

nections between client and hidden server. Furthermore, complexity of

the hidden service protocol adds more delay, as numerous steps need to

be accomplished to establish a connection to a hidden server. It can be

assumed that bad performance of hidden services deters a lot of people

from using them, because they are not willing to wait. Bad performance

reduces the anonymity set, thus decreasing the anonymity that hidden ser-

vice users get. An improvement of hidden service performance is there-

fore not just convenience but a means to enhance protection of both ser-

192 Conclusion

vice providers and clients.

Part of the work on improving hidden service performance has been the

establishment of a measurement setup. A Java-based API, PuppeTor, has

been created that can be used to configure and control Tor processes for

measurements. This API has been made freely available in 2007. Others

have started to extend this API to a distributed testing environment for Tor

processes. Measurements have revealed that establishing three introduc-

tion points that are required for a hidden service is one of the main rea-

sons for delay in service publication. An improvement has been suggested

and implemented that increases the number of concurrently established

introduction points and uses only the first three that succeed. Further,

measurements of the connection establishment process have shown that

circuit building steps are the main bottleneck in the hidden service proto-

col. Improvements have been proposed and implemented which reduce

the circuit building timeout for client-side introduction points and makes

parallel circuit building attempts after a certain delay. The main insight of

working on hidden service performance is that circuit building has a ma-

jor influence on setting up and accessing a hidden service. Even extending

circuits by a single hop can delay connection establishment significantly.

These are the first measurements of Tor hidden service performance so

far. Now that the major bottlenecks are known, more work can be done

on mitigating them. Possible examples are combining substeps in the

hidden service protocol or accelerating circuit building performance in

general. Besides of improving hidden service performance, the insights

gained here could help in designing future pseudonymous service sys-

tems as well.

All improvements to Tor hidden services presented here have been in-

spired by the idea to implement private services like the instant messaging

example as stated at the beginning of the thesis. Based on these modifi-

cations it should be straightforward to build such a system using hidden

services that perform client authorization. In addition, other private ser-

193

vices, for example, private web or file services can be realized using the im-

proved hidden services. More important, the work on Tor hidden services

is intended to advance research on pseudonymous services in general.

There have been a few designs for low-latency responder pseudonymity

in the past of which Tor hidden services are the most advanced concept

to date. One can assume that there will be further enhancements to Tor

hidden services as well as newly developed systems in the future.

A Implementation

The following tables contain all patches that have been included in the

Tor codebase in the context of this dissertation project. Size denotes

the number of lines in a patch, including added and removed lines as

well as context before and after changes. The contents of a revision N

can be downloaded from the Tor repository with the following command:

svn diff https://svn.torproject.org/svn/tor/trunk/ -r <N-1>:<N>

Table A.1: Features added to implement the distributed descriptor

storage

Date Description Revision Size

May 1, 2007 Enable directory authorities to record hidden service

usage.

r10067

r10068

r10084

812

206

30

Aug 11, 2007 Improve hidden-service-related log statements. r11074

r11077

138

13

Sep 18, 2007 Prepare cryptography functions for v2 rendezvous

descriptor format.

r11489

r11490

393

43

Sep 19, 2007 Drop unused v1 rendezvous descriptor format. r11496

r11498

492

227

Sep 21, 2007 Improve cryptography functions and add tests. r11538 433

Oct 18, 2007 Update specification in rend-spec.txt to reflect new v2

rendezvous descriptor format.

r12007

r12027

217

165

Oct 28, 2007 Support encoding and parsing of v2 rendezvous de-

scriptor format.

r12254

r12255

1113

717

Oct 29, 2007 Allow directory mirrors to act as v2 hidden service

directories and make hidden services use them.

r12272 1353

Oct 31, 2007 Generate v0 and v2 descriptors in parallel. r12299

r12300

741

139

196 Implementation

Table A.1 – continued from previous page

Date Description Revision Size

Nov 1, 2007 Make clients fetch descriptors from v2 hidden service

directories.

r12302

r12303

254

56

Nov 8, 2007 Perform cleanups as preparation for 0.2.0.10-alpha

release.

r12319

r12361

r12388

r12431

358

620

215

28

Dec 21, 2007 Perform various cleanups, refactorings, and docu-

mentations as preparation for 0.2.0.13-alpha release.

r12527

r12528

r12603

r12604

r12607

r12608

r12609

r12715

r12825

r12826

r12841

r12842

r12900

r12901

45

39

53

22

802

157

26

1100

437

99

32

21

1004

42

Jan 16, 2008 Perform cleanups as preparation for 0.2.0.16-alpha

release.

r13147 351

Jan 24, 2008 Make clients re-fetch v2 rendezvous descriptors if

they failed before.

r13250

r13251

r13253

296

99

30

Jan 25, 2008 Do not fail, if there are too few v2 hidden service di-

rectories.

r13263 85

Jan 25, 2008 Do not re-fetch v2 rendezvous descriptors, if a v0 ren-

dezvous descriptor is already there.

r13265 152

Jan 26, 2008 Perform cleanups and refactorings as preparation for

0.2.0.18-alpha release.

r13269

r13270

r13271

r13287

r13293

134

14

35

383

15

197

Table A.1 – continued from previous page

Date Description Revision Size

Sep 12, 2008 Change default value for acting as v2 hidden service

directory to true.

r16858 76

Sep 24, 2008 Drop requirement of being a directory mirror in or-

der to act as v2 hidden service directory. Make all

relays v2 hidden service directories by default.

r16961 69

Table A.2: Bugfixes added while implementing the distributed direc-

tory storage

Date Description Revision Size

Sep 19, 2007 Clients should specify their chosen rendezvous point

by identity digest rather than by (potentially ambigu-

ous) nickname.

r11499 46

Sep 19, 2007 Hidden services were choosing introduction points

uniquely by identity digest, but when constructing

the hidden service descriptor they merely wrote the

(potentially ambiguous) nickname.

r11500

r11501

25

22

Nov 14, 2007 When lacking a consensus, do not try to perform ren-

dezvous operations.

r12493 69

Nov 17, 2007 When authorities detected more than two relays run-

ning on the same IP address, they were clearing all

the status flags but forgetting to clear the HSDir

flag. So, clients were being told that a given relay

was the right choice for a v2 hidden service directory

lookup, yet they never had its descriptor because it

was marked as ’not running’ in the consensus.

r12509

r12515

26

48

Nov 17, 2007 The HSDir flag in v3 network status consensus doc-

uments was cleared when there are too many relays

at a single IP address. Clear it in v2 network status

documents too, and also clear it when the relay is

no longer listed in the relevant network status doc-

ument.

r12522 103

198 Implementation

Table A.2 – continued from previous page

Date Description Revision Size

Dec 1, 2007 The v2 hidden service descriptor format allows de-

scriptors that have no introduction points. But Tor

crashed when trying to build a descriptor with no in-

troduction points (and it would have crashed when

trying to parse one).

r12579

r12580

r12619

137

86

26

Dec 22, 2007 Fix a crash when accessing hidden services: it works

for the first time a given introduction point is used,

but on subsequent requests garbage memory would

be used.

r12913 27

Jan 6, 2008 Complain less at both the client and the relay when

trying to upload a hidden service descriptor to a relay

that used to have the HSDir flag but does not have it

anymore.

r13037 106

Feb 13, 2008 Re-fetch v2 (as well as v0) hidden service descrip-

tors when all introduction points for a hidden service

have failed.

r13431

r13439

r13492

69

21

66

Feb 13, 2008 Make the v2 hidden service code respect the Safe-

Logging setting.

r13493 279

Feb 17, 2008 Resolve problems with (re-)fetching hidden service

descriptors.

r13540 116

Apr 15, 2008 Avoid a rare assert that can trigger when Tor does

not have much directory information yet and it tries

to fetch a v2 hidden service descriptor.

r14373 28

Sep 24, 2008 If clients or hidden services do not use BEGIN_DIR

cells, they should not attempt to contact v2 hidden

service directories with non-open directory port.

r16960 42

Table A.3: Features added to implement client authorization

Date Description Revision Size

Aug 9, 2008 Allow hidden services to configure authorization data

for clients.

r16475

r16477

r16479

857

13

266

199

Table A.3 – continued from previous page

Date Description Revision Size

Aug 12, 2008 Allow clients to configure authorization data for hid-

den services.

r16510 258

Sep 1, 2008 Hidden services publish descriptors for their autho-

rized clients.

r16598

r16599

r16604

r16706

772

24

26

23

Sep 24, 2008 Clients fetch descriptors for hidden services that per-

form client authorization.

r16955 1755

Table A.4: Bugfixes added while improving hidden service perfor-

mance

Date Description Revision Size

Jun 11, 2008 In very rare situations new hidden service descriptors

were published earlier than the minimum of 30 sec-

onds after the last change to the introduction points.

r15113

r15114

16

14

Jun 12, 2008 While setting up a hidden service, some valid intro-

duction circuits were overlooked and abandoned.

r15149

r15151

26

14

Jun 17, 2008 When establishing a hidden service, introduction

points that originate from cannibalized circuits were

completely ignored and not included in rendezvous

service descriptors.

r15332

r15335

51

13

Jul 6, 2008 Attach connections immediately upon receiving a

RENDEZVOUS2 or RENDEZVOUSESTABLISHED cell

rather than waiting for the next execution of a 1-

second loop.

r15699 46

Jul 11, 2008 When a hidden service is giving up on an introduc-

tion point candidate that was not included in the last

published rendezvous descriptor, do not reschedule

publication of the next descriptor.

r15825 67

200 Implementation

Table A.4 – continued from previous page

Date Description Revision Size

Aug 5, 2008 Mark configuration options RendNodes, RendEx-

cludeNodes, HiddenServiceNodes, and HiddenSer-

viceExcludeNodes as obsolete, because they never

worked properly.

r16144

r16401

271

59

Aug 5, 2008 In some edge cases, the router descriptor of a pre-

viously picked introduction point becomes obsolete.

Give up on it rather than continually complaining

that it has become obsolete.

r16404 49

Sep 16, 2008 When fetching hidden service descriptors for differ-

ent versions in parallel, do not fail the whole request

when one version fails.

r16915

r16916

122

99

Sep 23, 2008 Almost 1/6 of all requests to the hidden service di-

rectory nodes failed, because the required router de-

scriptor has not been downloaded yet. Hold back the

request until the router descriptor has been down-

loaded.

r16808

r16810

r16817

r16818

r16939

287

51

18

15

23

Table A.5: Features and subsequent bugfixes on them added to im-

prove hidden service performance

Date Description Revision Size

Nov 5, 2008 When the client launches an introduction circuit,

retry with a new circuit after 30 seconds rather than

60 seconds.

r17106

r17113

r17189

73

15

15

Oct 15, 2008 Launch a second client-side introduction circuit in

parallel after a delay of 15 seconds.

r17108 86

Dec 10, 2008 Hidden services start out building five introduction

circuits rather than three, and when the first three

finish they publish a service descriptor using those.

r17110

r17111

r17562

100

24

98

Bibliography

[1] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey

of peer-to-peer content distribution technologies. ACM Computing

Surveys, 36(4):335–371, December 2004.

[2] Kevin S. Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno,

and Douglas Sicker. Low-resource routing attacks against Tor. In

Proceedings of the Workshop on Privacy in the Electronic Society (WPES

2007). ACM, October 2007.

[3] Oliver Berthold, Hannes Federrath, and Stefan Köpsell. Web MIXes:

A system for anonymous and unobservable Internet access. In

Hannes Federrath, editor, Proceedings of International Workshop on

Design Issues in Anonymity and Unobservability, volume 2009 of Lec-

ture Notes in Computer Science, pages 115–129. Springer, July 2000.

[4] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz.

Denial of service or denial of security? How attacks on reliability can

compromise anonymity. In Proceedings of CCS 2007, October 2007.

[5] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record com-

munication, or, why not to use PGP. In Proceedings of the Workshop

on Privacy in the Electronic Society (WPES 2004), pages 77–84. ACM,

October 2004.

[6] David L. Chaum. Untraceable electronic mail, return addresses, and

digital pseudonyms. Communications of the ACM, 24(2):84–90, Febru-

ary 1981.

202 Bibliography

[7] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed

Systems: Concepts and Design. Addison-Wesley, 4th edition, June

2005.

[8] George Danezis, Roger Dingledine, and Nick Mathewson. Mixmin-

ion: Design of a type III anonymous remailer protocol. In Proceed-

ings of the Symposium on Security and Privacy (S&P 2003), pages 2–15.

IEEE Computer Society, May 2003.

[9] Tim Dierks and Eric Rescorla. The transport layer security (TLS)

protocol—version 1.1. Request for Comments 4346, April 2006.

http://www.ietf.org/rfc/rfc4346.txt (last checked: Dec 6,

2008).

[10] W. Diffie and M. E. Hellman. New directions in cryptography.

IEEE Transactions on Information Theory, IT-22(6):644–654, Novem-

ber 1976.

[11] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The

second-generation onion router. In Proceedings of the 13th USENIX

Security Symposium, pages 303–320. USENIX, August 2004.

[12] Markus Dorsch, Martin Grote, Knut Hildebrandt, Maximilian

Röglinger, Matthias Sehr, Christian Wilms, Karsten Loesing,

and Guido Wirtz. Concealing presence information in in-

stant messaging systems—protocol specification. Technical Re-

port 66, Otto-Friedrich-Universität Bamberg, Bamberger Beiträge

zur Wirtschaftsinformatik und Angewandten Informatik, April 2006.

[13] John R. Douceur. The sybil attack. In Peter Druschel, M. Frans

Kaashoek, and Antony I. T. Rowstron, editors, Proceedings of the 1st

International Workshop on Peer-to-Peer Systems (IPTPS 2002), volume

2429 of Lecture Notes in Computer Science. Springer, March 2002.

Bibliography 203

[14] Morris Dworkin. Recommendation for block cipher modes of oper-

ation, methods and techniques. Technical Report 800-38A, National

Institute of Standards and Technology, December 2001.

[15] Nicholas A. Fraser, Douglas J. Kelly, Richard A. Raines, Rusty O.

Baldwin, and Barry E. Mullins. Using client puzzles to mitigate dis-

tributed denial of service attacks in the Tor anonymous routing envi-

ronment. In Proceedings of the International Conference on Communi-

cations (ICC 2007), pages 1197–1202. IEEE Computer Society, June

2007.

[16] Michael J. Freedman and Robert Morris. Tarzan: a peer-to-peer

anonymizing network layer. In Proceedings of the 9th Conference on

Computer and Communications Security (CCS 2002), pages 193–206.

ACM, November 2002.

[17] Michael J. Freedman, Emil Sit, Josh Cates, and Robert Morris. In-

troducing Tarzan, a peer-to-peer anonymizing network layer. In Pe-

ter Druschel, M. Frans Kaashoek, and Antony I. T. Rowstron, edi-

tors, Proceedings of the 1st International Workshop on Peer-to-Peer Sys-

tems (IPTPS 2002), volume 2429 of Lecture Notes in Computer Science,

pages 121–129. Springer, March 2002.

[18] The Gnutella Protocol Specification v0.4. http://www9.limewire.

com/developer/gnutella_protocol_0.4.pdf (last checked: Dec

6, 2008).

[19] Ian Goldberg. A Pseudonymous Communications Infrastructure for the

Internet. PhD thesis, University of California at Berkeley, December

2000.

[20] Ian Goldberg. Privacy-enhancing technologies for the Internet, II:

Five years later. In Roger Dingledine and Paul Syverson, editors,

Proceedings of the Second Workshop on Privacy Enhancing Technologies

204 Bibliography

(PET 2002), volume 2482 of Lecture Notes in Computer Science, pages

1–12. Springer, April 2002.

[21] Ian Goldberg. On the security of the Tor authentication protocol. In

George Danezis and Philippe Golle, editors, Proceedings of the Sixth

Workshop on Privacy Enhancing Technologies (PET 2006), volume 4258

of Lecture Notes in Computer Science, pages 316–331. Springer, June

2006.

[22] Ian Goldberg. Privacy enhancing technologies for the Internet III:

Ten years later. In Alessandro Acquisti, Stefanos Gritzalis, Costos

Lambrinoudakis, and Sabrina di Vimercati, editors, Digital Privacy:

Theory, Technologies, and Practices, chapter 1, pages 3–18. Auerbach,

December 2007.

[23] Ian Goldberg and David Wagner. TAZ servers and the rewebber net-

work: Enabling anonymous publishing on the world wide web. First

Monday, 3(4), August 1998.

[24] Ian Goldberg, David Wagner, and Eric Brewer. Privacy-enhancing

technologies for the Internet. In Proceedings of the 42nd IEEE Spring

COMPCON. IEEE Computer Society, February 1997.

[25] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding

routing information. In Ross J. Anderson, editor, Proceedings of Infor-

mation Hiding: First International Workshop, volume 1174 of Lecture

Notes in Computer Science, pages 137–150. Springer, May 1996.

[26] Saikat Guha and Paul Francis. Identity trail: Covert surveillance us-

ing DNS. In Nikita Borisov and Philippe Golle, editors, Proceedings of

the Seventh Symposium on Privacy Enhancing Technologies (PET 2007),

volume 4776 of Lecture Notes in Computer Science, pages 153–166.

Springer, June 2007.

Bibliography 205

[27] Ceki Gülcü and Gene Tsudik. Mixing e-mail with babel. In Proceed-

ings of the Network and Distributed System Security Symposium (NDSS

1996), pages 2–16. Internet Society, February 1996.

[28] Knut Hildebrandt. Konzeption von Authentifizierungsmechanis-

men für anonyme Dienste und Realisierung eines ausgewählten Ver-

fahrens im Anonymisierungsnetzwerk Tor. Diploma thesis, Otto-

Friedrich-Universität Bamberg, January 2007.

[29] Simon Josefsson. The base16, base32, and base64 data encodings.

Request for Comments 4648, October 2006. http://www.ietf.

org/rfc/rfc4648.txt (last checked: Dec 6, 2008).

[30] Sven Kaffille, Karsten Loesing, and Guido Wirtz. Distributed service

discovery with guarantees in peer-to-peer networks using distributed

hashtables. In Hamid R. Arabnia, editor, Proceedings of the Interna-

tional Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTA 2005), pages 578–584, June 2005.

[31] Tobias Kamm, Thomas Lauterbach, Karsten Loesing, Ferdinand

Rieger, and Christoph Weingarten. Hidden service authenti-

cation. Tor Proposal 121, The Tor Project, September 2007.

https://svn.torproject.org/svn/tor/trunk/doc/spec/

proposals/121-hidden-service-authentication.txt (last

checked: Dec 6, 2008).

[32] Aniket Kate, Greg Zaverucha, and Ian Goldberg. Pairing-based on-

ion routing. In Nikita Borisov and Philippe Golle, editors, Proceed-

ings of the Seventh Symposium on Privacy Enhancing Technologies (PET

2007), volume 4776 of Lecture Notes in Computer Science. Springer,

June 2007.

[33] Stefan Köpsell. Low latency anonymous communication—How long

are users willing to wait? In Günter Müller, editor, Emerging Trends

206 Bibliography

in Information and Communication Security (ETRICS 2006), volume

3995 of Lecture Notes in Computer Science, pages 221–237. Springer,

June 2006.

[34] Jim F. Kurose and Keith W. Ross. Computer Networks—A Top-Down

Approach. Addison-Wesley, 4th edition, April 2007.

[35] Jörg Lenhard. Anonymous access to public services in the Internet—

analysis of Tor hidden services in low bandwidth networks. Bachelor

thesis, Otto-Friedrich-Universität Bamberg, December 2008.

[36] Karsten Loesing. Distributed storage for Tor hidden ser-

vice descriptors. Tor Proposal 114, The Tor Project, May

2007. https://svn.torproject.org/svn/tor/trunk/doc/spec/

proposals/114-distributed-storage.txt (last checked: Dec 6,

2008).

[37] Karsten Loesing. Improvements of distributed storage for Tor hid-

den service descriptors. Tor Proposal 143, The Tor Project, June

2008. https://svn.torproject.org/svn/tor/trunk/doc/spec/

proposals/143-distributed-storage-improvements.txt (last

checked: Dec 6, 2008).

[38] Karsten Loesing. Simplify configuration of private Tor net-

works. Tor Proposal 135, The Tor Project, April 2008.

https://svn.torproject.org/svn/tor/trunk/doc/spec/

proposals/135-private-tor-networks.txt (last checked: Dec

6, 2008).

[39] Karsten Loesing, Markus Dorsch, Martin Grote, Knut Hildebrandt,

Maximilian Röglinger, Matthias Sehr, Christian Wilms, and Guido

Wirtz. Privacy-aware presence management in instant messaging

systems. In Proceedings of the 20th International Parallel and Dis-

Bibliography 207

tributed Processing Symposium (IPDPS 2006). IEEE Computer Soci-

ety, April 2006.

[40] Karsten Loesing, Maximilian Röglinger, Christian Wilms, and Guido

Wirtz. Implementation of an instant messaging system with focus

on protection of user presence. In Proceedings of the Second Interna-

tional Conference on Communication System Software and Middleware

(COMSWARE 2007). IEEE Computer Society, January 2007.

[41] Karsten Loesing, Werner Sandmann, Christian Wilms, and Guido

Wirtz. Performance measurements and statistics of Tor hidden ser-

vices. In Proceedings of the International Symposium on Applications

and the Internet (SAINT 2008), Turku, Finland, July 2008. IEEE Com-

puter Society.

[42] Karsten Loesing and Christian Wilms. Combine introduction

and rendezvous points. Tor Proposal 142, The Tor Project, June

2008. https://svn.torproject.org/svn/tor/trunk/doc/

spec/proposals/142-combine-intro-and-rend-points.txt

(last checked: Dec 6, 2008).

[43] Karsten Loesing and Christian Wilms. Four improvements of hidden

service performance. Tor Proposal 155, The Tor Project, September

2008. https://svn.torproject.org/svn/tor/trunk/doc/spec/

proposals/155-four-hidden-service-improvements.txt (last

checked: Dec 6, 2008).

[44] Karsten Loesing and Guido Wirtz. An implementation of reliable

group communication based on the peer-to-peer network JXTA. In

Proceedings of the International Conference on Computer Systems and

Applications (AICCSA 2005). IEEE Computer Society, January 2005.

[45] Karsten Loesing and Guido Wirtz. Virtual private services. Techni-

cal report, HotPETs Session on the Eighth Symposium on Privacy

208 Bibliography

Enhancing Technologies (HOT-PETs 2008), Leuven, Belgium, July

2008. http://petsymposium.org/2008/hotpets/vrtprsvc.pdf

(last checked: Dec 6, 2008).

[46] Nick Mathewson and Roger Dingledine. Mixminion: Strong anony-

mity for financial cryptography. In Ari Juels, editor, Proceedings of

the 8th International Conference on Financial Cryptography (FC 2004),

volume 3110 of Lecture Notes in Computer Science. Springer, February

2004.

[47] David Mazières and M. Frans Kaashoek. The design, implementation

and operation of an email pseudonym server. In Proceedings of the

5th Conference on Computer and Communications Security (CCS 1998).

ACM, November 1998.

[48] Damon McCoy, Kevin Bauer, Dirk Grunwald, Tadayoshi Kohno, and

Douglas Sicker. Shining light in dark places: Understanding the Tor

network. In Nikita Borisov and Ian Goldberg, editors, Proceedings of

the Eighth Symposium on Privacy Enhancing Technologies (PETS 2008),

volume 5134 of Lecture Notes in Computer Science, pages 63–76, Leu-

ven, Belgium, July 2008. Springer.

[49] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.

Handbook of Applied Cryptography. CRC, December 1996.

[50] Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman. Mix-

master protocol version 2. IETF Internet Draft, July 2003.

[51] Steven J. Murdoch. Hot or not: Revealing hidden services by their

clock skew. In Proceedings of the 13th Conference on Computer and

Communications Security (CCS 2006). ACM, October 2006.

[52] Steven J. Murdoch. Covert channel vulnerabilities in anonymity systems.

PhD thesis, University of Cambridge, December 2007.

Bibliography 209

[53] Steven J. Murdoch and Robert N. M. Watson. Metrics for security and

performance in low-latency anonymity networks. In Nikita Borisov

and Ian Goldberg, editors, Proceedings of the Eigth Symposium on Pri-

vacy Enhancing Technologies (PETS 2008), volume 5134 of Lecture

Notes in Computer Science, pages 115–132. Springer, July 2008.

[54] National Institute of Standards and Technology. Advanced Encryption

Standard (AES), November 2001. Federal Information Processing

Standards Publication 197.

[55] National Institute of Standards and Technology. Secure Hash Stan-

dard (SHS), October 2008. Federal Information Processing Stan-

dards Publication 180-3.

[56] Lasse Øverlier and Paul Syverson. Locating hidden servers. In Pro-

ceedings of the Symposium on Security and Privacy (S&P 2006). IEEE

Computer Society, May 2006.

[57] Lasse Øverlier and Paul Syverson. Valet services: Improving hid-

den servers with a personal touch. In George Danezis and Philippe

Golle, editors, Proceedings of the Sixth Workshop on Privacy Enhancing

Technologies (PET 2006), volume 4258 of Lecture Notes in Computer

Science, pages 223–244. Springer, June 2006.

[58] Lasse Øverlier and Paul Syverson. Improving efficiency and simplic-

ity of Tor circuit establishment and hidden services. In Nikita Borisov

and Philippe Golle, editors, Proceedings of the Seventh Symposium on

Privacy Enhancing Technologies (PET 2007), volume 4776 of Lecture

Notes in Computer Science, pages 134–152. Springer, June 2007.

[59] Andriy Panchenko, Lexi Pimenidis, and Johannes Renner. Perfor-

mance analysis of anonymous communication channels provided by

Tor. In Proceedings of the Third International Conference on Availability,

210 Bibliography

Reliability and Security (ARES 2008), pages 221–228. IEEE Computer

Society, March 2008.

[60] Sameer Parekh. Prospects for remailers—where is anonymity head-

ing on the internet? First Monday, 1(2), August 1996.

[61] Andreas Pfitzmann and Marit Hansen. Anonymity, unlinkability,

unobservability, pseudonymity, and identity management—a con-

solidated proposal for terminology. http://dud.inf.tu-dresden.

de/literatur/Anon_Terminology_v0.31.pdf (last checked: Dec

6, 2008), February 2008.

[62] Andreas Pfitzmann, Birgit Pfitzmann, and Michael Waidner. ISDN-

mixes: Untraceable communication with very small bandwidth over-

head. In Proceedings of the GI/ITG Conference on Communication

in Distributed Systems, volume 267 of Informatik-Fachberichte, pages

451–463. Springer, February 1991.

[63] The Tor Project. Tor directory protocol, version 3, 2008. https://svn.

torproject.org/svn/tor/trunk/doc/spec/dir-spec.txt (last

checked: Dec 6, 2008).

[64] The Tor Project. Tor Protocol Specification, 2008. https://svn.

torproject.org/svn/tor/trunk/doc/spec/tor-spec.txt (last

checked: Dec 6, 2008).

[65] The Tor Project. Tor Rendezvous Specification, 2008. https://svn.

torproject.org/svn/tor/trunk/doc/spec/rend-spec.txt

(last checked: Dec 6, 2008).

[66] Jean-François Raymond. Traffic analysis: Protocols, attacks, design

issues, and open problems. In Hannes Federrath, editor, Proceedings

of International Workshop on Design Issues in Anonymity and Unob-

servability, volume 2009 of Lecture Notes in Computer Science, pages

10–29. Springer, July 2000.

Bibliography 211

[67] Michael G. Reed, Paul F. Syverson, and David M. Goldschlag. Anony-

mous connections and onion routing. IEEE Journal on Selected Areas

in Communications, 16(4):482–494, May 1998.

[68] Michael Reiter and Aviel Rubin. Crowds: Anonymity for web transac-

tions. ACM Transactions on Information and System Security, 1(1):66–

92, June 1998.

[69] Ron L. Rivest, Adi Shamir, and Leonard Adleman. A method for

obtaining digital signatures and public-key cryptosystems. Commu-

nications of the ACM, 21(2):120–126, February 1978.

[70] Len Sassaman, Bram Cohen, and Nick Mathewson. The pynchon

gate: A secure method of pseudonymous mail retrieval. In Proceed-

ings of the Workshop on Privacy in the Electronic Society (WPES 2005).

ACM, November 2005.

[71] Bruce Schneier. Applied Cryptography. John Wiley & Sons, January

1996.

[72] Andrei Serjantov and Peter Sewell. Passive attack analysis for

connection-based anonymity systems. In Proceedings of the 8th Euro-

pean Symposium on Research in Computer Security (ESORICS 2003),

volume 2808 of Lecture Notes in Computer Science. Springer, October

2003.

[73] Emil Sit and Robert Morris. Security considerations for peer-to-peer

distributed hash tables. In Peter Druschel, M. Frans Kaashoek, and

Antony I. T. Rowstron, editors, Proceedings of the 1st International

Workshop on Peer-to-Peer Systems (IPTPS 2002), volume 2429 of Lec-

ture Notes in Computer Science. Springer, March 2002.

[74] Robin Snader and Nikita Borisov. A tune-up for Tor: Improving secu-

rity and performance in the Tor network. In Proceedings of the Network

212 Bibliography

and Distributed System Security Symposium (NDSS 2008). Internet So-

ciety, February 2008.

[75] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari

Balakrishnan. Chord: A scalable peer-to-peer lookup service for Inter-

net applications. In Proceedings of the Conference of the Special Interest

Group on Data Communication (SIGCOMM 2001), pages 149–160.

ACM, August 2001.

[76] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger,

M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord:

A scalable peer-to-peer lookup protocol for Internet applications.

IEEE/ACM Transactions on Networking (TON), 11(1):17–32, Febru-

ary 2003.

[77] Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr. To-

wards an analysis of onion routing security. In Hannes Federrath,

editor, Proceedings of International Workshop on Design Issues in Ano-

nymity and Unobservability, volume 2009 of Lecture Notes in Computer

Science, pages 96–114. Springer, July 2000.

[78] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems—

Principles and Paradigms. Prentice-Hall, February 2002.

[79] R Development Core Team. R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing,

2008. http://cran.r-project.org/doc/manuals/refman.pdf

(last checked: Dec 6, 2008).

[80] Rolf Wendolsky, Dominik Herrmann, and Hannes Federrath. Per-

formance comparison of low-latency anonymisation services from a

user perspective. In Nikita Borisov and Philippe Golle, editors, Pro-

ceedings of the Seventh Symposium on Privacy Enhancing Technologies

Bibliography 213

(PET 2007), volume 4776 of Lecture Notes in Computer Science, pages

233–253. Springer, June 2007.

[81] Christian Wilms. Improving the Tor hidden service protocol aim-

ing at better performance. Diploma thesis, Otto-Friedrich-Universität

Bamberg, June 2008.

[82] Christian Wilms. Improving the Tor hidden service protocol aim-

ing at better performance. Technical Report 79, Otto-Friedrich-

Universität Bamberg, Bamberger Beiträge zur Wirtschaftsinformatik

und Angewandten Informatik, November 2008.

[83] Matthew Wright, Micah Adler, Brian Neil Levine, and Clay Shields.

An analysis of the degradation of anonymous protocols. In Proceed-

ings of the Network and Distributed System Security Symposium (NDSS

2002). Internet Society, February 2002.

[84] Matthew Wright, Micah Adler, Brian Neil Levine, and Clay Shields.

Defending anonymous communication against passive logging at-

tacks. In Proceedings of the 2003 IEEE Symposium on Security and

Privacy (S&P 2003), pages 28–43. IEEE Computer Society, May 2003.

[85] Matthew Wright, Micah Adler, Brian Neil Levine, and Clay Shields.

The predecessor attack: An analysis of a threat to anonymous com-

munications systems. ACM Transactions on Information and System

Security (TISSEC), 4(7):489–522, November 2004.

[86] Sebastian Zander and Steven J. Murdoch. An improved clock-skew

measurement technique for revealing hidden services. In Proceedings

of the 17th USENIX Security Symposium. USENIX, July 2008.

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig und ohne

die Hilfe eines Promotionsberaters angefertigt habe. Dabei habe ich keine

anderen Hilfsmittel als die im Literaturverzeichnis genannten benutzt.

Alle aus der Literatur wörtlich oder sinngemäß entnommenen Stellen

sind als solche kenntlich gemacht.

Weder diese Arbeit noch wesentliche Teile derselben wurden einer ande-

ren Prüfungsbehörde zur Erlangung des Doktorgrades vorgelegt.

Die Arbeit wurde bisher noch nicht in ihrer Ganzheit publiziert. Alle be-

reits veröffentlichten Beiträge, auf denen diese Arbeit basiert, sind im Li-

teraturverzeichnis unter den Nummern [12, 30, 31, 36–45] angegeben.

UNIVERSITY OF BAMBERG PRESS

Privatsphäre im Internet wird immer wichtiger, da ein zunehmender

Teil des alltäglichen Lebens über das Internet stattfindet. Internet-Be-

nutzer verlieren die Fähigkeit zu steuern, welche Informationen sie

über sich weitergeben oder wissen nicht einmal, dass sie dieses tun.

Datenschutzfördernde Techniken helfen dabei, private Informationen im

Internet zu kontrollieren, zum Beispiel durch die Anonymisierung von

Internetkommunikation. Bis heute liegt der Hauptfokus dieser Techniken

auf dem Schutz des Anfragenden beim Zugriff auf öffentliche Dienste. Nur

ein Teilbereich von datenschutzfördernden Techniken, die sogenannten

pseudonyme Dienste, zielt darauf ab, den Standort eines Servers und da-

mit eines Dienstanbieters zu verbergen. Diese Arbeit wirft die Frage nach

den Risiken beim Betrieb von Internetdiensten durch Privatpersonen auf

und schlägt die Nutzung und Erweiterung von pseudonymen Diensten für

private Dienstanbieter vor.

Die Arbeit besteht aus drei Hauptbeiträgen: Erstens wird vorgeschla-

gen, Dienstbeschreibungen von pseudonymen Diensten in geeigneter

Weise in einer verteilten Datenstruktur abzulegen, um eine höhere

Skalierbarkeit zu erreichen. Zweitens werden zwei Vorschläge gemacht,

wie die Informationen, die ein Dienst im Netzwerk bekanntgibt, auf ein

Minimum reduziert und nicht-autorisierte Clients schon während der Ver-

bindungsherstellung am Zugriff gehindert werden können. Drittens wird

die Effizienz des Anbietens und Zugreifens von pseudonymen Dienste

gemessen, um mögliche Engpässe zu identifizieren und verbessern zu

können.

ISBN 978-3-923507-45-0
ISSN 1867-7401

17,60 Euro

