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Abstract
Recently, a number of obfuscation systems have been
developed to aid in censorship circumvention scenarios
where encrypted network traffic is filtered. In this pa-
per, we present Marionette, the first programmable net-
work traffic obfuscation system capable of simultane-
ously controlling encrypted traffic features at a variety
of levels, including ciphertext formats, stateful protocol
semantics, and statistical properties. The behavior of the
system is directed by a powerful type of probabilistic au-
tomata and specified in a user-friendly domain-specific
language, which allows the user to easily adjust their ob-
fuscation strategy to meet the unique needs of their net-
work environment. In fact, the Marionette system is ca-
pable of emulating many existing obfuscation systems,
and enables developers to explore a breadth of proto-
cols and depth of traffic features that have, so far, been
unattainable. We evaluate Marionette through a series
of case studies inspired by censor capabilities demon-
strated in the real-world and research literature, includ-
ing passive network monitors, stateful proxies, and active
probing. The results of our experiments not only show
that Marionette provides outstanding flexibility and con-
trol over traffic features, but it is also capable of achiev-
ing throughput of up to 6.7Mbps when generating RFC-
compliant cover traffic.

1 Introduction

Many countries have begun to view encrypted network
services as a threat to the enforcement of information
control and security policies. China [41] and Iran [7] are
well-known for their efforts to block encrypted services
like Tor [14], while other countries, such as the United
Kingdom [18], have begun to express interest in block-
ing VPNs and anonymity systems. These discriminatory
routing policies are empowered by analyzing traffic at
both the network layer (e.g. TCP/IP headers) and, more

recently, the application layer. The latter looks for spe-
cific features of packet payloads that act as a signature
for the application-layer protocol being transported.

To combat application-layer filtering, several sys-
tems have been proposed to obfuscate packet payloads,
and generally hide the true protocol being transported.
Broadly speaking, these methods fall into one of three
categories: those that use encryption to fully random-
ize the messages sent (e.g., obfs4 [34], ScrambleSuit
[42], Dust [40]); those that tunnel traffic using exist-
ing software artifacts (e.g., FreeWave [21], Facet [24]);
and those that use encryption in combination with some
lightweight ciphertext formatting to make the traffic
mimic an allowed protocol (e.g., FTE [15], Stego-
Torus [38]). A few of these systems have been deployed
and are currently used by more comprehensive circum-
vention systems, such as Lantern [1], uProxy [5], and
Tor [14].

Despite the progress these obfuscation systems repre-
sent, each of them suffers from one or more shortcom-
ings that severely limit their ability to adapt to new net-
work environments or censorship strategies. Lightweight
obfuscation methods based on randomization fail in sit-
uations where protocol whitelisting is applied, as in the
recent Iranian elections [13]. Tunneling systems are in-
timately tied to a specific protocol that may not always
be permitted within the restrictive network environment,
such as the case of Skype in Ethiopia [27]. Protocol-
mimicry systems really only aim to mimic individual
protocol messages, and therefore fail to traverse proxies
that enforce stateful protocol semantics (e.g., Squid [39])
. Moreover, these systems can be quite brittle in the face
of proxies that alter protocol messages in transit (e.g., al-
tering message headers can render FTE [15] inoperable).
In any case, all of the systems are incapable of changing
their target protocol or traffic features without heavy sys-
tem re-engineering and redeployment of code. This is a
huge undertaking in censored networks.
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Message Stateful Multi-layer Traffic Active Goodput
Case Study Content Behavior Control Statistics Probing Protocol(s) (Down/Up)

Regex-Based DPI � - - - - HTTP, SSH, SMB 68.2 / 68.2 Mbps
Proxy Traversal � � - - - HTTP 5.8 / 0.41 Mbps

Protocol Compliance � � � - - FTP, POP3 6.6 / 6.7 Mbps
Traffic Analysis � � � � - HTTP 0.45 / 0.32 Mbps
Active Probing � � � - � HTTP, FTP, SSH 6.6 / 6.7 Mbps

Figure 1: Summary of Marionette case studies illustrating breadth of protocols and depth of feature control.

The Marionette System. To address these shortcom-
ings, we develop the Marionette system. Marionette is a
network-traffic obfuscation system that empowers users
to rapidly explore a rich design space, without the need
to deploy new code or re-design the underlying system.

The conceptual foundation of Marionette is a power-
ful kind of probabilistic automaton, loosely inspired by
probabilistic input/output automata [45]. We use these to
enforce (probabilistic) sequencing of individual cipher-
text message types. Each transition between automata
states has an associated block of actions to perform,
such as encrypting and formatting a message, sampling
from a distribution, or spawning other automata to sup-
port hierarchical composition. By composing automata,
we achieve even more comprehensive control over mim-
icked protocol behaviors (e.g., multiple dependent chan-
nels) and statistical features of traffic. In addition, the
automata admit distinguished error states, thereby pro-
viding an explicit mechanism for handling active attacks,
such as censor-initiated “probing attacks.”

At the level of individual ciphertext formats, we intro-
duce another novel abstraction that supports fine-grained
control. These template grammars are probabilistic
context-free grammars (CFG) that compactly describes
a language of templates for ciphertexts. Templates are
strings that contain placeholder tokens, marking the po-
sitions where information (e.g., encrypted data bytes,
dates, content-length values) may be embedded by user-
specified routines. Adopting a CFG to describe templates
has several benefits, including ease of deployment due to
their compact representation, ability to directly translate
grammars from available RFCs, and use of the grammar
in receiver-side parsing tasks.

Everything is specified in a user-friendly domain-
specific language (DSL), which enables rapid develop-
ment and testing of new obfuscation strategies that are
robust and responsive to future network monitoring tools.
To encourage adoption and use of Marionette it has been
made available as free and open source software1.

Case studies. To display what is possible with Mari-
onette, we provide several case studies that are inspired
by recent research literature and real-world censor capa-

1https://github.com/kpdyer/marionette/

bilities. These are summarized in Figure 1. For one ex-
ample, we show that Marionette can implement passive-
mode FTP by spawning multiple models that control in-
terdependent TCP connections. For another, we use Mar-
ionette to mimic HTTP with enforced protocol semantics
and resilience to message alteration, thereby successfully
traversing HTTP proxies.

Our studies show that Marionette is capable of im-
plementing a range of application-layer protocols, from
HTTP to POP3, while also providing great depth in the
range of traffic features it controls. Most importantly, it
maintains this flexibility without unduly sacrificing per-
formance – achieving up to 6.7Mbps while still main-
taining fully RFC-compliant protocol semantics. We also
show that the system performance is network-bound, and
directly related to the constraints of the Marionette for-
mat being used.

Security Considerations. While our case studies are
motivated by well-known types of adversaries, we avoid
a formal security analysis of our framework for two rea-
sons. First, the security of the system is intimately tied
to the automata and template grammars specified by the
user, as well as how the chosen protocols and features
interact with the adversary. Second, any principled se-
curity analysis requires a generally accepted adversarial
model. At the moment, the capabilities of adversaries in
this space are poorly understood, and there are no formal-
ized security goals to target. With that said, we believe
our case studies represent a diverse sample of adversaries
known to exist in practice, and hope that the flexibility of
our system allows it to adapt to new adversaries faced in
deployment. More fully understanding the limits of our
system, and the adversaries it may face, is left for future
work.

2 Related Work

In this section, we discuss previous work in the area of
obfuscation and mimicry of application-layer protocols,
as well as their common ancestry with network traffic
generation research. The majority of systems aiming to
avoid application-layer filtering are non-programmable,
in the sense that they adopt one strategy at design-time
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Blacklist Whitelist Statistical-test Protocol-enforcing Multi-layer High
System DPI DPI DPI Proxy Control Throughput

Randomization

obfs2/3 [34] � - - - - �
ScrambleSuit [42] � - � - - �

obfs4 [34] � - � - - �
Dust [40] � - � - - �

Mimicry SkypeMorph [26] � � � - - -
StegoTorus [38] � � - - - -

Tunneling

Freewave [21] � � - - - -
Facet [24] � � � - - -

SWEET [47] � � - - - -
JumpBox [25] � � - - - �

CensorSpoofer [36] � � - - - -
CloudTransport [8] � � - � - �

Programmable FTE [15] � � - - - �
Marionette � � � � � �

Figure 2: A comparison of features across randomization, mimicry, tunneling, and programmable obfuscation systems. A “�" in
the first four columns mean the system is appropriate for the indicated type of monitoring device; in the last two, it means that the
system has the listed property. Multi-layer control is the ability to control features beyond single, independent connections. High-
throughput systems are defined as any system capable of > 1Mbps throughput. Both FTE and Marionette can trade throughput for
control over ciphertext traffic features.

and it cannot be changed without a major overhaul of
the system and subsequent re-deployment. The non-
programmable systems can be further subdivided into
three categories based on their strategy: randomization,
mimicry, or tunneling. A programmable system, how-
ever, allows for a variety of dynamically applied strate-
gies, both randomization and mimicry-based, without the
need for changes to the underlying software. Figure 2
presents a comparison of the available systems in each
category, and we discuss each of them below. For those
interested in a broader survey of circumvention and ob-
fuscation technologies, we suggest recent work by Khat-
tak et al. that discusses the space in greater detail [23].

Network Traffic Generation. Before beginning our
discussion of obfuscation systems, it is important to point
out the connection that they share with the broader area
of network traffic generation. Most traffic generation
systems focus on simple replay of captured network ses-
sions [33, 19], replay with limited levels of message con-
tent synthesis [12, 31], generation of traffic mixes with
specific statistical properties and static content [10, 37],
or heavyweight emulation of user behavior with appli-
cations in virtualized environments [43]. As we will
see, many mimicry and tunneling systems share similar
strategies with the the key difference that they must also
transport useful information to circumvent filtering.

Randomization. For systems implementing the ran-
domization approach, the primary goal is to remove all
static fingerprints in the content and statistical charac-
teristics of the connection, effectively making the traf-
fic look like “nothing.” The obfs2 and obfs3 [34] pro-
tocols were the first to implement this approach by re-

encrypting standard Tor traffic with a stream cipher,
thereby removing all indications of the underlying pro-
tocol from the content. Recently, improvements on this
approach were proposed in the ScrambleSuit system [42]
and obfs4 protocol [34], which implement similar con-
tent randomization, but also randomize the distribution
of packet sizes and inter-arrival times to bypass both DPI
and traffic analysis strategies implemented by the censor.
The Dust system [40] also offers both content and statis-
tical randomization, but does so on a per-packet, rather
than per-connection basis. While these approaches pro-
vide fast and efficient obfuscation of the traffic, they only
work in environments that block specific types of known-
bad traffic (i.e., blacklists). In cases where a whitelist
strategy is used to allow known-good protocols, these
randomization approaches fail to bypass filtering, as was
demonstrated during recent elections in Iran [13].

Mimicry. Another popular approach is to mimic cer-
tain characteristics of popular protocols, such as HTTP
or Skype, so that blocking traffic with those char-
acteristics would result in significant collateral dam-
age. Mimicry-based systems typically perform shallow
mimicry of only a protocol’s messages or the statisti-
cal properties of a single connection. As an example,
StegoTorus [38] embeds data into the headers and pay-
loads of a fixed set of previously collected HTTP mes-
sages, using various steganographic techniques. How-
ever, this provides no mechanism to control statistical
properties, beyond what replaying of the filled-in mes-
sage templates achieves. SkypeMorph [26], on the other
hand, relies on the fact that Skype traffic is encrypted and
focuses primarily on replicating the statistical features of
packet sizes and timing. Ideally, these mimicked pro-
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tocols would easily blend into the background traffic of
the network, however research has shown that mimicked
protocols can be distinguished from real versions of the
same protocol using protocol semantics, dependencies
among connections, and error conditions [20, 17]. In ad-
dition, they incur sometimes significant amounts of over-
head due to the constraints of the content or statistical
mimicry, which makes them much slower than random-
ization approaches.

Tunneling. Like mimicry-based systems, tunneling
approaches rely on potential collateral damage caused
by blocking popular protocols to avoid filtering. How-
ever, these systems tunnel their data in the payload of
real instances of the target protocols. The Freewave [21]
system, for example, uses Skype’s voice channel to en-
code data, while Facet [24] uses the Skype video chan-
nel, SWEET [47] uses the body of email messages, and
JumpBox [25] uses web browsers and live web servers.
CensorSpoofer [36] also tunnels data over existing proto-
cols, but uses a low-capacity email channel for upstream
messages and a high-capacity VoIP channel for down-
stream. CloudTransport [8] uses a slightly different ap-
proach by tunneling data over critical (and consequently
unblockable) cloud storage services, like Amazon S3,
rather than a particular protocol. The tunneling-based
systems have the advantage of using real implementa-
tions of their target protocols that naturally replicate all
protocol semantics and other distinctive behaviors, and
so they are much harder to distinguish. Even with this ad-
vantage, however, there are still cases where the tunneled
data causes tell-tale changes to the protocol’s behavior
[17] or to the overall traffic mix through skewed band-
width consumption. In general, tunneling approaches in-
cur even more overhead than shallow mimicry systems
since they are limited by the (low) capacity of the tun-
neling protocols.

Programmable Systems. Finally, programmable ob-
fuscation systems combine the benefits of both random-
ization and mimicry-based systems by allowing the sys-
tem to be configured to accommodate either strategy.
Currently, the only system to implement programmable
obfuscation is Format-Transforming Encryption (FTE)
[15], which transforms encrypted data into a format
dictated by a regular expression provided by the user.
The approach has been demonstrated to have both high
throughput and the ability to mimic a broad range of
application-layer protocols, including randomized con-
tent. Unfortunately, FTE only focuses on altering the
content of the application-layer messages, and not statis-
tical properties, protocol semantics, or other potentially
distinguishing traffic features.

Comparison with Marionette. Overall, each of these
systems suffers from a common set of problems that we
address with Marionette. For one, these systems, with
the exception of FTE, force the user to choose a sin-
gle target protocol to mimic without regard to the user’s
throughput needs, network restrictions, and background
traffic mix. Moreover, many of the systems focus on only
a fixed set of traffic features to control, usually only con-
tent and statical features of a single connection. In those
cases where tunneling is used, the overhead and latency
incurred often renders the channel virtually unusable for
many common use cases, such as video streaming. The
primary goal of Marionette, therefore, is not to develop
a system that implements a single obfuscation method to
defeat all possible censor strategies, but instead to pro-
vide the user with the ability to choose the obfuscation
method that best fits their use case in terms of breadth of
target protocols, depth of controlled traffic features, and
overall network throughput.

3 Models and Actions

We aim for a system that enables broad control over
several traffic properties, not just those of individual
application-layer protocol messages. These properties
may require that the system maintain some level of
state about the interaction to enforce protocols seman-
tics, or allow for non-deterministic behavior to match
distributions of message size and timing. A natural ap-
proach to efficiently model this sort of stateful and non-
deterministic system is a special type of probabilistic
state machine, which we find to be well-suited to our
needs and flexible enough to support a wide range of de-
sign approaches.

Marionette models. A Marionette model (or just
model, for short) is a tuple M = (Q,Qnrm, Qerr, C,∆).
The state set Q = Qnrm ∪Qerr, where Qnrm is the set of
normal states, Qerr is the set of error states, and Qnrm ∩
Qerr = ∅. We assume that Qnrm contains a distinguished
start state, and that at least one of Qnrm, Qerr contains
a distinguished finish state. The set C is the set of ac-
tions, which are (potentially) randomized algorithms. A
string B = f1f2 · · · fn ∈ C∗ is called an action-block,
and it defines a sequence of actions. Finally, ∆ is a tran-
sition relation ∆ ⊆ Q×C∗×(dist(Qnrm)∪∅)×P(Qerr)
where dist(X) the set of distributions over a set X , and
P(X) is the powerset of X . The roles of Qnrm and Qerr

will be made clear shortly.
A tuple (s,B, (µnrm, S)) ∈ ∆ is interpreted as fol-

lows. When M is in state s, the action-block B
may be executed and, upon completion, one samples a
state s′nrm ∈ Qnrm (according to distribution µnrm ∈
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dist(Qnrm)). If the action-block fails, then an error
state is chosen non-deterministically from S. Therefore,
{s′nrm} ∪ S is the set of valid next states, and in this
way our models have both proper probabilistic and non-
deterministic choice, as in probabilistic input/output au-
tomata [45]. When (s,B, (µnrm, ∅)) ∈ ∆, then only
transitions to states in Qnrm are possible, and similarly
for (s,B, (∅, S)) with transitions to states in Qerr.

In practice, normal states will be states of the model
that are reached under normal, correct operation of the
system. Error states are reached with the system detects
an operational error, which may or may not be caused by
an active adversary. For us, it will typically be the case
that the results of the action-block B determine whether
or not the system is operating normally or is in error, thus
which of the possible next states is correct.

Discussion. Marionette models support a broad va-
riety of uses. One is to capture the intended state of a
channel between two communicating parties (i.e., what
message the channel should be holding at a given point in
time). Such a model serves at least two related purposes.
First, it serves to drive the implementation of procedures
for either side of the channel. Second, it describes what a
passive adversary would see (given implementations that
realize the model), and gives the communicating parties
some defense against active adversaries. The model tells
a receiving party exactly what types of messages may be
received next; receiving any other type of message (i.e.,
observing an invalid next channel state) provides a signal
to commence error handling, or defensive measures.

Consider the partial model in Figure 3 for an exchange
of ciphertexts that mimic various types of HTTP mes-
sages. The states of this model represent effective states
of the shared channel (i.e., what message type is to ap-
pear next on the channel). Let us refer to the first-sender
as the client, and the first-receiver as the server. In the
beginning, both client and server are in the start state.
The client moves to state http_get_js with probability
0.25, state http_get_png with probability 0.7, and state
NONE with probability 0.05. In transitioning to any
of these states, the empty action-block is executed (de-
noted by ε), meaning there are no actions on the tran-
sition. Note that, at this point, the server knows only
the set {http_get_js, http_get_png,NONE} of valid states
and the probabilities with which they are selected.

Say that the client moves to state http_get_png, thus
the message that should be placed on the channel is to
be of the http_get_png type. The action-block Bget_png
gives the set of actions to be carried out in order to affect
this. We have annotated the actions with “c:” and “s:”
to make it clear which meant to be executed by the client
and which are meant to be executed by the server, respec-

http_get_js

http_get_png

NONE

http_ok_js

http_404

http_ok_png

ERROR
(parse fail)

ERROR
(decrypt fail)

Bget_png:
  c: X=encrypt(M,http_get_png)
  c: Y=postprocess(X,http_get_png)
  s: X=parse(Y,http_get_png)
  s: M=decrypt(X,http_get_png)

Bget_png , 0.1

Bget_png

Bget_png

Bget_js , 0.85

 ε , .25 

(error-handling paths)

Bget_js , 0.15

Bget_png , 0.9

Berr-parse

Berr-decrpyt

B404

Bok_png

Bok_js

START

 ε , .7 

 ε , .05 

 ε , 1.0 

Figure 3: A partial graphical representation of a Marionette
model for an HTTP exchange. (Transitions between http_get_js

and error states dropped to avoid clutter.) The text discusses
paths marked with bold arrows; normal states on these are blue,
error states are orange.

tively. The client is to encrypt a message M using the pa-
rameters associated to the handle http_get_png, and then
apply any necessary post-processing in order to produce
the (ciphertext) message Y for sending. The server, is
meant to parse the received Y (e.g. to undo whatever
was done by the post-processing), and then to decrypt
the result.

If parsing and decrypting succeed at the server, then
it knows that the state selected by the client was
http_get_png and, hence, that it should enter http_404
with probability 0.1, or http_ok_png with probability
0.9. If parsing fails at the server (i.e. the server action
parse(Y,http_get_png) in action block Bget_png fails) then
the server must enter state ERROR (parse fail). If parsing
succeeds but decryption fails (i.e., the server action de-
crypt(X,http_get_png) in action block Bget_png fails) then
the server must enter state ERROR (decrypt fail). At this
point, it is the client who must keep alive a front of po-
tential next states, namely the four just mentioned (error
states are shaded orange in the figure). Whichever state
the server chooses, the associated action-block is exe-
cuted and progress through the model continues until it
reaches the specified finish state.

Models provide a useful design abstraction for spec-
ifying allowable sequencings of ciphertext messages, as
well as the particular actions that the communicating par-
ties should realize in moving from message to message
(e.g., encrypt or decrypt according to a particular cipher-
text format). In practice, we do not expect sender and
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receiver instantiations of a given model will be identical.
For example, probabilistic or nondeterministic choices
made by the sender-side instantiation of a model (i.e.,
which transition was just followed) will need to be “de-
terminized” by the receiver-side instantiation. This de-
terminization process may need mechanisms to handle
ambiguity. In Section 7 we will consider concrete speci-
fications of models.

4 Templates and Template Grammars

In an effort to allow fined-grained control over the for-
mat of individual ciphertexts on the wire, we introduce
the ideas of ciphertext-format templates, and grammars
for creating them. Templates are, essentially, partially
specified ciphertext strings. The unspecified portions are
marked by special placeholders, and each placeholder
will ultimately be replaced by an appropriate string, (e.g.,
a string representing a date, a hexadecimal value repre-
senting a color, a URL of a certain depth). To compactly
represent a large set of these templates, we will use a
probabilistic context-free grammar. Typically, a gram-
mar will create templates sharing a common motif, such
as HTTP request messages or CSS files.

Template Grammars. A template grammar G =
(V,Σ, R, S, p) is a probabilisitic CFG, and we refer to
strings T ∈ L(G) as templates. The set V is the set of
non-terminals, and S ∈ V is the starting non-terminal.
The set Σ = Σ ∪ P consists of two disjoint sets of sym-
bols: Σ are the base terminals, and P is a set of place-
holder terminals (or just placeholders). Collectively, we
refer to Σ as template terminals. The set of rules R con-
sists of pairs (v, β) ∈ V × (V ∪ Σ)∗, and we will some-
times adopt the standard notation v → β for these. Fi-
nally, the mapping p : R → (0, 1] associates to each rule
a probability. We require that the sum of values p(v, ·)
for a fixed v ∈ V and any second component is equal
to one. For simplicity, we have assumed all probabil-
ities are non-zero. The mapping p supports a method
for sampling templates from L(G). Namely, beginning
with S, carry out a leftmost derivation and sample among
the possible productions for a given rule according to the
specified distribution.

Template grammars produce templates, but it is not
templates that we place on the wire. Instead, a tem-
plate T serves to define a set of strings in Σ∗, all of which
share the same template-enforced structure. To produce
these strings, each placeholder γ ∈ P has associated to
it a handler. Formally, a handler is a algorithm that takes
as inputs a template T ∈ Σ∗ and (optionally) a bit string
c ∈ {0, 1}∗, and outputs a string in Σ∗ or the distin-
guished symbol ⊥, which denotes error. A handler for γ

scans T and, upon reading γ, computes a string in s ∈ Σ∗

and replaces γ with s. The handler halts upon reaching
the end of T , and returns the new string T ′ that is T but
will all occurrences of γ replaced. If a placeholder γ is
to be replaced with a string from a particular set (say a
dictionary of fixed strings, or an element of a regular lan-
guage described by some regular expression), we assume
the restrictions are built into the handler.

As an example, consider the following (overly simple)
production rules that could be a subset of a context-free
grammar for HTTP requests/responses.

〈header〉 → 〈date_prop〉: 〈date_val〉\r\n
| 〈cookie_prop〉: 〈cookie_val〉\r\n

〈date_prop〉 → Date

〈cookie_prop〉 → Cookie

〈date_val〉 → γdate

〈cookie_val〉 → γcookie

To handle our placeholders γdate and γcookie,
we might replace the former with the result of
FTE[”(Jan|Feb|...”)], and the latter with the result of
running FTE[”([a-zA-Z...)”]. In this example our FTE-
based handlers are responsible for replacing the place-
holder with a ciphertext that is in the language of its in-
put regular expression. To recover the data we parse the
string according to the the template grammar rules, pro-
cessing terminals in the resultant parse tree that corre-
spond to placeholders.

5 System Architecture

In Section 3 we described how a Marionette model can
be used to capture stateful and probabilistic communica-
tions between two parties. The notion of abstract actions
(and action-blocks) gives us a way to use models gener-
atively, too. In this section, we give a high-level descrip-
tion of an architecture that supports this use, so that we
may transport arbitrary datastreams via ciphertexts that
adhere to our models. We will discuss certain aspects
of our design in detail in subsequent sections. Figure ??
provides a diagram of this client-server proxy architec-
ture. In addition to models, this architecture consists of
the following components:

• The client-side driver runs the main event loop, in-
stantiates models (from a model specification file,
see Section 6.3), and destructs them when they have
reached the end of their execution. The complimen-
tary receiver-side broker is responsible for listening
to incoming connections and constructing and de-
structing models.

• Plugins are the mechanism that allow user-specified
actions to be invoked in action-blocks. We discuss
plugins in greater detail in Section 6.2.
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Figure 4: A high-level diagram of the Marionette client-server architecture and its major components for the client-server stream
of communications in the Marionette system.

• The client-side multiplexer is an interface that al-
lows plugins to serialize incoming datastreams into
bitstrings of precise lengths, to be encoded into
messages via plugins. The receiver-side demulti-
plexer parses and deserializes streams of cells to
recover the underlying datastream. We discuss
the implementation details of our (de)multiplexer
in Section 6.1.

• A channel is a logical construct that connects Mar-
ionette models to real-world (e.g., TCP) data con-
nections, and represents the communications be-
tween a specific pair of Marionette models. We note
that, over the course of a channel’s lifetime, it may
be associated with multiple real-world connections.

Let’s start by discussing how data traverses the compo-
nents of a Marionette system. A datastream’s first point
of contact with the system is the incoming multiplexer,
where it enters a FIFO buffer. Then a driver invokes a
model that, in turn, invokes a plugin that wants to encode
n bits of data into a message. Note that if the FIFO buffer
is empty, the multiplexer returns a string that contains no
payload data and is padded to n bits. The resultant mes-
sage produced by the plugin is then relayed to the server.
Server-side, the broker attempts to dispatch the received
message to a model. There are three possible outcomes
when the broker dispatches the message: (1) an active
model is able to process it, (2) a new model needs to be
spawned, or (3) an error has occurred and the message
cannot be processed. In case 1 or 2, the cell is forwarded
to the demultiplexer, and onward to its ultimate destina-
tion. In case 3, the server enters an error state for that
message, where it can respond to a non-Marionette con-
nection. We also note that the Marionette system can, in
fact, operate with some of its components disabled. As
an example, by disabling the multiplexer/demultiplexer
we have a traffic generation system that doesn’t carry ac-
tual data payloads, but generates traffic that abides by our
model(s). This shows that there’s a clear decoupling of
our two main system features: control over cover traffic
and relaying datastreams.

6 Implementation

Our implementation of Marionette consists of two com-
mand line applications, a client and server, which share
a common codebase, and differ only in how they inter-
pret a model. (e.g., initiate connection vs. receive con-
nection) Given a model and its current state, each party
determines the set of valid transitions and selects one ac-
cording to the model’s transition probabilities. In cases
where normal transitions and error transitions are both
valid, the normal transitions are preferred.

Our prototype of Marionette is written in roughly three
thousand lines of Python code. All source code and en-
gineering details are available as free and open-source
software2. In this section, we will provide an overview
of some of the major engineering obstacles we overcame
to realize Marionette.

6.1 Record Layer
First, we will briefly describe the Marionette record layer
and its objectives and design. Our record layer aims to
achieve three goals: (1) enable multiplexing and reliabil-
ity of multiple, simultaneous datastreams, (2) aid Mari-
onette in negotiating and initializing models, and (3) pro-
vide privacy and authenticity of payload data. We imple-
ment the record layer using variable-length cells, as de-
picted in Figure 5, that are relayed between the client and
server. In this section, we will walk through each of our
goals and discuss how our record layer achieves them.

Multiplexing of datastreams. Our goal is to enable re-
liability and in-order delivery of datastreams that we tun-
nel through the Marionette system. If multiple streams
are multiplexed over a single marionette channel, it must
be capable of segmenting these streams. We achieve this
by including a datastream ID and datastream sequence
number in each cell, as depicted in Figure 5. Sender
side, these values are populated at the time of the cell

2https://github.com/kpdyer/marionette
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cell length

payload length

model UUID

model flags model instance ID

datastream ID

datastream flags datastream sequence number

payload (variable length)

padding (variable length)

Figure 5: Format of the plaintext Marionette record layer cell.

creation. Receiver side, these values used to reassem-
ble streams and delegate them to the appropriate data
sink. The datastream flags field may have the value of
OPEN, RELAY or CLOSE, to indicate the state of the
datastream.

Negotiation and initialization of Marionette models.
Upon accepting an incoming message, a Marionette re-
ceiver iterates through all transitions from the given
model’s start state. If one of the action blocks for a transi-
tion is successful, the underlying record layer (Figure 5)
is recovered and then processed. The model flags field,
in Figure 5, may have three values: START, RUNNING,
or END. A START value is set when this is the first
cell transmitted by this model, otherwise the value is
set to RELAY until the final transmission of the model
where an END is sent. The model UUID field is a global
identifier that uniquely identifies the model that trans-
mitted the message. The model instance ID is used to
uniquely identify the instance of the model that relayed
the cell from amongst all currently running instances of
the model.

For practical purposes, in our proof of concept, we as-
sume that a Marionette instance ID is created by either
the client or server, but not both. By convention, the
party that sends the first information-carrying message
(i.e., first-sender) initiates the instance ID. Once estab-
lished, the model instance ID has two potential uses. In
settings where we have a proxy between the Marionette
client and server, the instance ID can be used to deter-
mine the model that originated a message despite multi-
plexing performed by the proxy. In other settings, the in-
stance ID can be used to enhance performance and seed
a random number generator for shared randomness be-
tween the client and server.

Encryption of the cell. We encrypt each record-
layer cell M using a slightly modified encrypt-
then-MAC authenticated encryption scheme, namely
C = AESK1(IV1‖〈|M |〉)‖CTR[AES]IV2

K1
(M)‖T , where

IV1 = 0‖R and IV2 = 1‖R for per-message random R.
The first component of the encrypted record is a header.
Here we use AES with key K1 to encrypt IV1 along with
an encoding of the length of M 3. The second compo-
nent is the record body, which is the counter-mode en-
cryption of M under IV2 and key K1, using AES as the
underlying blockcipher4. Note that CTR can be length-
preserving, not sending IV2 as part of its output, be-
cause IV2 is recoverable from IV1. The third and com-
ponent is an authentication tag T resulting from run-
ning HMAC-SHA256K2 over the entire record header
and record body. One decrypts in the standard manner
for encrypt-then-MAC.

6.2 Plugins

User-specified plugins are used to execute actions de-
scribed in each model’s action blocks. A plugin is called
by the Marionette system with four parameters: the cur-
rent channel, global variables shared across all active
models, local variables scoped to our specific model, and
the input parameters for this specific plugin (e.g., the
FTE regex or the template grammar). It is the job of
the plugin to attempt its action given the input parame-
ters. By using global and local dictionaries, plugins can
maintain long-term state and even enable message pass-
ing between models. We place few restrictions on plu-
gins, however we do require that if a plugin fails (e.g.,
couldn’t receive a message) it must return a failure flag
and revert any changes it made when attempting to per-
form the action. Meanwhile, if it encounters a fatal error
(e.g., channel is unexpectedly closed) then it must throw
an exception.

To enable multi-level models, we provide a spawn plu-
gin that can be used to spawn new model instances. In
addition, we provide puts and gets for the purpose of
transmitting static strings. As one example, this can be
used to transmit a static, non-information carrying ban-
ner to emulate an FTP server. In addition, we imple-
mented FTE and template grammars (Section 4) as our
primary message-level plugins. Each plugin has a syn-
chronous (i.e., blocking) and asynchronous (i.e., non-
blocking) implementation. The FTE plugin is a wrapper
around the FTE5 and regex2dfa6 libraries used by the Tor
Project for FTE [15].

3One could also use the cell-length field in place of 〈|M |〉.
4Since IV1 �= IV2 we enforce domain separation between the uses

of AESK1. Without this we would need an extra key.
5https://github.com/kpdyer/libfte
6https://github.com/kpdyer/regex2dfa
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6.3 The Marionette DSL
Finally, we present a domain-specific language that can
be used to compactly describe Marionette models. We
refer to the formats that are created using this language
as Marionette model specifications or model specifica-
tions for short. Figure 6 shows the Marionette modeling
language syntax.

We have two primary, logical blocks in the model
specification. The connection block is responsible for
establishing model states, actions blocks that are exe-
cuted upon a transition, and transition probabilities. An
error transition may be specified for each state and is
taken if all other potential transitions encounter a fatal
error. The action block is responsible for defining a set
of actions, which is a line for each party (client or server)
and the plugin the party should execute. Let’s illustrate
the Marionette language by considering the following ex-
ample.

Example: Simple HTTP model specification. Re-
call the model in Figure 3, which (partially) captures an
HTTP connection where the first client-server message
is an HTTP get for a JS or PNG file. Translating the
diagram into our Marionette language is a straightfor-
ward process. First, we establish our connection block
and specify tcp and port 80 — the server listens on this
port and the client connects to it. For each transition we
create an entry in our connection block. As an example,
we added a transition between the http_get_png and
http_404 state with probability 0.1. For this transition
we execute the get_png action block. We repeat this
process for all transitions in the model ensuring that we
have the appropriate action block for each transition.

For each action block we use synchronous FTE. One
party is sending, one is receiving, and neither party can
advance to the next state until the action successfully
completes. Marionette transparently handles the open-
ing and closing of the underlying TCP connection.

7 Case Studies

We evaluate the Marionette implementation described
in Section 6 by building model specifications for a
breadth of scenarios: protocol misidentification against
regex-based DPI, protocol compliance for complex state-
ful protocols, traversal of proxy systems that actively ma-
nipulate Marionette messages, controlling statistical fea-
tures of traffic, and responding to network scanners. We
then conclude this section with a performance analysis
of the formats considered.

For each case study, we analyze the performance
of Marionette for the given model specification using

connection([connection_type]):
start [dst] [block_name] [prob | error]
[src] [dst] [block_name] [prob | error]
...
[src] end [block_name] [prob | error]

action [block_name]:
[client | server] plugin(arg1, arg2, ...)
...

connection(tcp, 80):
start http_get_js NULL 0.25
start http_get_png NULL 0.7
http_get_png http_404 get_png 0.1
http_get_png http_ok_png get_png 0.9
http_ok_png ...

action get_png:
client fte.send("GET /\w+ HTTP/1\.1...")

action ok_png:
server fte.send("HTTP/1\.1 200 OK...")

...

Figure 6: Top: The Marionette DSL. The connection block is
responsible for establishing the Marionette model, its states and
transitions probabilities. Optionally, the connection_type
parameter specifies the type of channel that will be used for the
model. Bottom: The partial model specification that imple-
ments the model from Figure 3.

our testbed. In our testbed, we deployed our Marionette
client and server on Amazon Web Services m3.2xlarge
instances, in the us-west (Oregon) and us-east (N. Vir-
ginia) zones, respectively. These instances include 8 vir-
tual CPUs based on the Xeon E5-2670 v2 (Ivy Bridge)
processor at 2.5GHz and 30GB of memory. The aver-
age round-trip latency between the client and server was
75ms. Downstream and upstream goodput was measured
by transmitting a 1MB file, and averaged across 100 tri-
als. Due to space constraints we omit the full model
specifications used in our experiments, but note that each
of these specifications is available with the Marionette
source code7.

7.1 Regex-Based DPI

As our first case study, we confirm that Marionette is able
to generate traffic that is misclassified by regex-based
DPI as a target protocol of our choosing. We are repro-
ducing the tests from [15], using the regular expressions
referred to as manual-http, manual-ssh and manual-smb
in order to provide a baseline for the performance of the
Marionette system under the simplest of specifications.
Using these regular expressions, we engineered a Mari-

7https://github.com/kpdyer/marionette



376 24th USENIX Security Symposium USENIX Association

Misclassification
Target Protocol bro [28] YAF [22]

HTTP (manual-http from [15]) 100% 100%
SSH (manual-ssh from [15]) 100% 100%

SMB (manual-smb from [15]) 100% 100%

Figure 7: Summary of misclassification using existing FTE for-
mats for HTTP, SSH, and SMB.

onette model that invokes the non-blocking implementa-
tion of our FTE plugins.

For each configuration we generated 100 datastreams
in our testbed and classified this traffic using bro [28]
(version 2.3.2) and YAF [22] (version 2.7.1.) We con-
sidered it a success if the classifier reported the manual-
http datastreams as HTTP, the manual-ssh datastreams
as SSH, and so on. In all six cases (two classifiers,
three protocols) we achieved 100% success. These re-
sults are summarized in Figure 7. All three formats
exhibited similar performance characteristics, which is
consistent with the results from [15]. On average, we
achieved 68.2Mbps goodput for both the upstream and
downstream directions, which actually exceeds the good-
put reported in [15].

7.2 Protocol-Compliance

As our next test, we aim to achieve protocol compli-
ance for scenarios that require a greater degree of inter-
message and inter-connection state. In our testing we
created model specifications for HTTP, POP3, and FTP
that generate protocol-compliant (i.e., correctly classi-
fied by bro) network traffic. The FTP format was the
most challenging of the three, so we will use it as our
illustrative example.

An FTP session in passive mode uses two data con-
nections: a control channel and a data channel. To
enter passive mode a client issues the PASV com-
mand, and the server responds with an address in
the form (a,b,c,d,x,y). As defined by the FTP
protocol [30], the client then connects to TCP port
a.b.c.d:(256*x+y) to retrieve the file requested in
the GET command.

Building our FTP model specification. In building
our FTP model we encounter three unique challenges,
compared to other protocols, such as HTTP:

1. FTP has a range of message types, including user-
names, passwords, and arbitrary files, that could be
used to encode data. In order to maximize potential
encoding capacity, we must utilize multiple encod-
ing strategies (e.g., FTE, template grammars, etc.)

2. The FTP protocol is stateful (i.e., message order
matters) and has many message types (e.g., USER,
PASV, etc,) which do not have the capacity to en-
code information.

3. Performing either an active or passive FTP file
transfer requires establishing a new connection and
maintaining appropriate inter-connection state.

To address the first challenge, we utilize Marionette’s
plugin architecture, including FTE, template grammars,
multi-layer models, and the ability to send/receive static
strings. To resolve the second, we rely on Marionette’s
ability to model stateful transitions and block until,
say, a specific static string (e.g., the FTP server ban-
ner) has been sent/received. For the third, we rely not
only on Marionette’s ability to spawn a new model, but
we also rely on inter-model communications. In fact,
we can generate the listening port server-side on the
the fly and communicate it in-band to the client via
the 227 Entering Passive Mode (a,b,c,d,x,y)

command, which is processed by a client-side template-
grammar handler to populate a client-side global vari-
able. This global variable value is then used to inform
the spawned model as to which server-side TCP port it
should connect.

Our FTP model specification relies upon the up-
stream password field, and upstream (PUT) and down-
stream (GET) file transfers to relay data. In our testbed
the FTP model achieved 6.6Mbps downstream and
6.7Mbps upstream goodput.

7.3 Proxy Traversal

As our next case study, we evaluate Marionette in a set-
ting where a protocol-enforcing proxy is positioned be-
tween the client and server. Given the prevalence of the
HTTP protocol and breadth of proxy systems available,
we focus our attention on engineering Marionette model
specifications that are able to traverse HTTP proxies.

When considering the presence of an HTTP proxy,
there are at least five ways it could interfere with our
communications. A proxy could: (1) add HTTP headers,
(2) remove HTTP headers, (3) modify header or payload
contents, (4) re-order/multiplex messages, or (5) drop
messages. Marionette is able to handle each of these
cases with only slight enhancements to the plugins we
have already described.

We first considered using FTE to generate ciphertexts
that are valid HTTP messages. However, FTE is sensi-
tive to modifications to its ciphertexts. As an example,
changing the case of a single character of an FTE cipher-
text would result in FTE decryption failure. Hence, we
need a more robust solution.
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Fortunately, template grammars (Section 4) give us
fine-grained control over ciphertexts and allows us to
tolerate ciphertext modification, and our record layer
(Section 6.1) provides mechanisms to deal with stream
multiplexing, message re-ordering and data loss. This
covers all five types of interference mentioned above.

Building our HTTP template grammar. As a proof
of concept we developed four HTTP template grammars.
Two languages that are HTTP-GET requests, one with
a header field of Connection: keep-alive and one
with Connection: close. We then created analo-
gous HTTP-OK languages that have keep-alive and close
headers. Our model oscillates between the keep-alive
GET and OK states with probability 0.9, until it transi-
tions from the keep-alive OK state to the GET close state,
with probability 0.1

In all upstream messages we encode data into the URL
and cookie fields using the FTE template grammar han-
dler. Downstream we encode data in the payload body
using the FTE handler and follow this with a separate
handler to correctly populate the content-length field.

We provide receiver-side HTTP parsers that validate
incoming HTTP messages (e.g., ensure content length is
correct) and then extract the URL, cookie and payload
fields. Then, we take each of these components and re-
assemble them into a complete message, independent of
the order they appeared. That is, the order of the incom-
ing headers does not matter.

Coping with multiplexing and re-ordering. The tem-
plate grammar plugin resolves the majority of issues that
we could encounter. However, it does not allow us to
cope with cases where the proxy might re-order or multi-
plex messages. By multiplex, we mean that a proxy may
interleave two or more Marionette TCP channels into a
single TCP stream between the proxy and server. In such
a case, we can no longer assume that two messages from
the same incoming datastream are, in fact, two sequential
messages from the same client model. Therefore, in the
non-proxy setting there is a one-to-one mapping between
channels and server-side Marionette model instances. In
the proxied setting, the channel to model instance map-
ping may be one-to-many.

We are able to cope with this scenario by relying upon
the non-determinism of our Marionette models, and our
record layer. The server-side broker attempts to execute
all action blocks for available transitions across all active
models. If no active model was able to successfully pro-
cess the incoming message, then the broker (Section 5)
attempts to instantiate a new model for that message. In
our plugins we must rely upon our record layer to deter-
mine success for each of these operations. This allows us

to deal with cases where a message may successfully de-
code and decrypt, but the model instance ID field doesn’t
match the current model.

Testing with Squid HTTP proxy. We validated our
HTTP model specification and broker/plugin enhance-
ments against the Squid [39] caching proxy (version
3.4.9). The Squid caching proxy adds headers, removes
header, alters headers and payload contents, and re-
orders/multiplexes datastreams. We generated 10,000
streams through the Squid proxy and did not encounter
any unexpected issues, such as message loss.

In our testbed, our HTTP model specification for use
with Squid proxy achieved 5.8Mbps downstream and
0.41Mbps upstream goodput, with the upstream band-
width limited by the capacity of the HTTP request for-
mat.

7.4 Traffic Analysis Resistance

In our next case study, we control statistical features of
HTTP traffic. As our baseline, we visited Amazon.com
with Firefox 35 ten times and captured all resultant net-
work traffic8. We then post-processed the packet cap-
tures and recorded the following values: the lengths of
HTTP response payloads, the number of HTTP request-
response pairs per TCP connection, and the number of
TCP connections generated as a result of each page visit.
Our goal in this section is to utilize Marionette to model
the traffic characteristics of these observed traffic pat-
terns to make network sessions that “look like" a visit
to Amazon.com. We will discuss each traffic character-
istic individually, then combine them in a single model
to mimic all characteristics simultaneously.

Message lengths. To model message lengths, we
started with the HTTP response template grammar de-
scribed in Section 7.3. We adapted the response body
handler such that it takes an additional, integer value as
input. This integer dictates the output length of the HTTP
response body. On input n, the handler must return an
HTTP response payload of exactly length n bytes.

From our packet captures of Amazon.com we
recorded the message length for each observed HTTP
response payload. Each time our new HTTP response
template grammar was invoked by Marionette, we sam-
pled from our recorded distribution of message lengths
and used this value as input to the HTTP response tem-
plate grammar. With this, we generate HTTP response
payloads with lengths that match the distribution of those
observed during our downloads of Amazon.com.

8Retrieval performed on February 21, 2015.
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Figure 8: A comparison of the aggregate traffic features for ten downloads of amazon.com using Firefox 35, compared to the traffic
generated by ten executions of the Marionette model mimicking amazon.com.

Messages per TCP connection. We model the num-
ber of HTTP request-response pairs per TCP connection
using the following strategy, which employs hierarchi-
cal modeling. Let’s start with the case where we want to
model a single TCP connection that has n HTTP request-
response pairs. We start by creating a set of models
which contain exactly n request-response pair with prob-
ability 1, for all n values of interest. We can achieve this
by creating a model Mn with n+ 1 states, n transitions,
and exactly one path. From the start state each transi-
tion results in an action block that performs one HTTP
request-response. Therefore, Mn models a TCP connec-
tion with exactly n HTTP request-response pairs.

Then, we can employ Marionette’s hierarchical model
structure to have fine-grained control over the number
of HTTP request-response pairs per connection. Let’s
say that we want to have n1 request-response pairs with
probability p1, n2 with probability p2, and so on. For
simplicity, we assume that all values ni are unique, all
values pi are greater than 0, and Σm

i=0pi = 1. For each
possible value of ni we create a model Mni

, as described
above. Then, we create a single parent model which has
a start state with a transition that spawns Mn1 with prob-
ability p1, Mn2 with probability p2, and so on. This en-
ables us to create a single, hierarchical model that that
controls the number of request-response pairs for arbi-
trary distributions.

Simultaneously active connections. Finally, we aim
to control the total number of connections generated by
a model during an HTTP session. That is, we want our
model to spawn ni connections with probability pi, ac-
cording to some distribution dictated by our target. We
achieve this by using the same hierarchical approach as
the request-response pairs model, with the distinction
that each child model now spawns ni connections.

Building the model and its performance. For each
statistical traffic feature, we analyzed the distribution of

values in the packet captures from our Amazon.com vis-
its. We then used the strategies in this section to construct
a three-level hierarchical model that controls all of the
traffic features simultaneously: message lengths, number
of request-response pairs per connection, and the number
of simultaneously active TCP connections. With this new
model we deployed Marionette in our testbed and cap-
tured all network traffic it generated. In Figure 8 we have
a comparison of the traffic features of the Amazon.com

traffic, compared to the traffic generated by our Mari-
onette model.

In our testbed, this model achieved 0.45Mbps down-
stream and 0.32Mbps upstream goodput. Compared
to Section 7.3 this decrease in performance can be ex-
plained, in part, by the fact that Amazon.com has many
connections with only a single HTTP request-response,
and very short messages. As one example, the most
common payload length in the distribution was 43 bytes.
Consequently, the majority of the processing time was
spent waiting for setup and teardown of TCP connec-
tions.

7.5 Resisting Application Fingerprinting

In our final case study, we evaluate Marionette’s abil-
ity to resist adversaries that wish to identify Marionette
servers using active probing or fingerprinting methods.
We assume that an adversary is employing off-the-shelf
tools to scan a target host and determine which services
it is running. An adversary may have an initial goal to
identify that a server is running Marionette and not an
industry-standard service (e.g., Apache, etc.). Then, they
may use this information to perform a secondary inspec-
tion or immediately block the server. This problem has
been shown to be of great practical importance for ser-
vices such as Tor [41] that wish to remain undetected in
the presence of such active adversaries.

Our goal is to show that Marionette can coerce finger-
printing tools to incorrectly classify a Marionette server
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connection(tcp, 8080):
start upstream http_get 1.0
upstream downstream http_ok 1.0
upstream downstream_err http_ok_err error
...

action http_ok_err:
server io.puts("HTTP/1.1 200 OK\r\n" \

+ "Server: Apache/2.4.7\r\n..."
...

Figure 9: Example HTTP model specification including active
probing resistance.

as a service of our choosing. As one example, we’ll show
that with slight embellishments to the formats we de-
scribe in Section 7.1 and Section 7.2, we can convince
nmap [4] that Marionette is an instance of an Apache
server.

7.5.1 Building Fingerprinting-Resistant Formats

In our exploration of fingerprinting attacks we consider
three protocols: HTTP [16], SSH [46], and FTP [30]. For
HTTP and SSH we started with the formats described in
Section 7.1, and for FTP we started the format described
in Section 7.2. We augmented these formats by adding
an error transition (Section 3) that invokes an action that
mimics the behavior of our target service. This error
transition is traversed if all other potential transitions en-
counter fatal errors in their action blocks, which occur if
an invalid message is received.

As an example, for our HTTP format we introduce an
error transition to the downstream_err state. This tran-
sition is taken if the http_ok action block encounters a
fatal error when attempting to invoke an FTE decryption.
In this specific format, a fatal error in the http_ok ac-
tion block is identified if an invalid message is detected
when attempting to perform FTE decryption (i.e., doesn’t
match the regex or encounters a MAC failure). In the
example found in Figure 9, upon encountering an error,
we output the default response produced when request-
ing the index file from an Apache 2.4.7 server.

7.5.2 Fingerprinting Tools

For our evaluation we used nmap [4], Nessus [3], and
metasploit [2], which are three commonly used tools for
network reconnaissance and application fingerprinting.
Our configuration was as follows.

nmap: We used nmap version 6.4.7 with version detec-
tion enabled and all fingerprinting probes enabled. We
invoked nmap via the command line to scan our host.

Fingerprint Scanner
Protocol Target nmap Nessus metasploit
HTTP Apache 2.4.7 � � �
FTP Pure-FTPd 1.0.39 � � �
SSH OpenSSH 6.6.1 � � �

Figure 10: A � indicates that Marionette was able to successful
coerce the fingerprinting tool into reporting that the Marionette
server is the fingerprint target.

Nmap’s service and version fields were used to identify
its fingerprint of the target.
Nessus: For Nessus we used version 6.3.6 and performed
a Basic Network Scan. We invoked Nessus via its REST
API to start the scan and then asynchronously retrieved
the scan with a second request. The reported fingerprint
was determined by the protocol and svc_name for all
plugins that were triggered.
metasploit: We used version 4.11.2 of metasploit.
For fingerprinting SSH, FTP, and HTTP we used the
ssh_version , ftp_version and http_version

modules, respectively. For each module we set the
RHOST and RPORT variable to our host and the reported
fingerprint was the complete text string returned by the
module.

7.5.3 Results

We refer to the target or fingerprint target as the appli-
cation that we are attempting to mimic. To establish
our fingerprint targets we installed Apache 2.4.7, Pure-
FTPd 1.0.39 and OpenSSH 6.6.1 on a virtual machine.
We then scanned each of these target applications with
each of our three fingerprinting tools and stored the fin-
gerprints.

To create our Marionette formats that mimic these tar-
gets, we added error states that respond identically to our
target services. As an example, for our Apache 2.4.7, we
respond with a success status code (200) if the client re-
quests the index.html or robots.txt file. Otherwise
we respond with a File Not Found (404) error code. Each
server response includes a Server: Apache 2.4.7

header. For our FTP and SSH formats we used a sim-
ilar strategy. We observed the request initiated by each
probe, and ensured that our error transitions triggered ac-
tions that are identical to our fingerprinting target.

We then invoked Marionette with our three new for-
mats and scanned each of the listening instances with our
fingerprinting tools. In order to claim success, we require
two conditions. First, the three fingerprinting tools in
our evaluation must report the exact same fingerprint as
the target. Second, we require that a Marionette client
must be able to connect to the server and relay data,
as described in prior sections. We achieved this for all
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Percent of Time Blocking
on Network I/O

Section Protocol Client Server
7.1 HTTP, SSH, etc. 56.9% 50.1%
7.2 FTP, POP3 90.1% 80.5%
7.3 HTTP 84.0% 96.8%
7.4 HTTP 65.5% 98.8%

Figure 11: Summary of case study formats and time spent
blocking on network I/O for both client and server.

nine configurations (three protocols, three fingerprinting
tools) and we summarize our results in Figure 10.

7.6 Performance
In our experiments, the performance of Marionette was
dominated by two variables: (1) the structure of the
model specification and (2) the client-server latency in
our testbed. To illustrate the issue, consider our FTP for-
mat in Section 7.2 where we require nine back-and-forth
messages in the FTP command channel before we can
invoke a PASV FTP connection. This format requires
a total of thirteen round trips (nine for our messages and
four to establish the two TCP connections) before we can
send our first downstream ciphertext. In our testbed, with
a 75ms client-server latency, this means that (at least)
975ms elapse before we send any data. Therefore, a dis-
proportionately large amount of time is spent blocking
on network I/O.

In Figure 11 we give the percentage of time that our
client and server were blocked due to network I/O, for
each of the Marionette formats in our case studies. In
the most extreme case, the Marionette server for the
HTTP specification in Section 7.4 sits idle 98.8% of the
time, waiting for network events. These results sug-
gest that that certain Marionette formats (e.g., HTTP in
Section 7.4) that target high-fidelity mimicry of protocol
behaviors, network effects can dominate overall system
performance. Appropriately balancing efficiency and re-
alism is an important design consideration for Marionette
formats.

8 Conclusion

The Marionette system is the first programmable ob-
fuscation system to offer users the ability to control
traffic features ranging from the format of individual
application-layer messages to statistical features of con-
nections to dependencies among multiple connections.
In doing so, the user can choose the strategy that best
suits their network environment and usage requirements.
More importantly, Marionette achieves this flexibility
without sacrificing performance beyond what is required

to maintain the constraints of the model. This provides
the user with an acceptable trade-off between depth of
control over traffic features and network throughput. Our
evaluation highlights the power of Marionette through
a variety of case studies motivated by censorship tech-
niques found in practice and the research literature. Here,
we conclude by putting those experimental results into
context by explicitly comparing them to the state of the
art in application identification techniques, as well as
highlighting the open questions that remain about the
limitations of the Marionette system.

DPI. The most widely used method for application
identification available to censors is DPI, which can
search for content matching specified keywords or regu-
lar expressions. DPI technology is now available in a va-
riety of networking products with support for traffic vol-
umes reaching 30Gbps [11], and has been demonstrated
in real-world censorship events by China [41] and Iran
[7]. The Marionette system uses a novel template gram-
mar system, along with a flexible plugin system, to con-
trol the format of the messages produced and how data
is embedded into those messages. As such, the system
can be programmed to produce messages that meet the
requirements for a range of DPI signatures, as demon-
strated in Sections 7.1 and 7.2.

Proxies and Application Firewalls. Many large en-
terprise networks implement more advanced proxy and
application-layer firewall devices that are capable of
deeper analysis of particular protocols, such as FTP,
HTTP, and SMTP [39]. These devices can cache data
to improve performance, apply protocol-specific content
controls, and examine entire protocol sessions for indi-
cations of attacks targeted at the application. In many
cases, the proxies and firewalls will rewrite headers to en-
sure compliance with protocol semantics, multiplex con-
nections for improved efficiency, change protocol ver-
sions, and even alter content (e.g., HTTP chunking). Al-
though these devices are not known to be used by nation-
states, they are certainly capable of large traffic vol-
umes (e.g., 400TB/day [6]) and could be used to block
most current obfuscation and mimicry systems due to the
changes they make to communications sessions. Mar-
ionette avoids these problems by using template gram-
mars and a resilient record layer to combine several inde-
pendent data-carrying fields into a message that is robust
to reordering, changes to protocol headers, and connec-
tion multiplexing. The protocol compliance and proxy
traversal capabilities of Marionette were demonstrated in
Sections 7.2 and 7.3, respectively.
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Advanced Techniques. Recent papers by
Houmansadr et al. [20] and Geddes et al. [17]
have presented a number of passive and active tests
that a censor could use to identify mimicry systems.
The passive tests include examination of dependent
communication channels that are not present in many
mimicry systems, such as a TCP control channel in
the Skype protocol. Active tests include dropping
packets or preemptively closing connections to elicit
an expected action that the mimicked systems do not
perform. Additionally, the networking community have
been developing methods to tackle the problem of traffic
identification for well over a decade [9], and specific
methods have even been developed to target encrypted
network traffic [44].

To this point, there has been no evidence that these
more advanced methods have been applied in practice.
This is likely due to two very difficult challenges. First,
many of the traffic analysis techniques proposed in the
literature require non-trivial amounts of state to be kept
on every connection (e.g., packet size bi-gram distribu-
tions), as well as the use of machine learning algorithms
that do not scale to the multi-gigabit traffic volumes of
enterprise and backbone networks. As a point of com-
parison, the Bro IDS system [28], which uses DPI tech-
nology, has been known to have difficulties scaling to
enterprise-level networks [35]. The second issue stems
from the challenge of identifying rare events in large vol-
umes of traffic, commonly referred to as the base-rate fal-
lacy. That is, even a tiny false positive rate can generate
an overwhelming amount of collateral damage when we
consider traffic volumes in the 1 Gbps range. Sommer
and Paxson [32] present an analysis of the issue in the
context of network intrusion detection and Perry [29] for
the case of website fingerprinting attacks.

Regardless of the current state of practice, there may
be some cases where technological developments or a
carefully controlled network environment enables the
censor to apply these techniques. As we have shown in
Section 7.4, however, the Marionette system is capable
of controlling multiple statistical features not just within
a single connection, but also across many simultaneous
connections. We also demonstrate how our system can
be programmed to spawn interdependent models across
multiple connections in Section 7.2. Finally, in Section
7.5, we explored the use of error transitions in our mod-
els to respond to active probing and fingerprinting.

Future Work. While the case studies described in the
previous section cover a range of potential adversaries,
we note that there are still many open questions and po-
tential limitations that have yet to be explored. For one,
we do not have a complete understanding of the capa-
bilities of the probabilistic I/O automata to model long-

term state. These automata naturally exhibit the Markov
property, but can also be spawned in a hierarchical man-
ner with shared global and local variables, essentially
providing much deeper conditional dependencies. An-
other area of exploration lies in the ability of template
grammars to produce message content outside of sim-
ple message headers, potentially extending to context-
sensitive languages found in practice. Similarly, there
are many questions surrounding the development of the
model specifications themselves since, as we saw in Sec-
tion 7.6, these not only impact the unobservability of the
traffic but also its efficiency and throughput.
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