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ABSTRACT
There have long been threads of investigation into covert
channels, and threads of investigation into anonymity, but
these two closely related areas of information hiding have not
been directly associated. This paper represents an initial in-
quiry into the relationship between covert channel capacity
and anonymity, and poses more questions than it answers.
Even this preliminary work has proven difficult, but in this
investigation lies the hope of a deeper understanding of the
nature of both areas. MIXes have been used for anonymity,
where the concern is shielding the identity of the sender
or the receiver of a message, or both. In contrast to traffic
analysis prevention methods which conceal larger traffic pat-
terns, we are concerned with how much information a sender
to a MIX can leak to an eavesdropping outsider, despite the
concealment efforts of MIXes acting as firewalls.

Categories and Subject Descriptors
H.1.1 [Models and Principles]: Systems and Information
Theory—Information theory

General Terms
Theory
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1. INTRODUCTION
In this paper we discuss a particular covert channel that

exists in an anonymizing network. We discuss how less than
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perfect anonymity can inadvertently introduce covert com-
munication channels. We do not discuss “fixes” to the covert
channel problem as has been done in traffic analysis of net-
work communications [16, 17, 26, 27, 28]. Rather, our in-
terest is in measuring the covert channel capacity. These
results can assist in bounds for covert channels, and lead
one to consider different, or modified, design scenarios. Note
that even though some may consider studying covert chan-
nels as being overly paranoid, covert channels should not be
ignored [13] (a good starting place for the reader unfamiliar
with covert channels).

We present some simplified scenarios as a first step in this
analysis. Unfortunately, the mathematical details of the re-
sults showcased in this paper are quite complicated and de-
tailed. Therefore, in the interest of writing a proceedings
size paper, we have delegated the lengthier mathematical
details to the internal (publicly available) tech report [14].
We have included the mathematical and information theo-
retic details for the simpler cases in this paper, in the hopes
of giving the reader a taste for the more complex cases. We
thank a reviewer for pointing out [1, 6, 11], where some
informal studies of covert channels and anonymity were dis-
cussed.

There is always one special transmitting node in a net-
work called Alice. Alice and possibly other transmitters
have legitimate business transmitting messages to a set of
Receivers {Ri|i = 1, 2, ..., M}. These transmitters act com-
pletely independently of one another, and have no direct
knowledge of each other’s recent transmission behavior. Al-
ice may have some general knowledge of the long-term traffic
levels produced by the other transmitters, e.g., the num-
ber of other transmitters and their probabilistic behavior,
which can allow Alice to write a code that can improve the
covert communication channel’s data rate. She cannot, how-
ever, perform short-term adaptation to their behavior. Our
simplified communication is one-way (transmitters are never
receivers). We also assume that there is a clock, and that
transmissions only occur in the unit interval of time called
a tick. Any subset of transmitters can each either send a
single message to a single receiver in a tick, or not send a
message at all. Each transmitter in a tick can send to a dif-
ferent receiver, and two or more transmitters may send to



the same receiver in the same tick. All messages’ contents
are encrypted end-to-end.

There is also an eavesdropper on the network called Eve.
Since all transmissions are encrypted, they appear to the
eavesdropper Eve as having indistinguishable content. Eve
may be either a global passive adversary (GPA), with the
ability to see link traffic on every link in the network, or
a restricted passive adversary (RPA), with the ability to
observe traffic only on certain links.

Alice is not allowed any direct communication with Eve.
However, Alice can influence what Eve sees on the network.
We study network scenarios that attempt to achieve a degree
of anonymity with respect to the network communication.
That is, the networks are designed with various anonymity
devices to prevent Eve from learning who is sending a mes-
sage to whom. Even if a certain degree of anonymity is
achieved, it still may be possible for Alice to communicate
covertly with Eve. Note anonymous communication net-
works were not designed with this covert channel threat in
mind. Our study of these anonymity networks caused us
to realize that even in what appears to be a benign form
of communication, information may still leak out of the net-
work. This may cause the system designer to rethink and/or
modify their ideas.
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Eve
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Figure 1: Restricted Passive Adversary Model.

The main thrust of this paper is to analyze the situation
where there are two enclaves, communication between them
is encrypted, and packets are sent only from the first enclave
(which contains Alice) to the second (Fig. 1). Eve is able
to monitor the communication from the first enclave to the
second. Anonymity is “achieved” in that an eavesdropper
such as Eve (as RPA) does not “know” who is sending a
message (that is hidden inside of the first enclave) nor who
is receiving the message (this can only be known if one is
interior to the second enclave). Eve is only allowed to know
how many messages per tick travel from the first enclave
to the second. Nonetheless, Alice attempts to communicate
covertly with Eve.

This paper analyzes the covert communication channel
from Alice to Eve. We show that even if anonymity is taken
into consideration with respect to system design, covert chan-
nels may remain. As a baseline, we first consider situations
in which no attempt at anonymity has been made (only
encryption of the messages, so that they all appear to be
identical to an eavesdropper). Later, we will consider covert
channel capacity in networks with the stronger anonymity
controls just described.

2. BASE SCENARIO — NO ANONYMITY
One transmitter
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Figure 2: Global Passive Adversary Model.

Alice is the only transmitter, and there are M possible
receivers. Eve has knowledge of the network traffic (Eve
is a GPA — see Figure 2). The only properties that Eve
can discern from a message is its source (trivially Alice) and
its destination. Alice can use that fact to send information
covertly to Eve. In this simplistic scenario Eve can see if
Alice is sending a message, and if Alice is sending a message
Eve can determine for which receiver the message is meant.
This gives Alice the ability to signal Eve with an alphabet of
M+1 symbols: M symbols for the M different receivers, and
one symbol (“0”) for the choice of not sending a message.

Since nothing is able to interfere with Alice’s transmission,
we have a noiseless discrete memoryless channel (DMC)
modeling the covert channel, whose capacity is log(M + 1)
bits per tick.1

Several transmitters
Now, if there are other transmitters aside from Alice, but
their transmissions to any of the M receivers do not affect
Alice’s transmissions, then the covert channel from Alice to
Eve is as above. This would be the case if the links into
a receiver can handle all of the traffic meant for them. Of
course, if the link capacity into a transmitter does affect
the number of receivable transmissions then that introduces
noise into the channel and the capacity is obviously less than
log(M + 1). This is a course of research worth pursuit.

Anonymity discussion
In the above scenario Alice can obviously leak considerable
information to Eve. This is no secret to the anonymity com-
munity, e.g., [2, 3, 4, 5, 8, 18, 19, 22, 23] (while the preced-
ing list is only a representative sample of papers/URLs on
the topic, these papers relate particularly well to what we
discuss in this paper). However, in the past the concerns
have focused on retaining or regaining anonymity. It is the
“anonymity lost” that we exploit for covert communication.
If there were “perfect” anonymity,2 then we would not ex-
pect to find a covert channel.

1All logarithms are base 2, the units of capacity are bits per
tick.
2We intentionally leave the notion of perfect anonymity
as fuzzy in this paper. We ponder the somewhat circular
question: If we did have perfect anonymity, how could we



To provide anonymity, transmissions from a transmitter
are often first sent to an intermediary, such as a MIX [5]
or an onion router [18], before they are forwarded to the
receiver. This has the effect of hiding where the message
is going. Thus, these intermediaries serve to anonymize the
transmission. Of course, Eve still knows the set of those who
receive a message, and she also knows the set of those who
sent a message, but she does not know who sent a message
to whom. It is interesting that, even when we seem to have
“good” statistical anonymity, Alice may still non-trivially
be able to communicate covertly with Eve.

The use of a MIX alone does not prevent Alice from covert
communication with Eve. In fact there are two possible
situations when Alice is the only transmitter.

1. Alice signals Eve by sending or not sending a message.
A MIX alone does nothing to prevent Eve from learn-
ing this information (this is not what a MIX is designed
to do). We discuss this further at the beginning of the
next section. Therefore Alice has a noiseless channel
to Eve, with capacity = 1.

2. Alice signals Eve by sending a message to any one of M
different receivers. Eve simply sees where messages are
going when they leave the MIX (a concern well-known
to MIX designers). This allows a covert channel with
a capacity of log(M +1). If there are other users, their
behavior affects what Eve is receiving and the capacity
is then less than log(M + 1).

We will not study the latter situation in this paper, be-
cause we do not use pure MIXes. Instead, we use MIXes
acting as firewalls.

3. SCENARIO 2:
INDISTINGUISHABLE RECEIVERS-
2 MIX-FIREWALLS

Consider the situation in which every message goes into
the anonymizing intermediary referred to as a MIX [5]. The
MIX has the effect of hiding the “linking” knowledge of
which transmission is sent to which receiver. In other words,
Eve knows who is transmitting and who is receiving, but in
general, Eve does not know which transmitter is sending to
which receiver. This assumes that Eve is a GPA. Of course,
if only one transmitter is operating then the MIX hides noth-
ing. In other words the MIX gives statistical anonymity.
The amount of anonymity has been measured as the log of
the number of transmitters (anonymity set size), sometimes
in conjunction with probabilistic behavior (e.g., [3, 4, 5, 8,
23]).

The main concern of this paper is not with measuring
anonymity, rather it is the amount of covert information
that may be leaked through less than perfect anonymity.
However, we do note the very important observation from
our study: the ability to covertly communicate arises due
to a lack of anonymity. As the number of transmitters
goes up and as the transmitters behave in a “uniform (equi-
probabilistic) manner,” the anonymity increases and we will
show that the covert channel capacity diminishes.

have covert communication? We thank P. Syverson for his
thoughts.

For Scenario 2 we assume that there are transmitters Al-
ice and Cluelessi, i = 1, . . . , N . The N Cluelessi transmit-
ters behave independently of each other and of Alice, and
they all have the same time-invariant probabilistic behavior.
Throughout this paper we assume that Alice acts indepen-
dently of the Cluelessi. Alice and the Cluelessi are hidden
from Eve. They submit their messages to a MIX that also
functions as a firewall. This first MIX-firewall acts as an
exit point. This MIX-firewall sends its encrypted messages
to a second MIX-firewall that is an entrance to a second hid-
den (from Eve) enclave. We further assume that Eve only
has knowledge of how many messages come out of the first
MIX-firewall per tick, and Eve does not know to whom the
messages are going. Thus Eve is an RPA. The situation is
described by the following diagram (Figure 3). This situa-

Alice,
Cluelessi

// MIX-firewall

Eve

Receivers MIX-firewalloo oo

Figure 3: MIX-firewalls with Restricted Passive Ad-
versary.

tion is realistic3 if the MIXes are acting as (first) firewall exit
and (second) entrance points, or if the MIXes are onion-type
routers acting as firewalls. Therefore, the only knowledge
that Eve can get by eavesdropping is the number of mes-
sages per tick passing between the two MIX-firewalls. In
other words, every tick, Eve observes the number of packets
leaving the MIX-firewall and “receives” some number from
the set {0, 1, · · · , N + 1}.

Therefore the only quantity observable by Eve that Al-
ice can affect, per tick, is the number of messages that Eve
counts. This covert channel is a discrete memoryless chan-
nel with noise since the Cluelessi randomly affect the out-
put. Shannon’s information theory [24] tell us how useful
the channel is.

Let us go back to the base scenario; here we stated that
the capacity is obviously log(M +1). How do we know that
some other exploitation of the base scenario will not give
us a higher capacity? The reason is that there are at most
M + 1 symbols in whatever exploitation we use, and if the
channel is noiseless we have maximized the capacity (this is
related to the maximum entropy as discussed in [15].) For
Scenario 2 capacity cannot be explained so easily and is the
major study of this paper.

Keep in mind that for Scenario 2 it does not matter if there
is one receiver or there are one hundred and one receivers.
Eve can only count, and Alice or Cluelessi can only send

3Consider the case of packets from one LAN/enclave be-
ing sent to another LAN/enclave using IPSEC tunneling
[10]. In this case, an eavesdropper can only count the num-
ber of outgoing messages destined for the receiving enclave.
What goes on inside each LAN/enclave is hidden from an
eavesdropper. If UDP with no application level ACKs is
employed, communication is only one-way [20].



one message per tick. Therefore the number or receivers
does not matter. It is only important that there is at least
one receiver.

We break Scenario 2 down into four cases: 2.0, 2.1, 2.2,
and 2.3. Case 2.3 is the general form of Scenario 2 and the
first three are simplified special cases.

3.1 Two special cases of Scenario 2: — Alice
alone, and with and one additional trans-
mitter

Case 2.0 — Alice
This is the case where N = 0. Alice is the only transmitter.
Alice sends either 0 (by not sending a message) or 0c (by
sending a message). Eve receives either e0 = 0 (Alice did
nothing) or e1 = 1 (Alice sent a message to a receiver). The
capacity of this noiseless covert channel is 1.

Note though the capacity is the maximum, over the prob-
ability x for Alice inputting a 0, of the mutual information
I(E,A). A is the distribution for Alice described by x, and
E is the distribution for Eve. Since there is no noise, I is sim-
ply the entropy H(E) describing Eve (which is maximized
to 1 when x = .5).

I(E, A) = H(E) = −x log x − (1 − x) log(1 − x).

These terms are made precise later in this section.
Case 2.1 — Alice and one additional transmitter
(Clueless)
In this case N = 1. Therefore, Eve receives:

• 0 if neither Alice nor Clueless transmit;

• 1 if Alice does not transmit and Clueless does transmit,
or Clueless transmits and Alice does not; or

• 2 if both Alice and Clueless transmit.

A is the input random variable describing Alice, and E is
the output random variable describing Eve. Clueless con-
tributes to the noise, but is not modeled as an input. Alice
communicates with Eve via the covert channel. The input
symbols for the channel are 0, which signifies that Alice is
not transmitting a message to any receiver, and 0c, which
signifies that Alice is transmitting a message to some re-
ceiver (keep in mind that Alice is oblivious to the other
transmitters).4

4At this point we caution the reader not to confuse Alice
transmitting a message to a receiver Ri, and Alice com-
municating to Eve via the covert channel. Eve is not the
receiver Ri in the sense of Alice or Clueless transmitting a
message. Eve receives symbols via the covert channel from
Alice. There are two different communication paths that
must be kept separate. One is the legitimate network com-
munication that the anonymizing device attempts to keep
unknown. The other is the covert communication that Al-
ice has to Eve. A way to stop the covert communication
would be for the anonymizing device to pad [15, 16, 17, 26,
27] messages so that it would appear to Eve that both Alice
and Clueless are transmitting a message. This inefficiency
might be tolerated in such an ideal situation as Case 2.1, but
such a strategy must be called into question when it comes
to real traffic. In Case 2.1 the anonymizing effect is done
by a MIX-firewall, which does not a priori pad. Of course,
before advocating traffic padding one should be fully aware
of the threat that the padding is intended to stop. Failure
to understand the threat first is inadvisable since padding
comes at the pragmatic costs of efficiency and proper net-
work resource utilization.

A // anonymizing
network

// E

(a) Channel block diagram
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(b) Channel transition diagram

Figure 4: Channel model for Case 2.1

Part (b) of Fig. 4 shows the output symbols corresponding
to the three states E might perceive. Let us consider the
channel matrix.

M2.1 =

„

0 1 2

0 p q 0
0c 0 α β

«

The 2×3 channel matrix M2.1[i, j] represents the conditional
probability of Eve receiving the symbol j when Alice sends
the symbol i. It follows that p = α, and thus it trivially
follows that q = β.

So our channel matrix simplifies to:

„

0 1 2

0 p q 0
0c 0 p q

«

.

The probability that Alice sends a 0 is P (A = 0) = x,
and therefore P (A = 0c) = 1 − x. The term x is the only
term that can be varied to achieve capacity. Here is where
Alice may use knowledge of long-term transmission char-
acteristics of the other transmitters, as well as how many
other transmitters there are, to change her (long-term) be-
havior. As with other studies of covert channels [13] we are
not concerned with source coding/decoding issues [24]. Our
concern is the limits on how well a transmitter can “opti-
mize” its bit rate to a receiver, given that a channel is noisy.
Given a discrete random variable X, taking on the values
xi, i = 1, . . . , nX , the entropy of X is:

H(X) = −

nX
X

i=1

p(xi) log p(xi) .

We use p(xi) as a shorthand notation for P (X = xi). Given
two such discrete random variables X and Y we define the
conditional entropy (equivocation) to be:

H(X|Y ) = −

nY
X

i=1

p(yi)

nX
X

j=1

p(xj |yi) log p(xj|yi) .

Given two such random variables we define the mutual in-



formation between them to be:

I(X, Y ) = H(X) − H(X|Y ) .

Note that H(X) − H(X|Y ) = H(Y ) − H(Y |X), so we see
that I(X,Y ) = I(Y,X).

For a DMC whose transmitter random variable is X, and
whose receiver random variable is Y , we define the channel
capacity [24] to be:

C = max
X

I(X, Y ),

where the maximization is over all possible distribution val-
ues p(xi) (that is, the p(xi) are all non-negative and sum to
one).

For us, the capacity of the covert channel between Alice
and Eve is

C = max
x

{H(E) − H(E|A)}.

Given the above channel matrix we have:

H(E) = −{px log px

+[qx + p(1 − x)] log[qx + p(1 − x)]

+ q(1 − x) log q(1 − x)}.

and H(E|A) = −
1
X

i=0

p(ai)
2
X

j=0

p(ej |ai) log p(ej|ai) = h(p) .

Where h(p) denotes the function −p log p−(1−p) log(1−p).
Thus,

C = max
x
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>
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;

.

We cannot analytically find the x that maximizes the mutual
information, even doing the standard trick of setting the
derivative of the mutual information to zero. However, we
numerically show our results in Figure 5.
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Figure 5: Plots of covert channel capacity as a func-
tion of p, and of the x value that maximizes the
mutual information as a function of p.

We see in Figure 5 certain symmetries. The capacity
graph is symmetric about p = .5, and the graph of the x
that achieves capacity is skew-symmetric about p = .5

Consider the two situations where p = ε, and where p =
1 − ε; in both situations 0 ≤ ε ≤ .5. Let xε be the proba-
bility for the input symbol 0 that achieves capacity in the
first situation, and let x1−ε be the probability that achieves
capacity for the second situation. For the first situation we
have that 1 − xε is the capacity achieving probability for
the output symbol 0c, and similarly for the second situation
1−x1−ε is the capacity achieving probability for the output
symbol 0c. Physically the two situations are “the same” if
we reverse the roles of the outputs symbols 0 and 2. There-
fore xε = 1 − x1−ε. Writing xε as xε = 1

2
+ ∆, we see that

x1−ε = 1

2
− ∆; this is what the lower dotted plot shows in

Figure 5 (ε = 1/2 ⇒ ∆ = 0).

Observation 1. In conditions of very little extra traffic,
or very high extra traffic, the covert channel from Alice to
Eve has higher capacity.

Observation 2. The capacity C(p), as a function of p is
strictly bounded below by C(.5), and C(.5) is achieved when
the mutual information is evaluated at x = .5.

It is obvious that very little extra traffic corresponds to
very little noise. At first glance though, it seems counterin-
tuitive that heavy traffic also corresponds to a small amount
of noise. This is because the high traffic is used as a baseline
against which to signal. This is analogous to transmission
of bits over a channel where the bit error rate (BER) Pe is
greater than 1/2. In this case, the capacity of the channel is
the same as that of a channel with BER of 1 − Pe, by first
inverting all the bits. It is the in-between situations that
negatively affect the signaling ability of Alice. But, even in
the noisiest case (i.e., where p = .5) Alice can still transmit
with a capacity of a half bit per tick.

Note that we can never guarantee error-free transmission,
no matter how we group the output symbols. In fact, it
is possible that the outputs will always be the symbol 1 (of
course the probability of this quickly approaches zero, as the
number of transmissions goes up). So this covert channel
has a zero-error capacity [25] of zero. Capacity is a useful
measure of a communication channel if the assumption is
that the transmitter can transmit a large number of times.
With a large number of transmissions, an error-correcting
code can be utilized so as to achieve a rate close to capacity.
If the transmitter only transmits a small number of trans-
missions, then using the capacity alone can be misleading.

3.2 Case 2.2—Alice and two additional trans-
mitters (N = 2)

This is similar to Case 2.1, the difference being that we
have three possible transmitters, A (random variable as be-
fore) for Alice, who is attempting to communicate covertly
with E (random variable as before) for Eve, and two other
benign “clueless” transmitters. Since the MIX-firewalls only
allow Eve to count the number of outgoing messages, our
covert channel has four possible output symbols (the inputs
are as before 0, for Alice not sending a message, and 0c, if
Alice does send a message). The outputs are:

• 0 — No one sends a message;



• 1 — Alice sends a message, and neither Cluelessi send
a message; or, Alice does not send a message, and one,
and only one, Cluelessi sends a message;

• 2 — Alice sends a message and one, and only one,
Cluelessi sends a message; or, Alice does not send a
message and both Cluelessi send a message;

• 3 — Alice, Clueless1, and Clueless2 all send a message.

As stated earlier we assume that Clueless1 and Clueless2
act independently of each other (and Alice is independent
of them). Therefore, if, as before, p is the probability of a
clueless transmitter (Clueless1 or Clueless2) not sending a
message into the MIX-firewall, and q = 1 − p is the proba-
bility of a clueless transmitter sending a message, the con-
ditional probabilities of E given Alice sending 0 are show in
the covert channel diagram and channel matrix in Figure 6.
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(a) Channel transition diagram

M2.2 =

„

0 1 2 3

0 p2 2qp q2 0
0c 0 p2 2qp q2

«

(b) Channel matrix

Figure 6: Channel for Case 2.2.

We can easily observe that the zero-error capacity is zero
because the output symbols 1 and 2 can both be received
if 0 or 0c is transmitted. Therefore there is always some
statistical error in what is received. This is similar to Case
2.1. For capacity itself, after some numerical calculation we
plot the capacity in Fig. 7.

Except for the boundary values, the capacity is always less
for a given p with three transmitters (two clueless) than with
two (one clueless). This is not surprising, the extra clueless
transmitter means extra noise. Note that the noisiest case
is when p = .5 , which again acts as a lower bound.

Unfortunately we cannot derive closed form solutions even
for these simple cases. Therefore, it seems unlikely that we
can derive a closed form for the general case of N clueless
transmitters in addition to Alice. Of course, we could still
derive the capacity numerically. However, we are able to
obtain some bounding results.
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Figure 7: Capacity as a function of p for Alice with
two additional transmitters.

3.3 Case 2.3—Alice andN additional trans-
mitters

Case 2.3 is the general form of Scenario 2, see Figure 8.
Now5 we imagine that there are N + 1 transmitters, Alice
is one of them, and the other N are all independently iden-
tical clueless transmitters. That is, there are transmitters
Clueless1, Clueless2 , . . ., CluelessN . Again, Eve can only see
how many messages are leaving the first MIX-firewall headed
for the second MIX-firewall. Therefore Eve can determine if
there are 0, 1, . . . , N + 1 messages leaving the firewall. That
is all Eve can determine. Therefore, there are still the two
input symbols a0 = 0 and a1 = 0c, but we have N + 2
output symbols. The probability that Cluelessi does not
send a message is still p, and that it does send a message is
q = 1−p. Now, calculate the channel matrix. Keep in mind
that Alice acts independently of the Cluelessi.

Alice sends a 0.

• For Eve to receive ek (that is E = k), 0 ≤ k ≤ N we
need k of the clueless transmitters to send a message,
and N − k not to send a message. Therefore,

p(ek|A = 0) =

 

N

k

!

pN−kqk, 0 ≤ k ≤ N.

• p(eN+1|A = 0) = 0.

Alice sends a 0c.

• p(e0|A = 0c) = 0, since the event never happens.

• For Eve to receive ek (that is E = k), 1 ≤ k ≤ N + 1
we need k − 1 of the clueless transmitters to send a
message, and N − k + 1 not to send a message.

p(ek|A = 0c) =

 

N

k − 1

!

pN−k+1qk−1, 1 ≤ k ≤ N + 1.

We delegate to the appendix the outline of the following
important results (the full details and proofs are in [14]).

5One could relax the assumption that all the Cluelessi have
identical and independent behavior.
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(a) Channel transition diagram

The channel matrix M3.N is

„

0 1 2 . . . N N + 1

0 pN NpN−1q
`

N

2

´

pN−2q2 . . . qN 0

0c 0 pN NpN−1q . . . NpqN−1 qN

«

(b) Channel matrix

Figure 8: Channel for Case 2.3, the general case of
N clueless users.

• For any p, C(p) is strictly bounded below by C(.5).

• As the number of clueless transmitters goes to infinity,
C(.5) goes to zero.

• C(p) is a continuous function of p.

4. COMMENTS, GENERALIZATIONS & FU-
TURE WORK

We first note that despite the obfuscation provided by
MIX-firewalls, and the attendant noise introduced by other
transmitters, Alice is still able to transmit information to
Eve. At this point, we recall our earlier observations and
add to them below.

1. In conditions of very little extra traffic, or very high
extra traffic, the covert channel from Alice to Eve has
higher capacity.

2. The capacity C(p), as a function of p is strictly bounded
below by C(.5), and C(.5) is achieved when the mutual
information is evaluated at x = .5 (of course p = .5 also
in this situation).

3. The capacity C(p), as a function of p is strictly bounded
below by a function that decreases monotonically to
zero as the number of transmitters increases, but is
never zero.

4. The bias in the code used by Alice to achieve the op-
timum data rate on the channel is not always x = 0.5,
but it is never far from 0.5, and our preliminary exper-
imental results indicate that the difference in capacity
is minor.

Alice,
Cluelessi

MIX-firewall

R1

R2

·
·
·

Ri

·
·
·

RM

//

44hhhhhhhhhhhhhhhhhh

11dddddddddddddddddd

..]]]]]]]]]]]]]]]]]
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Figure 9: Exit firewall only

This last observation agrees with [12], which presents the
general result that in DMCs, mutual information bit rates
obtained by using x = .5 is no less than 94.21% of the chan-
nel capacity. Even if Alice has no knowledge of the proba-
bilistic behavior of the other transmitters, her data rate will
not be too far from optimal if she uses an unbiased code.
(Note, however, that the coding rate is very much depen-
dent on knowledge of the number of other transmitters and
their behavior.)

In future work we will also analyze the situation where we
have only an exit point MIX-firewall as shown in Figure 9.

We have M receivers denoted R1, . . . , RM . Eve still does
not know directly who sent a message, but Eve does know
where messages are going. This increases the capacity of
the covert channel. Alice now instead of just sending 0 or
0c can send: 0 (not transmitting); 1 (message to the first
receiver), ... , i (message to the ith receiver, ... , M (message
to the Mth receiver). The greatest the capacity can be is
log(M + 1). Of course if M = 1 the situation reduces to
Scenario 2.

(See [14] for other related scenarios.)
Other areas begging for further investigation include sce-

narios in which there is limited network capacity (on links or
aggregate), whether or not there is anonymity. We are cur-
rently investigating this using the model in which at most B
messages can be sent through the network (as output from
a sender of as output of a MIX-firewall) in a given tick, and
if there are more than B messages awaiting transmission, B
of them are chosen at random for delivery. This may relate
the work to more sophisticated MIX models, such as pool
MIXes, which is also desirable.

A deeper issue raised in this preliminary paper is that
of the relationship between anonymity and covert channel
capacity (fixing the other factors that affect capacity). It
seems evident that as system level anonymity increases in
the simple models shown here (i.e., the number of poten-
tial senders increases), the minimum capacity decreases to
zero. However, as the probability that a Clueless sender
transmits in a given tick increases, the expected number of
actual senders in a given time tick also increases, hence the
anonymity increases, but the capacity of the covert channel
increases once this probability exceeds 0.5. The relation-
ships are not simple, but their discovery has the potential
to increase our understanding of fundamental aspects of net-
work design.
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Köpsell. Web MIXes: A sytem for anonymous and
unobservable internet access. In Hannes Federrath,
editor, Designing Privacy Enhancing Technologies:
Design Issues in Anonymity and Observability, pages
115–129. Springer-Verlag, LNCS 2009, July 2000.

[4] Oliver Berthold, Andreas Pfitzmann, and Ronny
Standke. The disadvantages of free MIX routes and
how to overcome them. In Hannes Federrath, editor,
Designing Privacy Enhancing Technologies: Design
Issues in Anonymity and Observability, pages 27–45.
Springer-Verlag, LNCS 2009, July 2000.

[5] David Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications
of the ACM, 24(2):84–88, 1981.

[6] Richard Clayton, George Danezis, and Markus G.
Kuhn. Real world patterns of failure in anonymity
systems. In Ira S. Moskowitz, editor, Information
Hiding, 4th International Workshop (IH 2001), pages
230–244. Springer-Verlag, LNCS 2137, 2001.

[7] Thomas M. Cover and Joy A. Thomas. Elements of
Information Theory. Wiley, 1991.

[8] Claudia Dı́az, Stefaan Seys, Joris Claessens, and Bart
Preneel. Towards measuring anonymity. In Paul
Syverson and Roger Dingledine, editors, Privacy
Enhacing Technologies (PET 2002). Springer-Verlag,
LNCS 2482, April 2002.

[9] Robert G. Gallager. Information Theory and Reliable
Communication. Wiley, 1968.

[10] S. Kent and R. Atkinson. Security architecture for the
Internet Protocol, 1998.

[11] Dogan Kesdogan, Dakshi Agrawal, and Stefan Penz.
Limits of anonymity in open environments. In F.A.P.
Petitcolas, editor, Information Hiding, 5th
International Workshop (IH 2002), pages 53–69.
Springer-Verlag, LNCS 2578, 2002.

[12] E.E. Majani and H. Rumsey. Two results on binary
input discrete memoryless channels. In IEEE
International Symposium on Information Theory,
page 104, June 1991.

[13] Ira S. Moskowitz and Myong H. Kang. Covert
channels — here to stay? In Proc. COMPASS’94,
pages 235–243, Gaithersburg, MD, June 27- July 1
1994. IEEE Press.

[14] Ira S. Moskowitz, Richard E. Newman, Daniel P.
Crepeau, and Allen R. Miller. A detailed
mathematical analysis of a class of covert channels
arising in certain anonymizing networks. In NRL
Memorandum Report, NRL/MR/5540–03-8691, 2003.
http://chacs.nrl.navy.mil/publications

/CHACS/2003/2003moskowitz-memo-5540–03-
8691.pdf.

[15] Richard E. Newman, Ira S. Moskowitz, Paul Syverson,
and Andrei Serjantov. Metrics for traffic analysis
prevention. In PET 2003, Dresden, March 2003.

[16] R. E. Newman-Wolfe and B. R. Venkatraman. High
level prevention of traffic analysis. In Proc.
IEEE/ACM Seventh Annual Computer Security
Applications Conference, pages 102–109, San Antonio,
TX, Dec 2-6 1991. IEEE CS Press.

[17] R. E. Newman-Wolfe and B. R. Venkatraman.
Performance analysis of a method for high level
prevention of traffic analysis. In Proc. IEEE/ACM
Eighth Annual Computer Security Applications
Conference, pages 123–130, San Antonio, TX, Nov
30-Dec 4 1992. IEEE CS Press.

[18] Onion routing home page.
http://www.onion-router.net.

[19] Andreas Pfitzmann and Marit Köhntopp. Anonymity,
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APPENDIX

A. APPENDIX
Now we show that C(.5) is a strict lower bound for C(p),

and that as the number of clueless transmitters goes to in-
finity that C(.5) goes to zero. We also discuss a continuity
result for C(p). Now we continue with the general case 2.3.

Since p(ek) = p(ek|A = 0)P (A = 0)+ p(ek|A = 0c)P (A =
0c), we have that

p(e0) = xpN ,

p(ek) = x

 

N

k

!

pN−kqk +

(1 − x)

 

N

k − 1

!

pN−k+1qk−1 , 1 ≤ k ≤ N

p(eN+1) = (1 − x)qN .

The mutual information is

I(E,A) = −
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xpN log xpN+

N
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(For Case 2.1 (one Clueless in addition to Alice) and for
Case 2.2 (two clueless in addition to Alice) we discussed the
symmetry about p = .5 informally.)

Theorem 1. I(E,A)|x,p = I(E, A)|1−x,q

PROOF: See [14]

We will need the following in the rest of the appendix
so we will consider I(E,A)|p=.5 = H(E)p=.5 − H(E|A)p=.5

now.

Consider the entropy of E evaluated when p = 1

2
.

H(E)|p=.5 = −
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Consider the conditional entropy when p = 1

2
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H(E|A)|p=.5 = N −
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Note that H(E|A)|p=.5 is independent of x. Keep in mind
that we may express the mutual information evaluated at
(x′, p′) by the slightly overloaded notation I(E,A)|x=x′,p=p′ .
Of course I(E,A)|p=p′ is simply just a function of x, and
I(E,A)|x=x′ is a function of p.

Definition 1. We say that an arbitrary (real valued) func-
tion is not locally-constant iff for all x with f(x) defined at x,
and for every δ > 0, there exists an x′ such that d(x′, x) < δ
(i.e., x′ in the neighborhood of x) with f(x′) 6= f(x).

That is, for no neighborhood, no matter how small, is the
function constant.

Definition 2. We say that a function f : [0, 1] → R is
symmetric about x = .5, iff f(x) = f(1 − x).

Observation 3. If f(x) is symmetric about x = .5 and
it is concave down (convex up) then f(.5) is a maximum
(minimum) value. Further, if f(x) is not locally-constant
then .5 is the only such critical point.

Theorem 2. I(E,A)|p=.5 is symmetric about x = .5.

PROOF: By Thm. 1, I(E,A)|x,.5 = I(E,A)|1−x,.5.

Theorem 3. C(.5) = I(E,A)|x=.5,p=.5.

PROOF: By Theorem 2, we know that I(E, A)|p=.5 is sym-
metric about x = .5, and [9][Thm. 4.4.2]&[7][Thm.2.7.4]
show that I(E,A)|p=.5 (and in general I(E, A) for fixed p) is
concave down. Therefore, from Observation 1, I(E,A)|p=.5

obtains its maximum value when x = .5. Since capacity,
when p = .5, is the maximum of I(E,A)|p=.5, we are done.

Theorem 4. C(p) ≥ I(E,A)|x=.5,p=.5.

PROOF: By definition C(p) ≥ I(E, A)|x=.5, since capacity
is the maximum of the mutual information. For x fixed,
I(E,A)|x is a convex up function of p (see [9][Thm. 4.4.2]



and [7][Thm.2.7.4]). By Thm. 1 we see that I(E,A)|x=.5

is symmetric about p = .5. By Observation 3 we see that
I(E,A)|x=.5 ≥ I(E,A)|x=.5,p=.5.

This allows us to use I(E,A)|x=.5,p=.5 (simple single value)
as a lower bound for the covert channel capacity.

Corollary 1. C(p) ≥ C(.5)

PROOF: Apply Theorems 3 and 4 together.

Theorem 5. C(p) = C(1 − p) and if xp is the unique x
such that C(p) = I(E, A)|xp,p, then x1−p = 1 − xp.

PROOF: This trivially follows from Thm. 1 and the unique-
ness (follows from the concavity properties and the fact that
the mutual information is not locally-constant) of the criti-
cal x value.

Let us now use these results to bound capacity from below.
After many calculations and simplifications [14] we obtain

C(.5) = 1 −

„
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2

«N N
X

k=0

(

1

2

 

N + 1

k

!

log

 

N + 1

k

!

−

 

N

k

!

log

 

N

k

!)

. (1)

We show some numerical results for C.

N C(.5) N C(.5)
1 0.500000 13 0.053593
2 0.311278 14 0.049873
3 0.219361 15 0.046638
4 0.167553 16 0.043799
5 0.135170 17 0.041287
6 0.113278 18 0.039048
7 0.097558 19 0.037039
8 0.085730 20 0.035228
9 0.076502 21 0.033586
10 0.069092 22 0.032090
11 0.063007 23 0.030722
12 0.057917 24 0.029466

25 0.028309

C(.5) = lower capacity bounds for all p, N = 1, . . . 25

Note that in the general circumstances of Case 2.3, if p = 0
(or similarly q = 0), we have a noiseless channel and the
capacity is one, which is achieved when x = .5. So we see
that 1 is a tight upper bound for the capacity. Therefore we
have the following result:

For Alice and N(N > 0) transmitters: C(.5) ≤ C(p) ≤ 1

and bounds ON C(p) are tight. Of course keep in mind the
result from Case 2.0:

For Alice and no additional transmitters: Capacity = 1.

As N grows so does the noise. Therefore, we see that the
capacity is non-increasing. We are interested in the lower
bound C(.5). We have numerically calculated C(.5) to N =
7750 and have shown that C(.5) is monotonically decreasing
to zero (for N=7750, C(.5) = .000093). We can (but do not
since it is many pages in length) analytically show C(.5) is
monotonic decreasing. That is not surprising since increas-
ing the number of clueless users increases the noise, but it

is surprising that it is so difficult to show that C(.5) goes
to zero as N goes to infinity. Below we discuss that fact,
leaving the interesting and subtle details to [14].

¿From Eq. 1 we can express C(.5) as

C(.5) = 1 −
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Theorem 6. S(N) = 2N log(N +1)−
N
X

k=0

 

N

k

!

log(k+1)

PROOF: Not shown, basically involves combinatorial iden-
tities.

Keep in mind our goal is to study the behavior of C(.5)
as N → ∞. However, first we need a technical lemma.

Lemma 1.

N
X

k=1

 

N

k

!

kp = 2N−pQp(N), for p < N , where

Qp(N) is a monic polynomial in N of degree p.

PROOF: Follows from [21, Formulas 1,2,7,8,9,10 p. 608].

Theorem 7. lim
N→∞

C(.5) = 0 .

PROOF: The proof is asymptotic in nature, but follows by
applying Lemma 1 to Thm. 6.

A.1 Continuity
For Scenario 2 we wished to say that capacity was a con-

tinuous function of p. We thought that we could just use
some standard information-theoretic result. Unfortunately,
we could not find such a result. We do not think that it
would be too hard to argue from the various concavity prop-
erties of mutual information that C(p) is a continuous func-
tion (of p). However, we decided to present a more general
result which relies on the following theorem.

Theorem 8. Let F (x, p) be a continuous function6 de-
fined on [0, 1] × U , U an arbitrary subset of the reals, and
assume that for each fixed p, F (x, p) achieves a maximum
denoted as Γ(p). Then Γ(p) is a continuous function of p.

PROOF: Not shown — standard analysis result using com-
pactness arguments.

We believe that continuity results such as these are im-
portant, but they seem to be overlooked in the literature.
Note we can replace the closed interval [0, 1] by any compact
subset of the reals.

6Of course in this paper all functions are real valued.


