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Abstract. A surprisingly high number of mobile carriers worldwide do not block

unsolicited traffic from reaching their mobile devices from the open Internet or

from within the cellular network. This exposes mobile users to a class of low-

resource attacks that could compromise their privacy and security. In this work

we describe a methodology that allows an adversary to identify a victim device

in the cellular network by just sending messages to its user through one or more

messaging apps available today on the mobile market. By leveraging network

delays produced by mobile devices in different radio states and the timeliness

of push notifications, we experimentally show how our methodology is able to

quickly identify the target device within 20 messages in the worst case through

measurements on a large mobile network.
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1 Introduction

The shift from a peer-to-peer to a cloud-based, centralized communication model has

made todays mobile devices less exposed to many of the network security threats that

characterise desktop computers, such as intrusions through vulnerable listening ser-

vices. This might be one of the reasons why an unexpectedly high number of cellular

network carriers do not block unsolicited traffic from reaching their devices either from

the open Internet, or from within the cellular network itself [18]. Unsurprisingly, this

configuration is far from secure, and could be exploited to provide harm to the net-

work [18], or, most importantly, to compromise the privacy and security of the end

users. For instance, by monitoring the characteristics of the Internet path towards a

mobile device, the user location may be tracked in a fine-grained way [21]. Using a

“stealth-spam” attack like that described by Peng et al. [14], instead, an adversary may

quickly drain the user device battery or data plan with a simple stream of UDP packets.

Finally, an accurate characterization of RRC radio states of the device [17] could be

leveraged to monitor the Internet traffic patterns of the user. Interestingly, these attacks

do not necessarily require a powerful adversary, but can be launched by virtually any-

one who either knows the IP of the victim user device in the cellular network, or, at

least, can individuate a small set of candidate IPs. Given the wide range of IPs that may

be assigned to a device, this may sound like a very strong requirement at first. Actually,

in many cases it is not. In this paper, we describe a methodology that allows to leverage

push-notification services to detect the user IP address in a cellular network.

Our main contributions are the following.



– We define a lightweight methodology for matching users with their IPs in cellular

networks. The methodology leverages the delay patterns produced at different radio

states together with the near-real-time characteristics of push-based services. To

the best of our knowledge, we are the first to show how network delays on cellular

networks constitute an effective side-channel that can be used to undermine user

privacy.

– We show how our methodology works with the most popular instant messaging

apps and is robust with respect to various network and signal-strength conditions.

– We give a precise evaluation of the amount of resources the methodology requires,

both in terms of bandwidth and number of instant messages.

– We experimentally validate our methodology through measurements on over 260K

IPs of a large cellular network and show that it is able to correctly individuate the

user device IP with less than 20 messages.

The rest of this paper is organised as follows. Section 2 introduces the attacker

model. In Section 3 we show how network delays can be used as a side channel to infer

the recent network activity on a remote mobile device. In Section 4, we describe our IP

detection methodology, and present the experimental results in Section 5. Section 6 dis-

cusses the feasibility of our methodology. Related work and future research directions

are presented in Section 7 and Section 8.

2 Attacker Model

We are interested in knowing whether an adversary can detect, in a cellular network, the

IP address of the mobile device of a given user. Note that the IP could be either private

or public, depending on whether the operator deployed NAT or not. In the case NAT is

used, the attack has to be carried out from within the cellular network. If the adversary

owns a popular website, mobile app, or cloud-based service, obtaining the user IP may

be trivial. In fact, such an adversary has a larger number of options to violate end-users

privacy and security, and falls outside the scope of this paper. In our scenario, instead,

the adversary is a malicious small entity, or even a single person that is not necessarily

trusted by the user, but that, at the same time, the user does not perceive as a particular

privacy or security threat because of its apparently limited power. This model, which

is similar to that assumed by Le Blond et al. [11], includes people in the user social

circle (e.g., friends, coworkers) or entities such as the user employer. These are weak

adversaries potentially interested in knowing the whereabouts or habits of the user, or

in provoking the user some kind of damage, such as depleting her monthly data plan or

systematically consuming the smartphone battery for the rest of the day. Adversaries of

this kind may have strong personal reasons to attack the user and, at the same time, may

already have some information about their target that they could use, such as the user

cellular network operator, phone number, e-mail address, phone model (e.g., Android,

iPhone, BlackBerry), or coarse-grained geographical location (e.g., a city, or a state).

Assumptions Given the above adversarial model, we assume the adversary is some-

one socially close enough to the victim user that they share a connection through a



social app or service that includes a near real-time messaging facility, such as Facebook

Messenger, Google Hangouts, Skype, WhatsApp, Viber, and SnapChat. Our concept of

social strength is therefore not necessarily measured in terms of real-life friendship but

is much more relaxed. In fact, it is not uncommon for users to have several hundreds of

online friends [1]. Considering how easy it is to establish relationships in some online

services [3], an adversary may even create one or more fake identities to use for the

attack, depending on the case. Another assumption is that the cellular network operator

of the user is known, and that it allows unsolicited traffic to reach the mobile devices

from the Internet or from the cellular network itself. According to recent statistics on

over 180 UTMS carriers worldwide [18], this is true in more than 50% of the cases.

Given that the popularity of cellular network operators in various countries is typically

very skewed, knowing the cellular network operator of the victim user does not repre-

sent an issue. Moreover, getting this type of information from an online friend may not

be hard, considering that, for instance, Facebook has a mobile phone number field in

the contact description. Finally, we do not make strong assumptions about the amount

of bandwidth resources available to the adversary, although there is a relation between

bandwidth and detection time, as we discuss in Section 4.3.

3 Delay-Based Network Activity Detection in Cellular Networks

The cornerstone of our user IP detection methodology in cellular networks is a method

that leverages network delays to accurately infer the transmission patterns of a mobile

device, such as a smartphone. In this section we describe the characteristics of cellular

network radio resource assignment that enable it.

3.1 Radio Resource Assignment in Cellular Networks

Radio resources in cellular networks are allocated to mobile devices in relation to the

volume of data they are sending or receiving from the network. This process is regu-

lated by means of transitions in a Radio Resource Control (RRC) state machine that is

associated to each device [20]. In 3G networks, these states are typically three: IDLE,

CELL FACH, and CELL DCH, corresponding to no, low, or full radio resources allo-

cated, respectively. Transitions from lower to higher resources states are triggered by

some network activity, and are referred to as a promotions. The opposite transitions

are instead referred to as a demotions. Although state transitions parameters can be

independently defined by each mobile network operator [17,18], two general rules al-

ways apply. First, a promotion from IDLE is triggered when any amount of data has

to be transferred, whereas a CELL FACH to CELL DCH promotion is triggered when

the data rate exceeds a given threshold defined by the operator (e.g., 2Kbit/s). Second,

state demotions are triggered from the CELL FACH and CELL DCH state after a period

of no network activity referred to as tail time. Tail times relative to the CELL FACH

and CELL DCH states are operator-defined, although the former is typically longer than

the latter as it consumes less radio and energy resources. As an example, we show the

state machine configuration of a popular network carrier in Figure 1. We can notice

how in this configuration a transition to the CELL FACH state is first required in order



to get the full-resources available in the CELL DCH state. Other operators may use a

more aggressive configuration, allowing a direct promotion from the IDLE directly to

the CELL DCH state.
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Fig. 1: Example of RRC state
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Fig. 2: Example of effect of network usage on

observed RTT (round-trip time) towards the de-

vice.

3.2 Inferring RRC States From Network Delay Measurements

The device current RRC state and its responsiveness to network events are tightly re-

lated. This comes for two reasons. First, state promotions, especially those from the

IDLE state, are time expensive, as they require a number of control messages to be ex-

changed between the device and the Radio Network Controller (RNC). Second, a device

in the CELL FACH state typically observes higher delays due to the lower amount of al-

located radio resources and to its lower transmission power. A key observation is that the

extra delays caused by promotions from the IDLE state and by the low resources of the

CELL FACH state are significantly higher than typical network delays, and can be eas-

ily distinguished from each other. To give an example, in Figure 2 we show a sequence

of round-trip time (RTT) measurements performed every 17 seconds towards a device

using the RRC machine state configuration shown in Figure 1. When the device is idle,

the RTTs fall in the [1s, 2.5s) range. Such high delays are not produced at the network

level, but are caused by promotions from the IDLE to the CELL FACH state. Indeed,

RTT measurements are spaced by an amount of time larger than the CELL FACH tail

time, which is large enough to make the state machine transit back to the IDLE state

between measurements. After 5 minutes, a concurrent traffic on the device is generated

with a rate of 0.5 kbit/s, enough to keep its RRC state machine in the CELL FACH state.

In this state, the RTTs drop into the [250ms, 1s) range, although they are still higher than

expected, due to the low resources associated to the device. Finally, when the device is

allocated full radio resources in the CELL DCH state, the RTTs fall in the [0ms, 250ms),
which is the actual network round-trip time between the measuring host and the mo-

bile device. Overall, the strong difference between delays imposed at the various states

makes a single round-trip time measurement a surprisingly robust and effective way to

remotely infer the recent network activity of any given device in a cellular network.



4 User IPs Identification in Cellular Networks

In this section we present a novel methodology that leverages the delay-based RRC

state inference to spot the IP of a target user in the cellular network. With this method,

an adversary who has some indirect way to produce traffic on the target device can en-

sure it to be in a high-power state (i.e., CELL FACH, CELL DCH) at specific moments,

producing a distinctive network delay pattern on the mobile device. At the same time,

the adversary looks for similar patterns across all the devices of the cellular network

operator. This results in a set of candidate IPs which can be iteratively reduced in size

by repeating the same procedure. The detection methodology, detailed in Algorithm 1,

works in rounds. At each round, the generate traffic function is used to generate

Algorithm 1 Pseudocode of the IP identification method

1: INPUT: IP Range, nrounds, Twait

2: for i := 1 to nrounds do

3: RTTs := new map()
4: generate traffic start()
5: for all IP ∈ IP Range do

6: RTTs[IP] := measure RTT()
7: end for

8: generate traffic stop()
9: for all IP ∈ IP Range do

10: if is match(RTTs[IP]) = False then

11: IP Range := IP Range \ {IP}
12: end if

13: end for

14: sleep(Twait)
15: end for

16: return IP range

traffic on the target device by sending messages to the its user through an instant mes-

saging app. In the meanwhile, the current RRC state of all the devices in the IP Range

set is identified by measuring their round-trip times, as explained in Section 3. Round-

trip times can be performed through ICMP echo requests (pings), or by sending SYN

packets to a closed port and waiting for the relative RST packet. At the end of the mea-

surements, traffic generation is paused and the is match function is used to filter-out

the set of all the devices whose radio was not at a high power state. Aside from the

target device, this includes all the other devices in the network that were using the radio

during the measurement. What enables this methodology to filter them out is the fact

that mobile devices, as opposite to laptops or mobile hotspots, are not likely to con-

stantly use the network resources for long periods of time, whereas the target device

can be forced to transmit at will.

Methodology Parameters Our detection methodology takes three parameters, namely

IP Range, nrounds, and Twait. The first one, IP Range, is the initial candidate set



of IPs assigned to the target user device. In case the operator assigns public IPs to its

devices, a simple whois query with the operator AS name or number(s) reveals the ini-

tial IP set1. In case private IPs are used, the set of potential IPs may be very large, such

as the private 10.0.0.0/8 subnet which is approximately 16M IPs wide. Starting from

the whole subnet does not constitute an obstacle, but it still may slow down the detec-

tion procedure, requiring more rounds to shrink the candidate set of IPs to reasonable

values. The initial IP Range set can be considerably restricted if the user’s coarse-

grained geographical location is known. In fact, although the correspondence between

IP address and location in cellular networks is not as strong as in wired networks [25],

several other network features can be found (e.g., the minimum round-trip time, and the

RRC state machine configuration parameters) to effectively map IP addresses of mo-

bile devices to a geographic area, like a big city or a state [18]. This would not require

a large amount of bandwidth, and would not violate our attacker model.

The nrounds parameter determines the number of refinements the procedure can

perform. A larger number of rounds helps reducing the candidate set, but, at the same

time, requires a higher number of messages to be sent to the target user. Ideally, the ad-

versary should use the smallest possible number of rounds, depending on his objective.

For instance, to perform a DoS to the user device, the adversary may be satisfied to save

the bandwidth needed for the attack by reducing the IP Range to a few thousand de-

vices, in line with our weak attacker model. For other tasks, the final IP Range should

be smaller. In any case, in Section 5 we show how just 10 rounds are sufficient to reduce

the final IP Range set to a handful of devices.

Lastly, the Twait parameter determines the frequency with which instant messages

are sent to the target user. In general, the higher the frequency, the less time it takes for

the adversary to individuate the user IP. However, a very high message frequency may

make the user suspicious about the adversary’s intent, and may actually require more

rounds (messages) to detect the target device IP (more on this in Section 5). In this case,

a stronger social relationship with the user may help disguising the instant messages as

a regular chat.

4.1 Indirectly Generating Traffic on the Target User Device

Our IP identification method requires the adversary to ensure that, in the time span

the round-trip time to all the mobile devices is measured, the target user device radio

is in a high power state (e.g., CELL FACH or CELL DCH), yielding a distinctive se-

quence of low round-trip times. According to our attacker model (cf., Section 2), the

adversary is able to send the victim an instant message through one or more social mes-

saging apps. These apps typically include a push-notification facility to notify users of

incoming messages in a timely fashion, representing an ideal way to indirectly gener-

ate traffic on the victim user device at specific moments. To confirm this intuition, we

experimentally tested the responsiveness of the push notification systems used by the

most popular messaging apps available on the market today, namely, WhatsApp, Viber,

Google Hangouts, Skype, Facebook Messenger and SnapChat. More specifically, we

measured the time span between the instant the adversary sends a message to the victim

1 https://www.team-cymru.org/Services/ip-to-asn.html

https://www.team-cymru.org/Services/ip-to-asn.html


and the instant the victim device actually receives it, forcing the RRC state to be either

CELL FACH or CELL DCH, depending on the configuration (cf., Section 3). According

to our measurements, push notifications of all the aforementioned apps alert the user

always within a timespan of at most 5 seconds after the message has been sent, depend-

ing also on the initial RRC state of the device. Push notifications delays are therefore

low enough for the adversary to control the observed delays towards the victim device

in a relatively fine-grained way and with good accuracy. It is worth noticing that we

did not observe any difference in responsiveness between messages sent when the de-

vice is active (i.e., the screen is on and unlocked) or in sleep mode (i.e., the device

has not been recently used, and the screen is off). This allows an adversary to generate

traffic on the device even without the user being immediately aware of it (e.g., when

the phone is muted, or at night). As an example, we show in Figure 3 the sequence of
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Fig. 3: Example of traffic generation on the target device by means of WhatsApp mes-

sages. To detect the CELL FACH state, round-trip times are measured every 17 seconds.

radio states inferred while generating traffic towards a test device through WhatsApp

messages. Round-trip time measurements are spaced by 17 seconds, which are slightly

higher than the tail time of the CELL FACH state in Figure 1. The figure shows how

the state inferred 5 seconds after a message was sent is always CELL FACH (i.e., RTT

∈ [300ms, 1s)). We can also observe how the state machine does not transit back to

the IDLE state when another instant message is sent before the CELL FACH tail time

expires. This is an important detail, as it enables an adversary to extend the time the

target device radio is at a high power at will, if needed. Finally, observe how the traffic

generated by the push notifications may not be high enough to trigger a transition to the

CELL DCH state. The adversary should therefore conservatively assume that the target

device is in the CELL FACH state after a message is received, even though concurrent

traffic on the user device may actually make the radio transit at a CELL DCH state. This

does not represent a limitation though, as the difference between round-trip times at

CELL FACH and at IDLE is high enough to reliably tell the two states apart.

Overall, this experiment shows that a single round-trip time measurement can easily

detect the network activity triggered by an instant message. We argue that, aside from

those we experimentally tested, most of the instant messaging apps available on the



market today can be leveraged, given their real-time nature. In fact, according to our

experience, any messaging app using the Google Cloud Messaging (GCM) push notifi-

cations is a good candidate. This is, for instance, the case of not just Google Hangouts,

but also of Skype and Facebook Messenger. In principle, other apps may be used too,

such as Facebook, Twitter, or GMail. However, having no strict real time requirements,

their notifications may be delayed by several seconds, or even minutes, making it harder

to detect the user IP.

Setting Up the Attack As a preliminary step, the adversary should compare the time

it takes to perform a single round-trip time measurement towards the devices in the

IP Range set with the amount of time the traffic generated by the push notifications

can keep the target user device radio at a high power state. Depending on the RRC state

machine configuration, the latter may be the CELL FACH tail time only, or the sum

of CELL FACH and CELL DCH tail times. If this time is too short, the adversary may

need to extend it by sending a sequence of well-spaced instant messages, as we have

shown in Figure 3. To learn the RRC state machine configuration, the adversary can

use the technique described by Qian et al. [17] either remotely or from a device under

his control in the cellular network, as we did for our experiments. If the approximate

geographical area where the victim device resides (i.e., a city, or a state) is not known,

the adversary may need to account for different possible CELL FACH and CELL DCH

tail times. To avoid false negatives, the adversary should conservatively assume that the

shortest tail times are used on the target device. This makes our detection methodology

adaptive to any RRC state machine configuration an operator might use in his network.

4.2 Factors Affecting the Detection Accuracy

For our detection methodology to succeed in real-life scenarios, packet loss and delay

variations caused by cross traffic or wireless signal interferences have to be taken into

account. In this section, we quantify the impact these factors have on the IP detection

accuracy.

Cross-Traffic Cross traffic represents a potential issue, as it is well known that, due to

the use of large buffers, it might introduce extra network delay variations. However, the

relative increase in round-trip time produced by cross traffic is still small with respect

to the much higher delays observed when the device is in the IDLE state (i.e., 500ms

against more than 1 second). Only when cross traffic is close to the bottleneck link ca-

pacity for long time, the extra delay can reach the order of seconds [9] and the adversary

could mistakenly infer that the RRC state was IDLE. Given the bursty nature of traffic

in mobile networks [19] we deem this as an extreme scenario. In fact, mobile devices

are typically used for short periods of time, and non-user generated traffic is produced

by background apps and services regularly downloading short updates from the net-

work (e.g., social network status updates, emails, and so on). Moreover, even streaming

apps, which are considered to be resource-hungry services, use temporary buffers to

store up to several seconds of pre-fetched media content. To experimentally confirm

the low impact of cross traffic on our detection procedure, we measured the round-trip
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time towards a device under our control that was downloading a Youtube video. This

well represents one of the most intensive network activities that can be triggered by a

user. Results, presented in Figure 4, show that, despite the video being downloaded, for

most of the time the measured round-trip times match very closely those typical of the

CELL DCH state, like those shown in Figure 2. As expected, only a few measurements

show the effect of some queueing delay (e.g., 400ms), but never reach values close to

those typical of the IDLE state.

Wireless Signal Interferences Due to the loss-recovery mechanisms typically used in

cellular networks, wireless signal interferences can introduce extra delays too. Garcia et

al. [4] have experimentally shown that, in exceptional cases, this can introduce spikes

of delay of up to 400 milliseconds in UTMS networks. These delays are still lower than

the round-trip times generated at the IDLE state, thus not producing false negatives.

Network Packet Loss Since we can exclude wireless interferences as a direct cause of

packet loss, in typical scenarios we do not expect packet loss to be very high or to last

for long periods of time. To account for sporadic packet losses, if a round-trip time mea-

surement fails, the adversary may conservatively assume the device is in CELL FACH

and keep it in the IP Range set for an extra round.

Experimental Validation We experimentally evaluated the resilience of our detec-

tion mechanism to all the above factors with a device under our control. In our exper-

iments, we simulated both the traffic generation and detection method by first sending

a WhatsApp message to the target device, and then inferring the RRC radio state after

5 seconds the message was sent in order to account for the time it may take for the

push notification to reach the device. During each test, the device was put under dif-

ferent cross-traffic and signal strength conditions. More specifically, cross traffic was

produced by downloading a Youtube video, as in Figure 4. For what concerns the signal

strength, we tested two different scenarios: One with poor and one with good signal,



corresponding to RSSI ∼ −95dBm and RSSI ∼ −79dBm, respectively. Each combi-

nation of cross-traffic and signal strength was tested 300 times. According to our results,

shown in Figure 5, measured round-trip times are within the expected threshold in both

cross traffic and poor signal strength conditions for more than 99% of the cases. Given

these results, allowing a small percentage of round-trip times measurement to fail would

make our detection mechanism resistant to a wide range of conditions.

4.3 Scanning the Mobile Operator’s Network

To reduce the number of messages required to be sent at each round, the adversary

should minimize the time needed to measure the round-trip times towards the devices

in the IP Range. For this task, a tool like ZMap could be used. ZMap is a network

scanner by Durumeric et al. [6] that is specifically tailored for performing fast, large-

scale network scans with commodity hardware. As a proof-of-concept we developed an

ICMP echo request (ping) scanner module for ZMap and tested it against the 1.7M IPs

wide address space of a popular cellular network that assigns public, reachable IPs to

its devices. Taking as a reference the 15 seconds CELL FACH tail time in Figure 1, and

the 5 second to be waited before the messages arrive to the device, to perform a single

round-trip time measurement on all the IP space in time would require 46Mbit/s using

ICMP echo packets of 36 bytes. In practice, we observed that the number of IPs that

are active at any given time in the address space is much smaller, that is, around 500K

(30% of the total), which is consistent to what observed by Qian et al. in a U.S. mobile

network carrier public address space [18]. This allows to restrict the initial IP Range

and reduce the bandwidth needed to just 14Mbit/s.
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Fig. 6: Results with different scan strategies.

We experimentally verified whether large network scans produce some bottleneck

in the cellular network infrastructure, which could have an impact on the detection ac-

curacy. To do so, we compared the results obtained by scanning the whole public IP

space of the operator in two different ways. First, with a simultaneous scan over the

whole address space range. Then, by dividing the address space in smaller chunks (i.e.,

65K devices) and scanning each of them separately, waiting for 30 seconds between



subsequent scans. The results obtained are shown in Figure 6. In Figure 6a, we can

observe how the number of replies received is in both cases very close to 30%, show-

ing that no extra packets loss was introduced during the simultaneous scan. Figure 6b,

comparing the two round-trip time distributions obtained, shows that no relevant extra

queueing delay is produced either.

In Figure 7 we study the relation between size of the IP Range set to be scanned,

the bandwidth available to the adversary, and the number of messages to be sent at

each round to keep the radio of the target device at a high power state for enough time,

according to the state machine configuration of our test operator (shown in Figure 1).

We can observe how, even with lower bandwidths (i.e., 5Mbit/s), just one message buys

the adversary enough time to scan a whole /16 subnet (∼ 65K IPs). As we are going to

show next, the exponential drop in size of IP Range allows to use just one message

per round in the majority of the cases.

5 Experimental Results
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We experimentally evaluated our IP detection methodology on a popular cellular

network operator which assigns public, reachable IPs to its devices. As the target de-

vice, we used a Samsung Galaxy S Plus. As initial IP Range set, we used four /16
subnets (i.e., 262K IPs) from which IP addresses are typically assigned to the devices in

our geographical region. The RRC state machine configuration used by the operator in

the area is the one shown in Figure 1. Consistently with our experiments in Section 4.1,

we conservatively instrumented the is match function to keep in the IP Range set

all the devices that are either in CELL FACH or CELL DCH state (i.e., RTT ≤ 1s), as

our push notifications were not necessarily able to trigger a transition to CELL DCH on

the target device. Having fixed IP Range and nrounds, the only parameter left to

be chosen is Twait, which determines the amount of time the adversary waits before

starting a new round. We already discussed the pros and cons of using a low or high

Twait in Section 4, but during our experiments we observed that this parameter has also



a strong impact on the number of rounds required to reduce the IP Range set: The

lower the Twait, the less IP Range is reduced in size at each round. This effect can

be explained by considering that network activity on mobile devices is typically pro-

duced in bursts (e.g., when the device is being used, or when some background service

downloads an update). Thus, the closer two rounds are in time, the higher is the prob-

ability that the devices that were transmitting (i.e., not in IDLE) at the previous round

will be still transmitting during the following one, and will not be removed from the

IP Range set. Using a larger Twait, instead, increases the probability that the devices

in IP Range go back to the IDLE state between rounds. Starting from this observa-

tion, to test our detection methodology we used three different values of Twait, namely

1, 5, and 10 minutes. We want to stress here that these values are just representative of

what an adversary could use, and that the Twait parameter does not necessarily need to

be fixed. For instance, the adversary may very well disguise the messages sent to the

victim user as a regular chat. In this case, the timings between messages (i.e., rounds)

to the victim could vary according to the conversation.

We performed 5 independent tests for each of the Twait parameters in the times-

pan of three days, between 10am to 8pm. The measurement machine was hosted in our

university’s network, and we used the custom ping-probe module for ZMap. Our ma-

chine, an Intel Core2Duo with a 100Mbit network interface, takes around 10 seconds

to perform round-trip time measurement when the IP Range size is maximum (i.e.,

262K IPs), which corresponds to a rate of around 27 Mbit/s. For the instant messages

we used WhatsApp, as it provides a handy API through which automated tests can be

performed. A number of other apps may be used as well, as discussed in Section 4.1. In

order to account for packet losses, if a device stops replying for at most two rounds, we

assume it was in CELL FACH and we don’t remove it from the IP Range set. Finally,

we used 1 second as a round-trip time threshold to detect the IDLE state, consistently

with the experiments presented in Section 4.1.

Results in Figure 8 show the number of remaining candidates in IP Range after

each round, averaged across all the tests. First of all, we can observe how, during the

first round, the size of IP Range suddenly drops from 262K to just around 80K. This

is caused by IPs not always being active, as we already observed in Section 4.3. As

we anticipated, when the Twait parameter is too low (i.e., 1 minute), the size of the

IP Range decreases very slowly with respect to the other two cases, which, instead,

show similar performances. Using wait time larger than 10 minutes may further improve

the results, but would also be more time expensive for the adversary. Surprisingly, with

Twait set to 5 minutes and 10 minutes, in just 10 rounds the IP Range gets reduced

to between 2K and 3K IPs, that is, 7% and 3% of the initial size of the IP Range set.

This result may be good enough if the objective of the adversary is to save the resources

needed to perform a DoS attack against the victim user. For other type of attacks, the

adversary may want to get an even smaller set of candidate IPs of the victim device.

As we show next, this can be achieved with just a slightly more accurate model of the

Internet usage pattern of the victim.



5.1 Monitoring the Network Usage

One characteristic we observed about the set of devices that stay in the IP Range for

more than 10 rounds across all our experiments, is that they are mostly characterised

by periods of network activity that are exceptionally long with respect to those typical

of mobile devices [10,18]. To get a more clear view of this phenomenon, we randomly

selected 10K IP addresses that resulted to be online and measured their round-trip time

every minute for one hour. Figure 9 shows that around 80% of the devices were found
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Fig. 9: CCDF of the percentage of time the devices were found in the IDLE state.

to be in IDLE for more than 60% of the time. This idle time should be consistent to the

typical traffic patterns of mobile devices [10,18], who are also very limited in terms of

energy autonomy [16]. Following this intuition, we believe that typical mobile devices,

such as smartphones or tablets, are unlikely to exhibit traffic patterns with very long

periods of network activity. In fact, it is reasonable to expect that the cellular network

operator uses its IP address space for other type of services too (e.g., 3G hotspots,

publicly accessible WiFis, 3G USB sticks, and so on). For this reason, the adversary

may safely assume that, in the long run, the target IP will be found to be idle for at least a

Pidle percentage of time, and remove from the IP Range set the devices with a higher

percentage of transmission time. This could computed by keep measuring the round-trip

time of the devices even in the time period between consecutive rounds, that is, when no

message is sent to the user with generate traffic(). After a sufficient number of

rounds, an accurate profile of the network usage over time of the devices in IP Range

can be built and used to filter out devices with an unexpectedly high network activity.

We tested the effectiveness of this profiling technique in our experiments by monitoring

the state of the devices in IP Range every minute and using different values of Pidle.

The results, presented in Figure 10, show that, after 10 rounds, even conservatively

assuming an at most 40% of idle time, we can remove up to 87% of the devices when

Twait set to both 5 and 10 minutes, corresponding to 50 minutes and 1 hour and 40

minutes, respectively. If the adversary can make a stronger assumption on the idle time

of the target device, such as by setting Pidle to be 80%, then the final IP Range set

gets reduced to just 6 and 3 devices respectively. Using a larger number of rounds helps

further decreasing the possible number of user IPs with a less restrictive assumption on

their idle time. For instance, with 15 rounds, corresponding to 1 hour and 15 minutes
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and 2 hours and 30 minutes, assuming Pidle to be 60%, the number of final IPs is less

than 10. We exactly identified the target device IP using 15 rounds and Pidle = 80% or

with 20 rounds and Pidle ≥ 60%. Although we leave a thorough analysis of the typical

activity patterns of smartphones as a future work, our results show that this filtering

technique can achieve a very high accuracy with just 10 or 15 instant messages to the

victim user. Moreover, our results show that using a Twait time of 10 minutes does not

provide a significant advantage. So, if only a limited amount of time is available for the

adversary to restrict the user IP, Twait may be set to 5 minutes.

In general, depending on what additional information is available about the victim,

the adversary will always choose a time window that maximizes Pidle of the target

device during the attack. In fact, there are several scenarios in which the interaction

between a user and the mobile device may be minimum: while driving (maybe during

commute), during lectures (if the target is a student or professor), during trials (if the

target is a judge or lawyer), at night, etc..

5.2 Fingerprinting the Mobile OS

Perhaps surprisingly, the operating system is another information that can be inferred

while measuring the round-trip times towards the devices in IP Range, and that the

adversary can exploit for an easier individuation of the target user IP. This is made

possible by the choice that different operating systems make of the initial time-to-live

(TTL) values to the ICMP echo reply they generate. For instance, the TTL distribution

obtained during a sample scan, reported in Figure 11, is characterised by three steps in

the vicinity of 64, 128 and 255, which correspond to the initial TTLs used by Linux

(including Android) and Apple OSes (TTL 64), Windows (TTL 128), and BlackBerry

(TTL 255) devices.2 A similar TTL-based fingerprinting technique has been described

by Vanaubel et al. [24]. Interestingly, although they use the same initial TTL, iOS de-

vices can be told apart from Linux and OSX ones by observing that iOS listens for

external connections on the TCP port 62078, which is reported as iphone-sync by

nmap. Thus, using ZMap to perform a parallel SYN scan on this port the adversary

can identify Apple mobile devices with just the same amount of effort and time re-

quired by a round-trip time measurement towards the devices in the IP Range set.

2 We could only use a limited number of BlackBerry phones to confirm their initial TTL value.
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and after (right) Algorithm 1 is run

(nrounds = 10, Twait = 5m).

Overall, if the operating system of the victim user’s device is known to the adversary,

this mix of TTL-based and port-based OS detection methods allows to easily restrict

the initial IP Range set, reducing the number of rounds required to find the IP of the

target device. As an example, in Figure 12 (left column) we show the distribution of the

inferred OSes on the initial IP Range we used for our experiments. We can observe

how the low percentage of Windows and BlackBerry devices makes their users partic-

ularly vulnerable to our detection method. For instance, the IP of a BlackBerry user

can be identified with just 15 rounds and Pidle of just 40%. To conclude, notice that, as

the number of rounds increases, the OSes distribution changes considerably (compare

left and right column of Figure 12). In particular, the percentage of Windows devices

after 10 rounds increases more than 4 times, whereas the percentage of iOS devices

decreases. Considering that devices that stay in the IP Range set for several rounds

are those with the lowest idle time (cf., Section 5.1), we deem this as a confirmation of

the intuition that these devices may not be actual smartphones, but, rather, other devices

getting connectivity from the cellular network.

6 Discussion

In this section we investigate the feasibility of our detection methodology, and discuss

alternatives and possible countermeasures.

6.1 Firewalls and NATs

A requirement of our detection methodology is the possibility of directly reaching the

target mobile device in the cellular network. Thus, NATs or firewalls in the path be-

tween the adversary measurement host and the device may constitute an issue. In cellu-

lar networks, these mechanisms are typically deployed at the edge of the Radio Access

Network (RAN), immediately before the public Internet. According to our experience,

further confirmed by recent findings [18], todays’ cellular networks can show a wide



Africa Asia Europe Oceania N. America S. America

# Carriers 5 33 35 3 9 14

Subscribers % 7 56 27 40 54 73

Table 1: Number of mobile network carriers whose mobile devices are assigned public,

reachable IP addresses. Subscribers percentage is a coarse estimation based on publicly

available data.

variety of configurations, which differ on whether firewalls blocking unsolicited traffic

towards the mobile devices are deployed, or whether NAT is used (or both). In the for-

mer case, the detection methodology would not work, as the packets needed to measure

the round-trip times would be blocked. In the latter case, the only potential obstacle is

NAT. However, we observed that when mobile devices are assigned an address in the

private IP space, they are still freely reachable by other devices in the same cellular

network, allowing NAT to be circumvented by an adversary that has access to a device

in the target cellular network. Considering that subscribing to a mobile data plan is rel-

atively cheap, we believe this is not a strong requirement, even for reasonably weak

adversaries.

Finding Public IP Operators To get a more complete view of the cellular network op-

erators worldwide that allow their devices to be directly reached from the open Internet,

we independently collected a list of mobile network operators that assign public, reach-

able IP addresses to their devices. As opposed to previous approaches [18], we used a

centralised approach. As in Section 5.2, we leveraged the fact that iOS devices listen for

external connections on iphone-sync port. This allowed us to spot all the publicly

reachable iOS devices by scanning the entire Internet IP space for hosts listening on

this port using ZMap. The scan took 10 hours, and yielded ∼ 9.4M IPs in 6315 unique

Autonomous Systems (AS) distributed across 189 countries. We were able to associate

∼ 7.5M of these devices (∼ 83% of all the hosts we detected) to 103 among the main

network operators in each country 3, by looking at the name of their originating ASes.

Table 1 gives, the number of operators found in each continent, and their total estimated

share of customers. Given the strong market penetration of iOS devices, we believe this

is a fairly accurate preliminary list of mobile operators that provide unrestricted ac-

cess to their devices from the open Internet. Our results show that the potential number

of users that can be identified with our methodology is far from negligible. In fact, in

all the continents, the mobile carriers allowing a direct access to their devices own a

substantial part of the market share (in terms of number of subscribers). Overall, our

evaluation provides a much broader view of this phenomenon with respect to previous

studies, with a significantly smaller effort. This comes at a price of a lower accuracy.

For instance, associating an AS to its corresponding mobile carrier is not always trivial,

and may require a manual examination of the AS names.

3 http://en.wikipedia.org/wiki/List_of_mobile_network_operators

http://en.wikipedia.org/wiki/List_of_mobile_network_operators


6.2 IP Duration

The amount of time a mobile device is assigned a given IP address in the cellular net-

work is another aspect that may affect our detection methodology. The longer the time,

the easier will be for the adversary to spot the device IP, and greater it will be the possi-

bility to harm the end-user. Typically, the IP address assigned to a mobile device never

changes as long as the device gets not disconnected from the network. This holds for

both cellular networks that assign addresses in the public IP space, and for operators

that, instead, use NAT. In the latter case, the public IP assigned to connections origi-

nating from the device may change in an unpredictable fashion, depending on how the

network is configured, as also reported by Balakrishnan et al. [2]. This does not con-

stitute an issue, though, because, when NAT is used, the adversary would need to get

access to the private side of the cellular network, where IP typically change only when

a disconnection occurs. For these reasons, the habits of mobile users play an important

role in our attack scenario. For instance, if the user switches to a WiFi network, or turns

the device off, then the device IP will almost surely change the next time a data con-

nection to the cellular network is established. However, even for users that have access

to WiFi during the day, there are still large time windows across the day in which their

mobile devices are connected to the mobile network, such as when the user is on the

move, or in some public place (e.g., a pub), and so on. This is confirmed by a mobile

app dataset used by Qian et al. [18], according to which for more than 80% of the times,

a mobile device is continuously connected to the mobile network for more than 4 hours.

This is a time frame that leaves more than enough time for the adversary to both iden-

tify the user device with good accuracy and to perform a focused attack, like a resource

drain attack [14].

6.3 Alternative Approaches

An alternative to our attack could be that of tricking the user to visit a malicious web-

site under the adversary’s control that keeps a record of the connecting IPs. While this

would require less resources on the adversary’s side, there are two main reasons to pre-

fer our detection methodology. First, it does not assume the active participation of the

victim user, which allows the adversary to detect the device IP even when the device

is left unattended, as mentioned in Section 5.1. This would reduce the chances that the

user takes any countermeasure on time, assuming that the push notifications triggered

by the adversary raise any suspicion at all. This highlights the second advantage of our

methodology, that is, the fact that it is harder to be detected as it leverages the (mislead-

ing?) perception that push notifications represent a safe channel that cannot be exploited

by external adversaries. On the other hand, we believe that being repeatedly asked to

follow a certain link is more likely to raise some suspicion. For this reason, our method-

ology is more suitable in cases where the adversary is interested in attacking the user

multiple times, like in the location tracking scenario mentioned in Section 1.

6.4 Countermeasures

The most obvious countermeasure the operator can implement to block our IP detection

methodology is to deploy a firewall that does not allow incoming unsolicited traffic to-



wards the devices inside the network. From the user’s perspective, this may come at the

cost of limiting the possibility of using P2P applications or of hosting publicly accessi-

ble services in the cellular network. However, this does not constitute a real issue as it

is very uncommon to have such services hosted on mobile devices. From the operator’s

perspective, instead, completely blocking all incoming traffic makes it very difficult to

troubleshoot faults or misconfigurations inside the network. For this reason, a very com-

mon practice is to allow at least ICMP messages in echo-reply mode. We believe that

the most effective way would be to implement a firewall directly on the mobile devices

themselves, without relying on the intervention of the operator. This way, all outgoing

ICMP traffic and unsolicited TCP connections it could be safely blocked, preventing

an adversary to remotely probe the device. A less obvious but more effective way for

the operator to countermeasure this attack would be to deploy IPv6, with an address-

ing scheme robust to network scanning (e.g., DHCPv6 with non sequential addresses).

Given the huge address space of typical IPv6 subnets, this would make the scanning

unfeasible even if we consider a much stronger adversarial model.

7 Related Work

Our mechanism for inferring RRC states from network delay measurements builds upon

recent findings about the characteristics of cellular network resource allocation. Qian et

al. [17] propose a way to fully characterise the RRC state machine by just externally

probing a device. In [16] they improve on their previous characterisation methodology.

Perala et al. [15] introduce a 3G Transition Triggering Tool (3G3T), to determine RRC

state transition parameters used in 4 target cellular networks across 3 different countries.

A number of attacks on cellular networks have been presented so far. Traynor et

al. [23] study how even relatively small botnets of mobile phones can degrade the net-

work service in large-sized regions. Peng et al. [14] provide a detailed security eval-

uation of the mobile data accounting architecture. They also describe a stealth-spam

attack that drains the mobile data plan of a target user. Lee et al. [12], show that it is

possible to overload the radio network controller in a UMTS network by means of con-

trol messages. Qian et al. [18] present a way to create a map of IPs in a geographical

area that can be used in a focused signaling DoS attack to the network.

Several attacks have been proposed that use network delay as a side-channel. Hop-

per et al. [8] show how round-trip times allow malicious web servers to link client

requests traversing the same circuit in Tor. Ling et al. [13] investigate a network-delay

based side-channel attack to infer web sites accessed by a user trough a VPN/SOCKS

proxy. Gong et al. [7] show how the same information can be inferred from the round-

trip time between a probing host and a home DSL router.

Stober et al. [22] show that an UMTS eavesdropper can identify a smartphones by

means of the network traffic it generates. Le Blond et al. [11] show how inconspicuous

Skype calls can be used to get coarse-grained users mobility over time. Their method

allows to identify the public IP address of a mobile device, which does not correspond

to the actual IP address if the user is behind NAT. On the opposite, our technique works

also from within the private cellular network address space, exposing mobile also users



behind NAT. Moreover, our method is more general, as it can leverage any instant mes-

sage application, Skype included.

8 Conclusions and Future Work

In this work, we presented a novel method that leverages the delay-based radio state in-

ference in combination with real-time push notification subsystems to identify the IP of

a target user in the cellular network. The information obtained in this way represents a

potential threat to mobile users, as it permits even weak adversaries to perform focused

attacks on users using a small amount of resources, such as inferring the user location,

depleting the user data plan, or inferring the user Internet activity. Our results, per-

formed on over 260K IPs of a large cellular network, show that, with just 10 messages,

the potential set of IP addresses gets reduced to just 3%. With a more accurate model of

the victim user Internet usage pattern, the target user device can be correctly identified

with just 15 messages. A further improvement can be achieved assuming the OS run-

ning on the target device (e.g., Android, iOS, Windows, or BlackBerry) is known. As

a future work, we are investigating the possibility of using the radio state identification

technique to deanonymize Tor [5] users in the cellular network. In addition, we plan

to evaluate whether remotely monitoring the sequence radio states of a mobile device

can be used to build an accurate fingerprint of the Internet traffic of its user. We believe

our work may introduce a new, more general research direction on delay-based user

fingerprinting on cellular networks, which we intend to explore in the near future.
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