
This paper is included in the Proceedings of the
25th USENIX Security Symposium

August 10–12, 2016 • Austin, TX

ISBN 978-1-931971-32-4

Open access to the Proceedings of the
25th USENIX Security Symposium

is sponsored by USENIX

Identifying and Characterizing Sybils
in the Tor Network

Philipp Winter, Princeton University and Karlstad University; Roya Ensafi, Princeton
University; Karsten Loesing, The Tor Project; Nick Feamster, Princeton University

 https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/winter

USENIX Association 25th USENIX Security Symposium 1169

Identifying and characterizing Sybils in the Tor network

Philipp Winter∗† Roya Ensafi∗ Karsten Loesing‡ Nick Feamster∗

∗Princeton University †Karlstad University ‡The Tor Project

Abstract

Being a volunteer-run, distributed anonymity network,
Tor is vulnerable to Sybil attacks. Little is known about
real-world Sybils in the Tor network, and we lack practi-
cal tools and methods to expose Sybil attacks. In this
work, we develop sybilhunter, a system for detecting
Sybil relays based on their appearance, such as config-
uration; and behavior, such as uptime sequences. We
used sybilhunter’s diverse analysis techniques to analyze
nine years of archived Tor network data, providing us
with new insights into the operation of real-world attack-
ers. Our findings include diverse Sybils, ranging from
botnets, to academic research, and relays that hijacked
Bitcoin transactions. Our work shows that existing Sybil
defenses do not apply to Tor, it delivers insights into real-
world attacks, and provides practical tools to uncover
and characterize Sybils, making the network safer for its
users.

1 Introduction

In a Sybil attack, an attacker controls many virtual iden-
tities to obtain disproportionately large influence in a net-
work. These attacks take many shapes, such as sockpup-
pets hijacking online discourse [34]; the manipulation of
BitTorrent’s distributed hash table [35]; and, most rele-
vant to our work, relays in the Tor network that seek to
deanonymize users [8]. In addition to coining the term
“Sybil,”1 Douceur showed that practical Sybil defenses
are challenging, arguing that Sybil attacks are always
possible without a central authority [11]. In this work,
we focus on Sybils in Tor—relays that are controlled by
a single operator. But what harm can Sybils do?

The effectiveness of many attacks on Tor depends on
how large a fraction of the network’s traffic—called the

1The term is a reference to a book in which the female protagonist,
Sybil, suffers from dissociative identity disorder [29].

consensus weight—an attacker can observe. As the at-
tacker’s consensus weight grows, the following attacks
become easier.

Exit traffic tampering: When leaving the Tor network,
a Tor user’s traffic traverses exit relays, the last hop
in a Tor circuit. Controlling exit relays, an attacker
can eavesdrop on traffic to collect unencrypted cre-
dentials, break into TLS-protected connections, or
inject malicious content [37, § 5.2].

Website fingerprinting: Tor’s encryption prevents
guard relays (the first hop in a Tor circuit) from
learning their user’s online activity. Ignoring the
encrypted payload, an attacker can still take ad-
vantage of flow information such as packet lengths
and timings to infer what websites Tor users are
visiting [16].

Bridge address harvesting: Users behind censorship
systems use private Tor relays—typically called
bridges—as hidden stepping stones into the Tor net-
work. It is important that censors cannot obtain all
bridge addresses, which is why The Tor Project rate-
limits bridge distribution. However, an attacker can
harvest bridge addresses by running a middle relay
and looking for incoming connections that do not
originate from any of the publicly known guard re-
lays [22, § 3.4].

End-to-end correlation: By running both entry guards
and exit relays, an attacker can use timing analysis
to link a Tor user’s identity to her activity, e.g., learn
that Alice is visiting Facebook. For this attack to
work, an attacker must run at least two Tor relays, or
be able to eavesdrop on at least two networks [14].

Configuring a relay to forward more traffic allows an
attacker to increase her consensus weight. However, the
capacity of a single relay is limited by its link band-
width and, because of the computational cost of cryptog-
raphy, by CPU. Ultimately, increasing consensus weight

1170 25th USENIX Security Symposium USENIX Association

requires an adversary to add relays to the network; we
call these additional relays Sybils.

In addition to the above attacks, an adversary needs
Sybil relays to manipulate onion services, which are TCP
servers whose IP address is hidden by Tor. In the current
onion service protocol, six Sybil relays are sufficient to
take offline an onion service because of a weakness in
the design of the distributed hash table (DHT) that pow-
ers onion services [4, § V]. Finally, instead of being a
direct means to an end, Sybil relays can be a side effect
of another issue. In Section 5.1, we provide evidence for
what appears to be botnets whose zombies are running
Tor relays, perhaps because of a misguided attempt to
help the Tor network grow.

Motivated by the lack of practical Sybil detection
tools, we design and implement heuristics, leverag-
ing our observations that Sybils (i) frequently go on-
line and offline simultaneously, (ii) share similarities in
their configuration, and (iii) may change their identity
fingerprint—a relay’s fingerprint is the hash over its pub-
lic key—frequently, to manipulate Tor’s DHT. Three of
our four heuristics are automated and designed to run
autonomously while one assists in manual analysis by
ranking what relays in the network are the most similar
to a given reference relay. Our evaluation suggests that
our heuristics differ in their effectiveness; one method
detected only a small number of incidents, but some of
them no other method could detect. Other heuristics pro-
duced a large number of results, and seem well-suited
to spot the “low hanging fruit.” We implemented these
heuristics in a tool, sybilhunter, which we subsequently
used to analyze 100 GiB worth of archived network data,
consisting of millions of files, and dating back to 2007.
Finally, we characterize the Sybil groups we discovered.
To sum up, we make the following key contributions:

• We design and implement sybilhunter, a tool to an-
alyze past and future Tor network data. While we
designed it specifically for the use in Tor, our tech-
niques are general in nature and can easily be ap-
plied to other distributed systems such as I2P [31].

• We characterize Sybil groups and publish our find-
ings as datasets to stimulate future research.2 We
find that Sybils run MitM attacks, DoS attacks, and
are used for research projects.

The rest of this paper is structured as follows. We
begin by discussing related work in Section 2 and give
some background on Tor in Section 3. Section 4 presents
the design of our analysis tools, which is then followed
by experimental results in Section 5. We discuss our re-
sults in Section 6 and conclude the paper in Section 7.

2The datasets are available online at
https://nymity.ch/sybilhunting/.

2 Related work

In his seminal 2002 paper, Douceur showed that only a
central authority that verifies new nodes as they join the
distributed system is guaranteed to prevent Sybils [11].
This approach conflicts with Tor’s design philosophy that
seeks to distribute trust and eliminate central points of
control. In addition, a major factor contributing to Tor’s
network growth is the low barrier of entry, allowing op-
erators to set up relays both quickly and anonymously.
An identity-verifying authority would raise that barrier,
alienate privacy-conscious relay operators, and impede
Tor’s growth. Barring a central authority, researchers
have proposed techniques that leverage a resource that is
difficult for an attacker to scale. Two categories of Sybil-
resistant schemes turned out to be particularly popular,
schemes that build on social constraints and schemes
that build on computational constraints. For a broad
overview of alternative Sybil defenses, refer to Levine
et al. [19].

Social constraints rely on the assumption that it is diffi-
cult for an attacker to form trust relationships with honest
users, e.g., befriend many strangers on online social net-
works. Past work leveraged this assumption in systems
such as SybilGuard [39], SybilLimit [38], and Sybil-
Infer [6]. Unfortunately, social graph-based defenses
do not work in our setting because there is no existing
trust relationship between relay operators.3 Note that we
could create such a relationship by, e.g., linking relays to
their operator’s social networking account, or by creat-
ing a “relay operator web of trust,” but again, we believe
that such an effort would alienate relay operators and see
limited adoption.

Orthogonal to social constraints, computational re-
source constraints guarantee that an attacker seeking to
operate 100 Sybils needs 100 times the computational re-
sources she would have needed for a single virtual iden-
tity. Both Borisov [5] and Li et al. [21] used compu-
tational puzzles for that purpose. Computational con-
straints work well in distributed systems where the cost
of joining the network is low. For example, a lightweight
client is sufficient to use BitTorrent, allowing even low-
end consumer devices to participate. However, this is not
the case in Tor because relay operations require constant
use of bandwidth and CPU. Unlike in many other dis-
tributed systems, it is impossible to run 100 Tor relays
while not spending the resources for 100 relays. Compu-
tational constraints are inherently tied to running a relay.

In summary, we believe that existing Sybil defenses
are ill-suited for application in the Tor network; its dis-
tinctive features call for customized solutions that con-

3Relay operators can express in their configuration that their relays
are run by the same operator, but this denotes an intra-person and not
an inter-person trust relationship.

2

USENIX Association 25th USENIX Security Symposium 1171

sider the nature of Tor relays. There has already been
some progress towards that direction; namely, The Tor
Project has incorporated a number of both implicit and
explicit Sybil defenses that are in place as of June 2016.
First, directory authorities—the “gatekeepers” of the Tor
network—accept at most two relays per IP address to
prevent low-resource Sybil attacks [3, 2]. Similarly,
Tor’s path selection algorithm ensures that Tor clients
never select two relays in the same /16 network [9]. Sec-
ond, directory authorities automatically assign flags to
relays, indicating their status and quality of service. The
Tor Project has recently increased the minimal time until
relays obtain the Stable flag (seven days) and the HSDir

flag (96 hours). This change increases the cost of Sybil
attacks and gives Tor developers more time to discover
and block suspicious relays before they get in a posi-
tion to run an attack. Finally, the operation of a Tor re-
lay causes recurring costs—most notably bandwidth and
electricity—which can further restrain an adversary.

3 Background

We now provide necessary background on the Tor net-
work [10]. Tor consists of several thousand volunteer-run
relays that are summarized in the network consensus that
is voted on and published each hour by nine distributed
directory authorities. The authorities assign a variety of
flags to relays:

Valid: The relay is valid, i.e., not known to be broken.
HSDir: The relay is an onion service directory, i.e., it

participates in the DHT that powers Tor onion ser-
vices.

Exit: The relay is an exit relay.
BadExit: The relay is an exit relay, but is either mis-

configured or malicious, and should therefore not
be used by Tor clients.

Stable: Relays are stable if their mean time between
failure is at least the median of all relays, or at least
seven days.

Guard: Guard relays are the rarely-changing first hop
for Tor clients.

Running: A relay is running if the directory authorities
could connect to it in the last 45 minutes.

Tor relays are uniquely identified by their fingerprint,
a Base32-encoded and truncated SHA-1 hash over their
public key. Operators can further assign a nickname to
their Tor relays, which is a string that identifies a relay
(albeit not uniquely) and is easier to remember than its
pseudo-random fingerprint. Exit relays have an exit pol-
icy—a list of IP addresses and ports that the relay allows
connections to. Finally, operators that run more than one
relay are encouraged to configure their relays to be part

Nearest
neighbors

Potential
Sybils

sybilhunter

Tor network

Bad exit
relay

Consensuses
and descriptors

All
relays

Malicious
relays

Exit
relay

exitmap

sybilhunter

Decoy
website

Figure 1: Sybilhunter’s architecture. Two datasets serve
as input to sybilhunter; consensuses and server descrip-
tors, and malicious relays gathered with exitmap [37,
§ 3.1].

of a relay family. Families are used to express that a set
of relays is controlled by a single operator. Tor clients
never use more than one family member in their path
to prevent correlation attacks. In February 2016, there
were approximately 400 relay families among all 7,000
relays.

4 Data and design

We define Sybils in the Tor network as two or more re-
lays that are controlled by a single person or group of
people. Sybils per se do not have to be malicious; a relay
operator could simply have forgotten to configure her re-
lays as a relay family. Such Sybils are no threat to the Tor
network, which is why we refer to them as benign Sybils.
What we are interested in is malicious Sybils whose pur-
pose is to deanonymize or otherwise harm Tor users.

To uncover malicious Sybils, we draw on two
datasets—one publicly available and one created by us.
Our detection methods are implemented in a tool, sybil-
hunter, which takes as input our two datasets and then at-
tempts to expose Sybil groups, as illustrated in Figure 1.
Sybilhunter is implemented in Go and consists of 2,300
lines of code.

4.1 Datasets

Figure 1 shows how we use our two datasets. Archived
consensuses and router descriptors (in short: descriptors)
allow us to (i) restore past states of the Tor network,
which sybilhunter mines for Sybil groups, and to (ii) find
“partners in crime” of malicious exit relays that we dis-
covered by running exitmap, a scanner for Tor exit relays
that we discuss below.

3

1172 25th USENIX Security Symposium USENIX Association

∙ Descriptor pointer
∙ Nickname
∙ Fingerprint
∙ Publication
∙ Address and ports
∙ Flags
∙ Version
∙ Bandwidth
∙ Exit policy

Router statuses

Consensus

∙ Address and ports
∙ Platform
∙ Protocols
∙ Published
∙ Fingerprint
∙ Uptime
∙ Bandwidth
∙ Signature

Router descriptor

Figure 2: Our primary dataset contains nine years worth
of consensuses and router descriptors.

4.1.1 Consensuses and router descriptors

The consensus and descriptor dataset is publicly avail-
able on CollecTor [32], an archiving service that is run
by The Tor Project. Some of the archived data dates back
to 2004, allowing us to restore arbitrary Tor network con-
figurations from the last decade. Not all of CollecTor’s
archived data is relevant to our hunt for Sybils, though,
which is why we only analyze the following two:

Descriptors Tor relays and bridges periodically upload
router descriptors, which capture their configuration, to
directory authorities. Figure 2 shows an example in the
box to the right. Relays upload their descriptors no later
than every 18 hours, or sooner, depending on certain con-
ditions. Note that some information in router descriptors
is not verified by directory authorities. Therefore, relays
can spoof information such as their operating system, Tor
version, and uptime.

Consensuses Each hour, the nine directory authorities
vote on their view of all Tor relays that are currently on-
line. The vote produces the consensus, an authoritative
list that comprises all running Tor relays, represented as
a set of router statuses. Each router status in the consen-
sus contains basic information about Tor relays such as
their bandwidth, flags, and exit policy. It also contains a
pointer to the relay’s descriptor, as shown in Figure 2. As
of June 2016, consensuses contain approximately 7,000
router statuses, i.e., each hour, 7,000 router statuses are
published, and archived, by CollecTor.

Table 1 gives an overview of the size of our consen-
sus and descriptor archives. We found it challenging to
repeatedly process these millions of files, amounting to
more than 100 GiB of uncompressed data, so we imple-
mented a custom parser in Go [36].

Dataset # of files Size Time span

Consensuses 72,061 51 GiB 10/2007–01/2016
Descriptors 34,789,777 52 GiB 12/2005–01/2016

Table 1: An overview of our primary dataset; consen-
suses and server descriptors since 2007 and 2005, respec-
tively.

4.1.2 Malicious exit relays

In addition to our publicly available and primary dataset,
we collected malicious exit relays over 18 months. We
call exit relays malicious if they modify forwarded traffic
in bad faith, e.g., to run man-in-the-middle attacks. We
add these relays to our dataset because they frequently
surface in groups, as malicious Sybils, because an at-
tacker runs the same attack on several, physically dis-
tinct exit relays. Winter et al.’s work [37, § 5.2] further
showed that attackers make an effort to stay under the
radar, which is why we cannot only rely on active prob-
ing to find such relays. We also seek to find potential
“partners in crime” of each newly discovered malicious
relay, which we discuss in Section 4.3.4.

We exposed malicious exit relays using Winter et al.’s
exitmap tool [37, § 3.1]. Exitmap is a Python-based
scanning framework for Tor exit relays. Exitmap mod-
ules perform a network task that can then be run over all
exit relays. One use case is HTTPS man-in-the-middle
detection: A module can fetch the certificate of a web
server over all exit relays and then compare its finger-
print with the expected, valid fingerprint. Exposed at-
tacks are sometimes difficult to attribute because an at-
tack can take place upstream of the exit relay, e.g., at a
malicious autonomous system. However, attribution is
only a secondary concern. Our primary concern is pro-
tecting Tor users from harm, and we do not need to iden-
tify the culprit to do so.

In addition to using the original exitmap modules [37,
§ 3.1], we implemented modules that detect HTML and
HTTP tampering by connecting to a decoy server under
our control, and flagging an exit relay as malicious if the
returned HTML or HTTP was modified, e.g., to inject
data or redirect a user over a transparent HTTP proxy.
Since we controlled the decoy server, we knew what our
Tor client should get in response. Our modules ran pe-
riodically from August 2014 to January 2016, and dis-
covered 251 malicious exit relays whose attacks are dis-
cussed in Appendix A. We reported all relays to The Tor
Project, which subsequently blocked these relays.

4

USENIX Association 25th USENIX Security Symposium 1173

CSV file

Image
Consensuses

and descriptors

sybilhunter

Filter Fingerprints
Churn

Uptime

Suspicious
relays

Figure 3: Sybilhunter’s internal architecture. After an
optional filtering step, data is then passed on to one of
three analysis modules that produce as output either CSV
files or an image.

4.2 Threat model
Most of this paper is about applying sybilhunter to
archived network data, but we can also apply it to newly
incoming data. This puts us in an adversarial setting
as attackers can tune their Sybils to evade our system.
This is reflected in our adversarial assumptions. We as-
sume that an adversary does run more than one Tor re-
lay and exhibits redundancy in their relay configuration,
or uptime sequence. An adversary further can know
how sybilhunter’s modules work, run active or passive
attacks, and make a limited effort to stay under the radar,
by diversifying parts of their configuration. To detect
Sybils, however, our heuristics require some redundancy.

4.3 Analysis techniques
Having discussed our datasets and threat model, we now
turn to presenting techniques that can expose Sybils. Our
techniques are based on the insight that Sybil relays fre-
quently behave or appear similarly. Shared configu-
ration parameters such as port numbers and nicknames
cause similar appearance whereas Sybils behave simi-
larly when they reboot simultaneously, or exhibit iden-
tical quirks when relaying traffic.

Sybilhunter can analyze (i) historical network data,
dating back to 2007; (ii) online data, to detect new Sybils
as they join the network; and (iii) find relays that might
be associated with previously discovered, malicious re-
lays. Figure 3 shows sybilhunter’s internal architecture.
Tor network data first passes a filtering component that
can be used to inspect a subset of the data, e.g., only
relays with a given IP address or nickname. The data
is then forwarded to one or more modules that imple-
ment an analysis technique. These modules work inde-
pendently, but share a data structure to find suspicious re-
lays that show up in more than one module. Depending
on the analysis technique, sybilhunter’s output is either
CSV files or images.

While developing sybilhunter, we had to make many
design decisions that we tackled by drawing on the expe-
rience we gained by manually analyzing numerous Sybil

groups. We iteratively improved our code and augmented
it with new features when we experienced operational
shortcomings.

4.3.1 Network churn

The churn rate of a distributed system captures the rate
of joining and leaving network participants. In the Tor
network, these participants are relays. An unexpect-
edly high churn rate between two subsequent consen-
suses means that many relays joined or left, which can re-
veal Sybils and other network issues because many Sybil
operators start and stop their Sybils at the same time, to
ease administration—they behave similarly.

The Tor Project is maintaining a Python script [15]
that determines the number of previously unobserved re-
lay fingerprints in new consensuses. If that number is
greater than or equal to the static threshold 50, the script
sends an e-mail alert. We reimplemented the script in
sybilhunter and ran it over all archived consensus docu-
ments, dating back to 2007. The script raised 47 alerts
in nine years, all of which seemed to be true positives,
i.e., they should be of interest to The Tor Project. The
script did not raise false positives, presumably because
the median number of previously unseen fingerprints in
a consensus is only six—significantly below the conser-
vative threshold of 50. Yet, the threshold likely causes
false negatives, but we cannot determine the false nega-
tive rate because we lack ground truth. In addition, The
Tor Project’s script does not consider relays that left the
network, does not distinguish between relays with differ-
ent flags, and does not adapt its threshold as the network
grows. We now present an alternative approach that is
more flexible and robust.

We found that churn anomalies worthy of our attention
range from flat hills (Figure 4) to sudden spikes (Fig-
ure 5). Flat hills can be a sign of an event that affected a
large number of relays, over many hours or days. Such
an event happened shortly after the Heartbleed bug, when
The Tor Project asked relay operators to generate new
keys. Relay operators acted gradually, most within two
days. Sudden spikes can happen if an attacker adds many
relays, all at once. These are mere examples, however;
the shape of a time series cannot tell us anything about
the nature of the underlying incident.

To quantify the churn rate α between two subsequent
consensus documents, we adapt Godfrey et al.’s formula,
which yields a churn value that captures both systems
that joined and systems that left the network [13, § 2.1].
However, an unusually low number of systems that left
could cancel out an unusually high number of new sys-
tems and vice versa—an undesired property for a tech-
nique that should spot abnormal changes. To address
this issue, we split the formula in two parts, creating a

5

1174 25th USENIX Security Symposium USENIX Association

5
1

0
1

5

Time

N
e
w

 r
e

la
y
s
 p

e
r

h
o

u
r

Jun 05 Jun 15 Jun 25 Jul 05 Jul 15

Figure 4: A flat hill of new relays in 2009. The time
series was smoothed using a moving average with a win-
dow size of 12 hours.

5
1

0
2

0

Time

N
e
w

 r
e

la
y
s
 p

e
r

h
o

u
r

Sep 03 Sep 08 Sep 13 Sep 18 Sep 23 Sep 28

Figure 5: A sudden spike of new relays in 2010. The
time series was smoothed using a moving average with a
window size of 12 hours.

time series for new relays (αn) and for relays that left
(αl). Ct is the network consensus at time t, and \ denotes
the complement between two consensuses, i.e., the relays
that are in the left operand, but not the right operand. We
define αn and αl as

αn =
|Ct \Ct−1|

|Ct |
and αl =

|Ct−1 \Ct |
|Ct−1|

. (1)

Both αn and αl are bounded to the interval [0,1]. A
churn value of 0 indicates no change between two subse-
quent consensuses whereas a churn value of 1 indicates
a complete turnover. Determining αn,l for the sequence
Ct ,Ct−1, . . . , Ct−n, yields a time series of churn values
that can readily be inspected for abnormal spikes. Fig-
ure 6 illustrates the maximum number of Sybils an at-
tacker can add to the network given a threshold for α .
The figure shows both the theoretical maximum and a
more realistic estimate that accounts for noise, i.e., the
median number of new relays in each consensus, which
is 73.4 We found that many churn anomalies are caused
by relays that share a flag, or a flag combination, e.g.,
HSDir (onion service directories) and Exit (exit relays).
Therefore, sybilhunter can also generate per-flag churn
time series that can uncover patterns that would be lost
in a flag-agnostic time series.

4Note that this analysis is “memoryless” and includes relays that
have been online before; unlike the analysis above that considered only
previously unobserved relays, for which the median number was six.

0.02 0.04 0.06 0.08

0
20

0
40

0
60

0

Threshold for churn value α

M
ax

. u
nd

et
ec

te
d

Sy
bi

ls

Maximum
Realistic

Figure 6: The number of new Sybils (y axis) that can
remain undetected given a threshold for the churn value
α (x axis). The diagram shows both the maximum and a
more realistic estimate that accounts for the median num-
ber of new relays in consensuses.

Finally, to detect changes in the underlying time se-
ries trend—flat hills—we can smooth αn,l using a simple
moving average λ defined as

λ =
1
w
·

w

∑
i=0

αi. (2)

As we increase the window size w, we can detect more
subtle changes in the underlying churn trend. If λ or αn,l
exceed a manually defined threshold, an alert is raised.
Section 5.3 elaborates on how we can select a threshold
in practice.

4.3.2 Uptime matrix

For convenience, Sybil operators are likely to administer
their relays simultaneously, i.e., update, configure, and
reboot them all at the same time. This is reflected in their
relays’ uptime. An operating system upgrade that re-
quires a reboot of Sybil relays will induce a set of relays
to go offline and return online in a synchronized manner.
To isolate such events, we are visualizing the uptime pat-
terns of Tor relays by grouping together relays whose up-
time is highly correlated. The churn technique presented
above is similar but it only provides an aggregate, high-
level view on how Tor relays join and leave the network.
Since the technique is aggregate, it is poorly suited for
visualizing the uptime of specific relays; an abnormally
high churn value attracts our attention but does not tell
us what caused the anomaly. To fill this gap, we comple-
ment the churn analysis with an uptime matrix that we
will now present.

This uptime matrix consists of the uptime patterns of
all Tor relays, which we represent as binary sequences.
Each hour, when a new consensus is published, we add
a new data point—“online” or “offline”—to each Tor re-
lay’s sequence. We visualize all sequences in a bitmap
whose rows represent consensuses and whose columns

6

USENIX Association 25th USENIX Security Symposium 1175

Figure 7: The uptime matrix for 3,000 Tor relays for
all of November 2012. Rows represent consensuses and
columns represent relays. Black pixels mean that a relay
was online, and white means offline. Red blocks denote
relays with identical uptime.

represent relays. Each pixel denotes the uptime status
of a particular relay at a particular hour. Black pixels
mean that the relay was online and white pixels mean
that the relay was offline. This type of visualization was
first proposed by Ensafi and subsequently implemented
by Fifield [12].

Of particular importance is how the uptime sequences
are sorted. If highly correlated sequences are not adja-
cent in the visualization, we might miss them. We sort
sequences using single-linkage clustering, a type of hier-
archical clustering algorithm that forms groups bottom-
up, based on the minimum distance between group mem-
bers. For our distance function, similar to Andersen et
al. [1, § II.B], we use Pearson’s correlation coefficient
because it tells us if two uptime sequences change to-
gether. The sample correlation coefficient r yields a
value in the interval [−1,1]. A coefficient of −1 denotes
perfect anti-correlation (relay R1 is only online when re-
lay R2 is offline) and 1 denotes perfect correlation (relay
R1 is only online when relay R2 is online). We define our
distance function as d(r) = 1− r, so two perfectly cor-
related sequences have a distance of zero while two per-
fectly anti-correlated sequences have a distance of two.
Once all sequences are sorted, we color five or more ad-
jacent sequences in red if their uptime sequence is iden-
tical. Figure 7 shows an example of our visualization al-
gorithm, the uptime matrix for a subset of all Tor relays
in November 2012.

4.3.3 Fingerprint analysis

The information a Tor client needs to connect to an onion
service is stored in a DHT that consists of a subset of all
Tor relays, the onion service directories (HSDirs). As
of June 2016, 47% of all Tor relays serve as HSDirs. A
daily-changing set of six HSDirs hosts the contact infor-
mation of any given onion service. Tor clients contact
one of these six HSDirs to request information about the
onion service they intend to connect to. A HSDir be-
comes responsible for an onion service if the difference
between its relay fingerprint and the service’s descriptor
ID is smaller than that of any other relay. The descrip-

tor ID is derived from the onion service’s public key, a
time stamp, and additional information. All HSDirs are
public, making it possible to determine at which posi-
tion in the DHT an onion service will end up at any point
in the future. Attackers can exploit the ability to pre-
dict the DHT position by repeatedly generating identity
keys until their fingerprint is sufficiently close to the tar-
geted onion service’s index, thus becoming its HSDir [4,
§ V.A].

We detect relays that change their fingerprint fre-
quently by maintaining a lookup table that maps a relay’s
IP address to a list of all fingerprints we have seen it use.
We sort the lookup table by the relays that changed their
fingerprints the most, and output the results. Note that
reboots or newly assigned IP addresses are not an issue
for this technique—as long as relays do not lose their
long-term keys that are stored on their hard drive, their
fingerprint stays the same.

4.3.4 Nearest-neighbor ranking

We frequently found ourselves in a situation where ex-
itmap discovered a malicious exit relay and we were left
wondering if there were similar, potentially associated
relays. Looking for such relays involved tedious manual
work, which we soon started to automate. We needed
an algorithm for nearest-neighbor ranking that takes as
input a “seed” relay and creates as output a list of all re-
lays, ranked by their similarity to the seed relay. We de-
fine similarity as shared configuration parameters such as
port numbers, IP addresses, exit policies, or bandwidth
values. Our algorithm ranks relays by comparing these
configuration parameters.

To quantify the similarity between two relays, we
use the Levenshtein distance [18], a distance metric that
takes as input two strings and determines the minimum
number of modifications—insert, delete, and modify—
that are necessary to turn string s2 into s1. Our algorithm
turns the router statuses and descriptors of two relays into
strings and determines their Levenshtein distance. As an
example, consider a simple representation consisting of
the concatenation of nickname, IP address, and port. To
turn string s2 into s1, six operations are necessary; four
modifications (green) and two deletions (red):

s1: Foo10.0.0.19001
s2: Bar10.0.0.2549001
Our algorithm determines the Levenshtein distance

between a “seed” relay and all other relays in a consen-
sus. It then ranks the calculated distances in ascending
order. For a consensus consisting of 6,525 relays, our al-
gorithm takes approximately 1.5 seconds to finish.5 Note

5We measured on an Intel Core i7-3520M CPU at 2.9 GHz, a
consumer-grade CPU.

7

1176 25th USENIX Security Symposium USENIX Association

that we designed our ranking algorithm to assist in man-
ual analysis. Unlike the other analysis techniques, it does
not require a threshold.

5 Evaluation and results

Equipped with sybilhunter, we applied our techniques to
nine years of archived Tor network data. We did not set
any thresholds, to capture every single churn value, fin-
gerprint, and uptime sequence, resulting in an unfiltered
dataset of several megabytes of CSV files and uptime
images. We then sorted this dataset in descending or-
der by severity, and began manually analyzing the most
significant incidents, e.g., the largest churn values. In
Section 5.1, we begin by characterizing Sybil groups we
discovered that way. Instead of providing an exhaustive
list of all potential Sybils, we focus on our most salient
findings—relay groups that were either clearly malicious
or distinguished themselves otherwise.6 Afterwards, we
explore the impact of sybilhunter’s thresholds in Sec-
tions 5.2 to 5.6.

Once we discovered a seemingly harmful Sybil group,
we reported it to The Tor Project. To defend against
Sybil attacks, directory authorities can either remove a
relay from the consensus, or take away its Valid flag,
which means that the relay is still in the consensus, but
Tor clients will not consider it for their first or last hop in
a circuit. The majority of directory authorities, i.e., five
out of nine, must agree on either strategy. This mecha-
nism is meant to distribute the power of removing relays
into the hands of a diverse set of people in different ju-
risdictions.

5.1 Sybil characterization
Table 2 shows the most interesting Sybil groups we iden-
tified. The columns show (i) what we believe to be the
purpose of the Sybils, (ii) when the Sybil group was at
its peak size, (iii) the ID we gave the Sybils, (iv) the
number of Sybil fingerprints at its peak, (v) the analysis
techniques that could discover the Sybils, and (vi) a short
description. The analysis techniques are abbreviated as
“N” (Neighbor ranking), “F” (Fingerprint), “C” (Churn),
“U” (Uptime), and “E” (exitmap). We now discuss the
most insightful incidents in greater detail.

The “rewrite” Sybils These recurring Sybils hijacked
Bitcoin transactions by rewriting Bitcoin addresses in re-
layed HTML. All relays had the Exit flag and replaced
onion domains found in a web server’s HTTP response

6Our datasets and visualizations are available online, and can be
inspected for an exhaustive set of potential Sybils. The URL is
https://nymity.ch/sybilhunting/.

with an impersonation domain, presumably hosted by
the attacker. Interestingly, the impersonation domains
shared a prefix with the original. For example, the do-
main sigaintevyh2rzvw.onion was replaced with the im-
personation domain sigaintz7qjj3val.onion whose first
seven digits are identical to the original. The attacker
could create shared prefixes by repeatedly generating key
pairs until the hash over the public key resembled the de-
sired prefix. Onion domains are generated by determin-
ing the SHA-1 hash over the public key, truncating it to
its 80 most significant bits, and encoding it in Base32.
Each Base32 digit of the 16-digit-domain represents five
bits. Therefore, to get an n-digit prefix in the onion do-
main, 25n−1 operations are required on average. For the
seven-digit prefix above, this results in 25·7−1 = 234 op-
erations. The author of scallion [30], a tool for gener-
ating vanity onion domains, determined that an nVidia
Quadro K2000M, a mid-range laptop GPU, is able to
generate 90 million hashes per second. On this GPU,
a partial collision for a seven-digit prefix can be found
in 234 · 1

90,000,000 � 190 seconds, i.e., just over three min-
utes.

We inspected some of the phishing domains and found
that the attackers further replaced the original Bitcoin ad-
dresses with addresses that are presumably controlled by
the attackers, enabling them to hijack Bitcoin transac-
tions. As a result, we believe that the attack was finan-
cially motivated.

The “redirect” Sybils These relays all had the Exit

flag and tampered with HTTP redirects of exit traffic.
To protect their users’ login credentials, some Bitcoin
sites would redirect users from their HTTP site to the
encrypted HTTPS version. This Sybil group tampered
with the redirect and directed users to an impersonation
site, resembling the original Bitcoin site, probably to
steal credentials. We only observed this attack for Bit-
coin sites, but cannot rule out that other sites were not
attacked.

Interestingly, the Sybils’ descriptors and consensus
entries had less in common than other Sybil groups.
They used a small set of different ports, Tor versions,
bandwidth values, and their nicknames did not exhibit
an easily-recognizable pattern. In fact, the only reason
why we know that these Sybils belong together is be-
cause their attack was identical.

We discovered three Sybil groups that implemented
the redirect attack, each of them beginning to surface
when the previous one got blocked. The initial group
first showed up in May 2014, with only two relays, but
slowly grew over time, until it was finally discovered in
January 2015. We believe that these Sybils were run by
the same attacker because their attack was identical.

It is possible that this Sybil group was run by the same

8

USENIX Association 25th USENIX Security Symposium 1177

Purpose Peak activity Group ID Number Neig
hbor

Fingerp
rin

t

Churn
Uptim

e

Exitm
ap

Description

MitM Jan 2016 rewrite∗ 42 E Replaced onion domains with impersonation site.
Nov 2015 rewrite∗ 8 E Replaced onion domains with impersonation site.
Jun 2015 rewrite∗ 55 E Replaced onion domains with impersonation site.
Apr 2015 rewrite∗ 71 U,E Replaced onion domains with impersonation site.
Mar 2015 redirect† 24 E Redirected users to impersonated site.
Feb 2015 redirect† 17 E Redirected users to impersonated site.
Jan 2015 redirect† 26 E Redirected users to impersonated site.

Botnet Mar 2014 default — N Likely a Windows-powered botnet. The group fea-
tures wide geographical distribution, which is uncom-
mon for typical Tor relays.

Oct 2010 trotsky 649 N The relays were likely part of a botnet. They appeared
gradually, and were all running Windows.

Unknown Jan 2016 cloudvps 61 C,U Hosted by Dutch hoster XL Internet Services.
Nov 2015 11BX1371 150 C,U All relays were in two /24 networks and a single relay

had the Exit flag.
Jul 2015 DenkoNet 58 U Hosted on Amazon AWS and only present in a single

consensus. No relay had the Exit flag.
Jul 2015 cloudvps 55 C,U All relays only had the Running and Valid flag. As

their name suggests, the relays were hosted by the
Dutch hoster “CloudVPS.”

Dec 2014 Anonpoke 284 C,U The relays did not have the Exit flag and were re-
moved from the network before they could get the
HSDir flag.

Dec 2014 FuslVZTOR 246 C,U The relays showed up only hours after the LizardNSA
incident.

DoS Dec 2014 LizardNSA 4,615 C,U A group publicly claimed to be responsible for the at-
tack [24]. All relays were hosted in the Google cloud
and The Tor Project removed them within hours.

Research May 2015 fingerprints 168 F All twelve IP addresses, located in the same /24,
changed their fingerprint regularly, presumably in an
attempt to manipulate the distributed hash table.

Mar 2014 FDCservers 264 C,U Relays that were involved in an experimental onion
service deanonymization attack [8].

Feb 2013 AmazonEC2 1,424 F,C,U We observed 1,424 relay fingerprints on 88 IP ad-
dresses. These Sybils were likely part of a research
project [4, § V].

Jun 2010 planetlab 595 C,U According to a report from The Tor Project [20], a re-
searcher started these relays to learn more about scal-
ability effects.

Table 2: The most salient Sybil groups that sybilhunter and our exitmap modules discovered. We believe that groups
marked with the symbols ∗ and † were run by the same operator, respectively. Note that sybilhunter was unable to
detect six Sybil groups in the category “MitM.”

attackers that controlled the “rewrite” group but we have
no evidence to support that hypothesis. Interestingly,
only our exitmap module was able to spot these Sybils.
The relays joined the network gradually over time and
had little in common in their configuration, which is why
our heuristics failed. In fact, we cannot rule out that the

adversary was upstream of the exit relay, or gained con-
trol over these relays.

The “FDCservers” Sybils Attackers used these Sybils
to deanonymize onion service users, as discussed by
The Tor Project in a July 2014 blog post [8]. Sup-

9

1178 25th USENIX Security Symposium USENIX Association

0
10

0
20

0
30

0

Time

N
um

be
r o

f S
yb

il
re

la
ys

Jan 2008 Jan 2010 Jan 2012 Jan 2014 Jan 2016

default
trotsky

Figure 8: The number of “default” and “trotsky” Sybil
members over time.

posedly, CMU/SEI-affiliated researchers were executing
a traffic confirmation attack by sending sequences of
RELAY_EARLY and RELAY cells as a signal down the cir-
cuit to the client, which the reference implementation
never does [8, 7]. The attacking relays were both onion
service directories and guards, allowing them to control
both ends of the circuit for some Tor clients that were
fetching onion service descriptors. Therefore, the re-
lays could tell for a fraction of Tor users what onion
service they were intending to visit. Most relays were
running FreeBSD, used Tor in version 0.2.4.18-rc, had
identical flags, mostly identical bandwidth values, and
were located in 50.7.0.0/16 and 204.45.0.0/16. All of
these shared configuration options made the relays easy
to identify.

The relays were added to the network in batches, pre-
sumably starting in October 2013. On January 30, 2014,
the attackers added 58 relays to the 63 existing ones, giv-
ing them control over 121 relays. On July 8, 2014, The
Tor Project blocked all 123 IP addresses that were run-
ning at the time.

The “default” Sybils This group, named after the
Sybils’ shared nickname “default,” has been around since
September 2011 and consists of Windows-powered re-
lays only. We extracted relays by filtering consensuses
for the nickname “default,” onion routing port 443, and
directory port 9030. The group features high IP address
churn. For October 2015, we found “default” relays in
73 countries, with the top three countries being Ger-
many (50%), Russia (8%), and Austria (7%). The ma-
jority of these relays had little uptime and exhibited a
diurnal pattern, suggesting that they were powered off
regularly—as it often is the case for desktop computers
and laptops.

To get a better understanding of the number of “de-
fault” relays over time, we analyzed all consensuses, ex-
tracting the number of relays whose nickname was “de-
fault,” whose onion routing port was 443, and whose di-
rectory port was 9030. We did this for the first consensus

every day and plot the result in Figure 8. Note that we
might overestimate the numbers as our filter could cap-
ture unrelated relays.

The above suggests that some of the “default” relays
are running without the owner’s knowledge. While the
relays do not fit the pattern of Sefnit (a.k.a. Mevade) [26]
and Skynet [27]—two pieces of malware that use an
onion service as command and control server—we be-
lieve that the “default” relays constitute a botnet.

The “trotsky” Sybils Similar to the “default” group,
the “trotsky” relays appear to be part of a botnet. Most
of the relays’ IP addresses were located in Eastern Eu-
rope, in particular in Slovenia, Croatia, and Bosnia and
Herzegovina. The relays were all running on Windows,
in version 0.2.1.26, and listening on port 443. Most of
the relays were configured as exits, and The Tor Project
assigned some of them the BadExit flag.

The first “trotsky” members appeared in September
2010. Over time, there were two relay peaks, reaching
139 (September 23) and 219 (October 3) relays, as illus-
trated in Figure 8. After that, only 1–3 relays remained
in the consensus.

The “Amazon EC2” Sybils The relays all used
randomly-generated nicknames, consisting of sixteen or
seventeen letters and numbers; Tor in version 0.2.2.37;
GNU/Linux; and IP addresses in Amazon’s EC2 net-
block. Each of the 88 IP addresses changed its finger-
print 24 times, but not randomly: the fingerprints were
chosen systematically, in a small range. For example, re-
lay 54.242.248.129 had fingerprints with the prefixes 8D,
8E, 8F, and 90. The relays were online for 48 hours. Af-
ter 24 hours, most of the relays obtained the HSDir flag.
This behavior appears to be a clear attempt to manipulate
Tor’s DHT.

We believe that this Sybil group was run by Biryukov,
Pustogarov, and Weinmann as part of their Security
and Privacy 2013 paper “Trawling for Tor Hidden Ser-
vices” [4]—one of the few Sybil groups that were likely
run by academic researchers.

The “Anonpoke” Sybils All relays shared the nick-
name “Anonpoke” and were online for four hours un-
til they were rejected. All relays were hosted by a VPS
provider in the U.S., Rackspace, with the curious excep-
tion of a single relay that was hosted in the UK, and run-
ning a different Tor version. The relays advertized the
default bandwidth of 1 GiB/s on port 9001 and 9030. All
relays were middle relays and running as directory mir-
ror. All Sybils were configured to be an onion service
directory, but did not manage to get the flag in time.

10

USENIX Association 25th USENIX Security Symposium 1179

The “PlanetLab” Sybils A set of relays that used a
variation of the strings “planet”, “plab”, “pl”, and “plan-
etlab” as their nickname. The relays’ exit policy allowed
ports 6660–6667, but they did not get the Exit flag. The
Sybils were online for three days and then removed by
The Tor Project, as mentioned in a blog post [20]. The
blog post further says that the relays were run by a re-
searcher to learn more about “cloud computing and scal-
ing effects.”

The “LizardNSA” Sybils All relays were hosted in
the Google Cloud and only online for ten hours, until the
directory authorities started to reject them. The majority
of machines were middle relays (96%), but the attack-
ers also started some exit relays (4%). The Sybils were
set up to be onion service directories, but the relays were
taken offline before they could earn the HSDir flag. If all
relays would have obtained the HSDir flag, they would
have constituted almost 50% of all onion service directo-
ries; the median number of onion service directories on
December 26 was 3,551.

Shortly after the attack began, somebody claimed re-
sponsibility on the tor-talk mailing list [24]. Judging by
the supposed attacker’s demeanor, the attack was mere
mischief.

The “FuslVZTOR” Sybils All machines were mid-
dle relays and hosted in the netblock 212.38.181.0/24,
owned by a UK VPS provider. The directory authorities
started rejecting the relays five hours after they joined the
network. The relays advertized the default bandwidth of
1 GiB/s and used randomly determined ports. The Sybils
were active in parallel to the “LizardNSA” attack, but
there is no reason to believe that both incidents were re-
lated.

5.2 Alerts per method
Having investigated the different types of alerts our
methods raised, we now provide intuition on how many
of these alerts we would face in practice. To this end,
we first determined conservative thresholds, chosen to
yield a manageable number of alerts per week. For net-
work churn, we set the threshold for αn for relays with
the Valid flag to 0.017. For the fingerprint method, we
raised an alert if a relay changed its fingerprint at least ten
times per month, and for uptime visualizations we raised
an alert if at least five relays exhibited an identical up-
time sequence. We used a variety of analysis windows to
achieve representative results. For example, the Tor net-
work’s churn rate slowly reduced over the years, which
is why we only analyzed 2015 and 2016. Table 3 shows
the results. For comparison, the table also shows our ex-
itmap modules, which did not require any thresholds.

Exit V2Dir Fast Valid Guard HSDir Stable

0.
00

0.
10

0.
20

Relay flags

C
hu

rn
 ra

te

Figure 9: The churn distribution for seven relay flags.
We removed values greater than the plot whiskers.

5.3 Churn rate analysis

We determined the churn rate between two subsequent
consensuses for all 72,061 consensuses that were pub-
lished between October 2007 and January 2016. Consid-
ering that (i) there are 162 gaps in the archived data, that
(ii) we created time series for joining and leaving relays,
and that (iii) we determined churn values for all twelve
relay flags, we ended up with (72,061− 162) · 2 · 12 =
1,725,576 churn values. Figure 9 shows a box plot for
the churn distribution (joining and leaving churn values
concatenated) for the seven most relevant relay flags. We
removed values greater than the plot whiskers (which
extend to values 1.5 times the interquartile range from
the box) to better visualize the width of the distribu-
tions. Unsurprisingly, relays with the Guard, HSDir, and
Stable flag experience the least churn, probably because
relays are only awarded these flags if they are particu-
larly stable. Exit relays have the most churn, which is
surprising given that exit relays are particularly sensitive
to operate. Interestingly, the median churn rate of the
network has steadily decreased over the years, from 0.04
in 2008 to 0.02 in 2015.

Figure 10 illustrates churn rates for five days in Au-
gust 2008, featuring the most significant anomaly in our
data. On August 19, 822 relays left the network, result-
ing in a sudden spike, and a baseline shift. The spike
was caused by the Tor network’s switch from consensus
format version three to four. The changelog says that in
version four, routers that do not have the Running flag
are no longer listed in the consensus.

To alleviate the choice of a detection threshold, we
plot the number of alerts (in log scale) in 2015 as the
threshold increases. We calculate these numbers for
three simple moving average window sizes. The result
is shown in Figure 11. Depending on the window size,
thresholds greater than 0.012 seem practical considering
that 181 alerts per year average to approximately one
alert in two days—a tolerable number of incidents to in-
vestigate. Unfortunately, we are unable to determine the
false positive rate because we do not have ground truth.

11

1180 25th USENIX Security Symposium USENIX Association

Method Analysis window Threshold Total alerts Alerts per week

Fingerprint 10/2007–01/2016 10 551 1.3
Churn 01/2015–01/2016 0.017 110 1.9
Uptimes 01/2009–01/2016 5 3,052 8.3

Exitmap 08/2014–01/2016 — 251 3.2

Table 3: The number of alerts our methods raised. We used different analysis windows for representative results, and
chose conservative thresholds to keep the number of alerts per week manageable.

-0
.4

0.
0

0.
4

Time

C
hu

rn
 ra

te

Aug 16 Aug 17 Aug 18 Aug 19 Aug 20 Aug 21

Figure 10: In August 2008, an upgrade in Tor’s consen-
sus format caused the biggest anomaly in our dataset.
The positive time series represents relays that joined and
the negative one represents relays that left.

0.010 0.014 0.018 0.022

20
10

0
10

00

Threshold

Al
er

ts
 (l

og
)

1 hour
12 hours
24 hours

Figure 11: The number of alerts (in log scale) in 2015
as the detection threshold increases, for three smoothing
window sizes.

5.4 Uptime analysis

We generated relay uptime visualizations for each month
since 2007, resulting in 100 images. We now discuss
a subset of these images, those containing particularly
interesting patterns.

Figure 12 shows June 2010, featuring a clear “Sybil
block” in the center. The Sybils belonged to a researcher
who, as documented by The Tor Project [20], started
several hundred Tor relays on PlanetLab for research
on scalability (the “PlanetLab” Sybils discussed above).
Our manual analysis could verify this. The relays were
easy to identify because their nicknames suggested that
they were hosted on PlanetLab, containing strings such
as “planetlab,” “planet,” and “plab.” Note the small

Figure 12: In June 2010, a researcher started several hun-
dred Tor relays on PlanetLab [20]. The image shows the
uptime of 2,000 relays for all of June.

Figure 13: August 2012 featured a curious “step pattern,”
caused by approximately 100 Sybils. The image shows
the uptime of 2,000 relays for all of August.

height of the Sybil block, indicating that the relays were
only online for a short time.

Figure 13 features a curious “step pattern” for approx-
imately 100 relays, all of which were located in Russia
and Germany. The relays appeared in December 2011,
and started exhibiting the diurnal step pattern (nine hours
uptime followed by fifteen hours downtime) in March
2012. All relays had similar nicknames, consisting of
eight seemingly randomly-generated characters. In April
2013, the relays finally disappeared.

Figure 14 illustrates the largest Sybil group to date,
comprising 4,615 Tor relays (the “LizardNSA” Sybils
discussed above). An attacker set up these relays in the
Google cloud in December 2014. Because of its magni-
tude, the attack was spotted almost instantly, and The Tor
Project removed the offending relays only ten hours after
they appeared.

12

USENIX Association 25th USENIX Security Symposium 1181

Figure 14: In December 2014, an attacker started sev-
eral thousand Tor relays in the Google cloud. The image
shows the uptime of 4,000 relays for all of December.

0 200 400 600 800

IP addresses (0.03 percentile)

O
bs

er
ve

d
fin

ge
rp

rin
ts

10
50

20
0

1,
00

0

Figure 15: The number of observed fingerprints for the
1,000 relays that changed their fingerprints the most.

5.5 Fingerprint anomalies

We determined how often all Tor relays changed their
fingerprint from 2007 to 2015. Figure 15 illustrates the
number of fingerprints (y axis) we have observed for the
1,000 Tor relays (x axis) that changed their fingerprint the
most. All these relays changed their fingerprint at least
ten times. Twenty-one relays changed their fingerprint
more than 100 times, and the relay at the very right end
of the distribution changed its fingerprint 936 times. This
relay’s nickname was “openwrt,” suggesting that it was
a home router that was rebooted regularly, presumably
losing its long-term keys in the process. The relay was
running from August 2010 to December 2010.

Figure 15 further contains a peculiar plateau, shown
in the shaded area between index 707 and 803. This
plateau was caused by a group of Sybils, hosted in Ama-
zon EC2, that changed their fingerprint exactly 24 times
(the “Amazon EC2” Sybils discussed above). Upon in-
spection, we noticed that this was likely an experiment
for a Security and Privacy 2013 paper on deanonymizing
Tor onion services [4, § V].

We also found that many IP addresses in the netblock
199.254.238.0/24 frequently changed their fingerprint.
We contacted the owner of the address block and were
told that the block used to host VPN services. Appar-
ently, several people started Tor relays and since the VPN
service would not assign permanent IP addresses, the Tor
relays would periodically change their address, causing
the churn we observe.

5.6 Accuracy of nearest-neighbor ranking

Given a Sybil relay, how good is our nearest-neighbor
ranking at finding the remaining Sybils? To answer
this question, we now evaluate our algorithm’s accuracy,
which we define as the fraction of neighbors it correctly
labels as Sybils. For example, if eight out of ten Sybils
are correctly labeled as neighbors, the accuracy is 0.8.

A sound evaluation requires ground truth, i.e., relays
that are known to be Sybils. All we have, however, are re-
lays that we believe to be Sybils. In addition, the number
of Sybils we found is only a lower bound—we are un-
likely to have detected all Sybil groups. Therefore, our
evaluation is doomed to overestimate our algorithm’s ac-
curacy because we are unable to test it on the Sybils we
did not discover.

We evaluate our ranking algorithm on two datasets; the
“bad exit” Sybil groups from Table 5, and relay families.
We chose the bad exit Sybils because we observed them
running identical, active attacks, which makes us confi-
dent that they are in fact Sybils. Recall that a relay family
is a set of Tor relays that is controlled by a single opera-
tor, but configured to express this mutual relationship in
the family members’ configuration file. Therefore, relay
families are benign Sybils. As of January 2016, approx-
imately 400 families populate the Tor network, ranging
in size from only two to 25 relays.

We evaluate our algorithm by finding the nearest
neighbors of a family member. Ideally, all neighbors
are family members, but the use of relay families as
ground truth is very likely to overestimate results because
family operators frequently configure their relays iden-
tically on purpose. At the time of this writing, a pop-
ular relay family has the nicknames “AccessNow000”
to “AccessNow009,” adjacent IP addresses, and identi-
cal contact information—perfect prerequisites for our al-
gorithm. We expect the operators of malicious Sybils,
however, to go out of their way to obscure the relation-
ship between their relays.

To determine our algorithm’s accuracy, we used all re-
lay families that were present in the first consensus that
was published in October 2015. For each relay that had
at least one mutual family relationship, we determined its
n−1 nearest neighbors where n is the family size. Basi-
cally, we evaluated how good our algorithm is at find-
ing the relatives of a family member. We determined
the accuracy—a value in [0,1]—for each family mem-
ber. The result is shown in Figure 16(b), a distribution of
accuracy values.

Next, we repeated the evaluation with the bad exit
Sybil groups from Table 5. Again, we determined the
n−1 nearest neighbors of all bad exit relays, where n is
the size of the Sybil group. The accuracy is the fraction
of relays that our algorithm correctly classified as neigh-

13

1182 25th USENIX Security Symposium USENIX Association

0.0 0.4 0.8

0.
0

0.
4

0.
8

Accuracy

C
D

F
of

 S
yb

il
gr

ou
ps

(a) Bad exit relay Sybils

0.0 0.4 0.8

0.
0

0.
4

0.
8

Accuracy

C
D

F
of

 S
yb

il
gr

ou
ps

(b) Benign family Sybils

Figure 16: ECDF for our two evaluations, the bad exit
Sybils in Fig. 16(a) and the benign family Sybils in
Fig. 16(b).

Method Analysis window Run time

Churn Two consensuses ∼0.2s
Neighbor ranking One consensus ∼1.6s
Fingerprint One month ∼58.0s
Uptimes One month ∼145.0s

Table 4: The computational cost of our analysis tech-
niques.

bor. The result is illustrated in Figure 16(a).
As expected, our algorithm is significantly more ac-

curate for the family dataset—66% of rankings had per-
fect accuracy. The bad exit dataset, however, did worse.
Not a single ranking had perfect accuracy and 59% of all
rankings had an accuracy in the interval [0.3,0.6]. Nev-
ertheless, we find that our algorithm facilitates manual
analysis given how quickly it can provide us with a list
of the most similar relays. Besides, inaccurate results
(i.e., similar neighbors that are not Sybils) are cheap as
sybilhunter users would not spend much time on neigh-
bors that bear little resemblance to the “seed” relay.

5.7 Computational cost
Fast techniques lend themselves to being run hourly, for
every new consensus, while slower ones must be run less
frequent. Table 4 gives an overview of the runtime of our
methods.7 We stored our datasets on a solid state drive
to eliminate I/O as performance bottleneck.

The table columns contain, from left to right, our anal-
ysis technique, the technique’s analysis window, and how
long it takes to compute its output. Network churn cal-
culation is very fast; it takes as input only two consensus
files and can easily be run for every new network con-
sensus. Nearest-neighbor ranking takes approximately
1.6 seconds for a single consensus counting 6,942 relays.
Fingerprint and uptime analysis for one month worth of

7We determined all performance numbers on an Intel Core i7-
3520M CPU at 2.9 GHz, a consumer-grade CPU.

consensuses takes approximately one and two minutes,
respectively—easy to invoke daily, or even several times
a day.

6 Discussion

Having used sybilhunter in practice for several months,
we now elaborate on both our operational experience and
the shortcomings we encountered.

6.1 Operational experience
Our practical work with sybilhunter taught us that an-
alyzing Sybils frequently requires manual verification,
e.g., (i) comparing an emerging Sybil group with a pre-
viously disclosed one, (ii) using exitmap to send decoy
traffic over Sybils, or (iii) sorting and comparing infor-
mation in relay descriptors. We found that the amount of
manual work greatly depends on the Sybils under inves-
tigation. The MitM groups in Table 2 were straightfor-
ward to spot—in a matter of minutes—while the botnets
required a few hours of effort. It is difficult to predict
all analysis scenarios that might arise in the future, so
we designed sybilhunter to be interoperable with Unix
command line tools [28]. Sybilhunter’s CSV-formatted
output can easily be piped into tools such as sed, awk,
and grep. We found that compact text output was signif-
icantly easier to process, both for plotting and for man-
ual analysis. Aside from Sybil detection, sybilhunter can
serve as valuable tool to better understand the Tor net-
work and monitor its reliability. Our techniques have
disclosed network consensus issues and can illustrate the
diversity of Tor relays, providing empirical data that can
support future network design decisions.

A key issue in the arms race of eliminating harmful re-
lays lies in information asymmetry. Our detection tech-
niques and code are freely available while our adver-
saries operate behind closed doors, creating an uphill bat-
tle that is difficult to sustain given our limited resources.
In practice, we can reduce this asymmetry and limit our
adversaries’ knowledge by keeping secret sybilhunter’s
thresholds and exitmap’s detection modules, so our ad-
versary is left guessing what our tools seek to detect.
This differentiation between an open analysis framework
such as the one we discuss in this paper, and secret con-
figuration parameters seems to be a sustainable trade-off.
Note that we are not arguing in favor of the flawed prac-
tice of security by obscurity. Instead, we are proposing to
add a layer of obscurity on top of existing defense layers.

We are working with The Tor Project on incorporating
our techniques in Tor Metrics [33], a website containing
network visualizations that are frequented by numerous
volunteers. Many of these volunteers discover anomalies
and report them to The Tor Project. By incorporating

14

USENIX Association 25th USENIX Security Symposium 1183

our techniques, we hope to benefit from “crowd-sourced”
Sybil detection.

6.2 Limitations
In Section 4.2, we argued that we are unable to expose
all Sybil attacks, so our results represent a lower bound.
An adversary unconstrained by time and money can add
an unlimited number of Sybils to the network. Indeed,
Table 2 contains six Sybil groups that sybilhunter was
unable to detect. Fortunately, exitmap was able to ex-
pose these Sybils, which emphasizes the importance of
diverse and complementary analysis techniques. Need-
less to say, sybilhunter works best when analyzing at-
tacks that took place before we built sybilhunter. Adver-
saries that know of our methods can evade them at the
cost of having to spend time and resources. To evade
our churn and uptime heuristics, Sybils must be added
and modified independently over time. Evasion of our
fingerprint heuristic, e.g., to manipulate Tor’s DHT, re-
quires more physical machines. Finally, manipulation of
our neighbor ranking requires changes in configuration.
This arms race is unlikely to end, barring fundamental
changes in how Tor relays are operated.

Sybilhunter is unable to ascertain the purpose of a
Sybil attack. While the purpose is frequently obvious,
Table 2 contains several Sybil groups that we could not
classify. In such cases, it is difficult for The Tor Project to
make a call and decide if Sybils should be removed from
the network. Keeping them runs the risk of exposing
users to an unknown attack, but removing them deprives
the network of bandwidth. Often, additional context is
helpful in making a call. For example, Sybils that are (i)
operated in “bulletproof” autonomous systems [17, § 2],
(ii) show signs of not running the Tor reference imple-
mentation, or (iii) spoof information in their router de-
scriptor all suggest malicious intent. In the end, Sybil
groups have to be evaluated case by case, and the ad-
vantages and disadvantages of blocking them have to be
considered.

Finally, there is significant room for improving our
nearest neighbor ranking. For simplicity, our algorithm
represents relays as strings, ignoring a wealth of nuances
such as topological proximity of IP addresses, or pre-
dictable patterns in port numbers.

7 Conclusion

We presented sybilhunter, a novel system that uses di-
verse analysis techniques to expose Sybils in the Tor
network. Equipped with this tool, we set out to ana-
lyze nine years of The Tor Project’s archived network
data. We discovered numerous Sybil groups, twenty of
which we present in this work. By analyzing the Sybil

groups sybilhunter discovered, we found that (i) Sybil
relays are frequently configured very similarly, and join
and leave the network simultaneously; (ii) attackers dif-
fer greatly in their technical sophistication; and (iii) our
techniques are not only useful for spotting Sybils, but
turn out to be a handy analytics tool to monitor and bet-
ter understand the Tor network. Given the lack of a cen-
tral identity-verifying authority, it is always possible for
well-executed Sybil attacks to stay under our radar, but
we found that a complementary set of techniques can go
a long way towards finding malicious Sybils, making the
Tor network more secure and trustworthy for its users.

All our code, data, visualizations, and an open ac-
cess bibliography of our references are available online
at https://nymity.ch/sybilhunting/.

Acknowledgments

We want to thank our shepherd, Tudor Dumitraş, for
his guidance on improving our work. We also want to
thank Georg Koppen, Prateek Mittal, Stefan Lindskog,
the Tor developers, and the wider Tor community for
helpful feedback. This research was supported in part by
the Center for Information Technology Policy at Prince-
ton University and by the National Science Foundation
Awards CNS-1540055 and CNS-1602399.

References

[1] David G. Andersen et al. “Topology Inference from BGP Rout-
ing Dynamics”. In: Internet Measurement Workshop. ACM,
2002. URL: https : / / nymity . ch / sybilhunting / pdf /
Andersen2002a.pdf (cit. on p. 7).

[2] Kevin Bauer and Damon McCoy. No more than one server per
IP address. Mar. 2007. URL: https : / / gitweb . torproject . org /
torspec.git/tree/proposals/109-no-sharing-ips.txt (cit. on p. 3).

[3] Kevin Bauer et al. “Low-Resource Routing Attacks Against
Tor”. In: WPES. ACM, 2007. URL: https : / / nymity . ch /
sybilhunting/pdf/Bauer2007a.pdf (cit. on p. 3).

[4] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann.
“Trawling for Tor Hidden Services: Detection, Measurement,
Deanonymization”. In: Security & Privacy. IEEE, 2013. URL:
https://nymity.ch/sybilhunting/pdf/Biryukov2013a.pdf (cit. on
pp. 2, 7, 9, 10, 13).

[5] Nikita Borisov. “Computational Puzzles as Sybil Defenses”. In:
Peer-to-Peer Computing. IEEE, 2005. URL: https://nymity.ch/
sybilhunting/pdf/Borisov2006a.pdf (cit. on p. 2).

[6] George Danezis and Prateek Mittal. “SybilInfer: Detecting
Sybil Nodes using Social Networks”. In: NDSS. The Internet
Society, 2009. URL: https : / / nymity . ch / sybilhunting / pdf /
Danezis2009a.pdf (cit. on p. 2).

[7] Roger Dingledine. Did the FBI Pay a University to Attack Tor
Users? Nov. 2015. URL: https://blog.torproject.org/blog/did-
fbi-pay-university-attack-tor-users (cit. on p. 10).

[8] Roger Dingledine. Tor security advisory: “relay early” traffic
confirmation attack. July 2014. URL: https://blog.torproject .
org / blog / tor - security - advisory - relay - early - traffic -
confirmation-attack (cit. on pp. 1, 9, 10).

15

1184 25th USENIX Security Symposium USENIX Association

[9] Roger Dingledine and Nick Mathewson. Tor Path Specification.
URL: https : / / gitweb . torproject . org / torspec . git / tree /path -
spec.txt (cit. on p. 3).

[10] Roger Dingledine, Nick Mathewson, and Paul Syverson. “Tor:
The Second-Generation Onion Router”. In: USENIX Security.
USENIX, 2004. URL: https : / / nymity . ch / sybilhunting / pdf /
Dingledine2004a.pdf (cit. on p. 3).

[11] John R. Douceur. “The Sybil Attack”. In: Peer-to-Peer Systems.
2002. URL: https://nymity.ch/sybilhunting/pdf/Douceur2002a.
pdf (cit. on pp. 1, 2).

[12] David Fifield. #12813—Look at a bitmap visualization of relay
consensus. 2014. URL: https://bugs.torproject.org/12813 (cit.
on p. 7).

[13] P. Brighten Godfrey, Scott Shenker, and Ion Stoica. “Minimiz-
ing Churn in Distributed Systems”. In: SIGCOMM. ACM, 2006.
URL: https : / /nymity .ch/sybilhunting/pdf/Godfrey2006a.pdf
(cit. on p. 5).

[14] Aaron Johnson et al. “Users Get Routed: Traffic Correlation
on Tor by Realistic Adversaries”. In: CCS. ACM, 2013. URL:
https://nymity.ch/sybilhunting/pdf/Johnson2013a.pdf (cit. on
p. 1).

[15] Damian Johnson. doctor – service that periodically checks the
Tor network for consensus conflicts and other hiccups. URL:
https://gitweb.torproject.org/doctor.git/tree/ (cit. on p. 5).

[16] Marc Juarez et al. “A Critical Evaluation of Website Finger-
printing Attacks”. In: CCS. ACM, 2014. URL: https://nymity.
ch/sybilhunting/pdf/Juarez2014a.pdf (cit. on p. 1).

[17] Maria Konte, Roberto Perdisci, and Nick Feamster. “ASwatch:
An AS Reputation System to Expose Bulletproof Hosting
ASes”. In: SIGCOMM. ACM, 2015. URL: https://nymity.ch/
sybilhunting/pdf/Konte2015a.pdf (cit. on p. 15).

[18] Vladimir Iosifovich Levenshtein. “Binary Codes Capable of
Correcting Deletions, Insertions, and Reversals”. In: Soviet
Physics-Doklady 10.8 (1966). URL: https : / / nymity . ch /
sybilhunting/pdf/Levenshtein1966a.pdf (cit. on p. 7).

[19] Brian Neil Levine, Clay Shields, and N. Boris Margolin. A
Survey of Solutions to the Sybil Attack. Tech. rep. University
of Massachusetts Amherst, 2006. URL: https : / / nymity . ch /
sybilhunting/pdf/Levine2006a.pdf (cit. on p. 2).

[20] Andrew Lewman. June 2010 Progress Report. June 2010. URL:
https://blog.torproject.org/blog/june- 2010- progress- report
(cit. on pp. 9, 11, 12).

[21] Frank Li et al. “SybilControl: Practical Sybil Defense with
Computational Puzzles”. In: Scalable Trusted Computing.
ACM, 2012. URL: https://nymity.ch/sybilhunting/pdf/Li2012a.
pdf (cit. on p. 2).

[22] Zhen Ling et al. “Tor Bridge Discovery: Extensive Analysis and
Large-scale Empirical Evaluation”. In: IEEE Transactions on
Parallel and Distributed Systems 26.7 (2015). URL: https : / /
nymity.ch/sybilhunting/pdf/Ling2015b.pdf (cit. on p. 1).

[23] Zhen Ling et al. “TorWard: Discovery, Blocking, and Trace-
back of Malicious Traffic Over Tor”. In: IEEE Transactions on
Information Forensics and Security 10.12 (2015). URL: https:
//nymity.ch/sybilhunting/pdf/Ling2015a.pdf (cit. on p. 17).

[24] Lizards. Dec. 2014. URL: https://lists.torproject.org/pipermail/
tor-talk/2014-December/036197.html (cit. on pp. 9, 11).

[25] Moxie Marlinspike. sslstrip. URL: https://moxie.org/software/
sslstrip/ (cit. on p. 17).

[26] msft-mmpc. Tackling the Sefnit botnet Tor hazard. Jan. 2014.
URL: https://blogs.technet.microsoft.com/mmpc/2014/01/09/
tackling-the-sefnit-botnet-tor-hazard/ (cit. on p. 10).

[27] nex. Skynet, a Tor-powered botnet straight from Reddit. Dec.
2012. URL: https : / / community . rapid7 . com / community /
infosec / blog / 2012 / 12 / 06 / skynet - a - tor - powered - botnet -
straight-from-reddit (cit. on p. 10).

[28] Rob Pike and Brian W. Kernighan. “Program Design in the
UNIX System Environment”. In: Bell Labs Technical Jour-
nal 63.8 (1983). URL: https : / / nymity . ch / sybilhunting / pdf /
Pike1983a.pdf (cit. on p. 14).

[29] Flora Rheta Schreiber. Sybil: The true story of a woman pos-
sessed by 16 separate personalities. Henry Regnery, 1973 (cit.
on p. 1).

[30] Eric Swanson. GPU-based Onion Hash generator. URL: https:
//github.com/lachesis/scallion (cit. on p. 8).

[31] The Invisible Internet Project. URL: https://geti2p.net (cit. on
p. 2).

[32] The Tor Project. CollecTor – Your friendly data-collecting ser-
vice in the Tor network. URL: https://collector.torproject.org/
(cit. on p. 4).

[33] The Tor Project. Tor Metrics. URL: https://metrics.torproject.
org (cit. on p. 14).

[34] Kurt Thomas, Chris Grier, and Vern Paxson. “Adapting So-
cial Spam Infrastructure for Political Censorship”. In: LEET.
USENIX, 2012. URL: https : / / nymity . ch / sybilhunting / pdf /
Thomas2012a.pdf (cit. on p. 1).

[35] Liang Wang and Jussi Kangasharju. “Real-World Sybil Attacks
in BitTorrent Mainline DHT”. In: Globecom. IEEE, 2012. URL:
https : / /nymity .ch/sybilhunting/pdf/Wang2012a.pdf (cit. on
p. 1).

[36] Philipp Winter. zoossh – Parsing library for Tor-specific data
formats. URL: https://gitweb.torproject.org/user/phw/zoossh.
git/ (cit. on p. 4).

[37] Philipp Winter et al. “Spoiled Onions: Exposing Malicious Tor
Exit Relays”. In: PETS. Springer, 2014. URL: https://nymity.
ch/sybilhunting/pdf/Winter2014a.pdf (cit. on pp. 1, 3, 4).

[38] Haifeng Yu, Phillip B. Gibbons Michael Kaminsky, and Feng
Xiao. “SybilLimit: A Near-Optimal Social Network Defense
against Sybil Attacks”. In: Security & Privacy. IEEE, 2008.
URL: https : / /nymity . ch / sybilhunting /pdf /Yu2008a .pdf (cit.
on p. 2).

[39] Haifeng Yu et al. “SybilGuard: Defending Against Sybil Attack
via Social Networks”. In: SIGCOMM. ACM, 2006. URL: https:
//nymity.ch/sybilhunting/pdf/Yu2006a.pdf (cit. on p. 2).

A Exposed malicious exit relays

Table 5 provides an overview of our second dataset, 251
bad exit relays that we discovered between August 2014
and January 2016. We believe that all single relays in
the dataset were isolated incidents while sets of relays
constituted Sybil groups. Sybil groups marked with the
symbols ∗, †, and ‡ were run by the same attacker, re-
spectively.

16

USENIX Association 25th USENIX Security Symposium 1185

Discovery # of relays Attack description

Aug 2014 1 The relay injected JavaScript into returned HTML. The script embedded another script from the
domain fluxx.crazytall.com—not clearly malicious, but suspicious.

1 The relay injected JavaScript into returned HTML. The script embedded two other scripts, jquery.js
from the official jQuery domain, and clr.js from adobe.flashdst.com. Again, this was not necessarily
malicious, but suspicious.

Sep 2014 1 The exit relay routed traffic back into the Tor network, i.e., we observed traffic that was supposed
to exit from relay A, but came from relay B. The system presented by Ling et al. behaves the
same [23]; the authors proposed to run intrusion detection systems on Tor traffic by setting up an
exit relay that runs an NIDS system, and routes the traffic back into the Tor network after having
inspected the traffic.

Oct 2014 1 The relay injected JavaScript into returned HTML.
1 The relay ran the MitM tool sslstrip [25], rewriting HTTPS links to unencrypted HTTP links in

returned HTML.
1 Same as above.

Jan 2015 23∗ Blockchain.info’s web server redirects its users from HTTP to HTTPS. These relays tampered with
blockchain.info’s redirect and returned unprotected HTTP instead—presumably to sniff login cre-
dentials.

1 The relay used OpenDNS as DNS resolver and had the website category “proxy/anonymizer”
blocked, resulting in several inaccessible websites, including torproject.org.

Feb 2015 1 The relay injected a script that attempted to load a resource from the now inaccessible torclick.net.
Curiously, torclick.net’s front page said “We place your advertising materials on all websites online.
Your ads will be seen only for anonymous network TOR [sic] users. Now it is about 3 million users.
The number of users is always growing.”

17∗ Again, these relays tampered with HTTP redirects of Bitcoin websites. Interestingly, the attack be-
came more sophisticated; these relays would begin to target only connections whose HTTP headers
resembled Tor Browser.

Mar 2015 18∗ Same as above.
1 The relay injected JavaScript and an iframe into the returned HTML. The injected content was not

clearly malicious, but suspicious.

Apr 2015 70† These exit relays transparently rewrote onion domains in returned HTML to an impersonation do-
main. The impersonation domain looked identical to the original, but had different Bitcoin ad-
dresses. We believe that this was attempt to trick Tor users into sending Bitcoin transactions to
phishing addresses.

Jun 2015 55† Same as above.

Aug 2015 4† Same as above.

Sep 2015 1 The relay injected an iframe into returned HTML that would load content that made the user’s
browser participate in some kind of mining activity.

Nov 2015 1 The relay ran the MitM tool sslstrip.
8† Same as the relays marked with a †.

Dec 2015 1‡ The relay ran the MitM tool sslstrip.
1‡ Same as above.

Jan 2016 43† Same as the relays marked with a †.

Table 5: An overview of our second dataset, 251 malicious exit relays that we discovered using exitmap. We believe
that Sybil groups marked with an ∗, †, and ‡ were run by the same adversary.

17

