
Proceedings on Privacy Enhancing Technologies 2015; 2015 (2):1–17

Joshua Juen*, Aaron Johnson, Anupam Das, Nikita Borisov, and Matthew Caesar

Defending Tor from Network Adversaries: A
Case Study of Network Path Prediction
Abstract: The Tor anonymity network has been shown vul-
nerable to traffic analysis attacks by autonomous systems and
Internet exchanges, which can observe different overlay hops
belonging to the same circuit. We evaluate whether network
path prediction techniques provide an accurate picture of the
threat from such adversaries, and whether they can be used
to avoid this threat. We perform a measurement study by col-
lecting 17.2 million traceroutes from Tor relays to destinations
around the Internet. We compare the collected traceroute paths
to predicted paths using state-of-the-art path inference tech-
niques. We find that only 20.0% of predicted paths match paths
seen in the traceroutes. We also consider the impact that pre-
diction errors have on Tor security. Using a simulator to choose
paths over a week, our traceroutes indicate a user could expect
10.9% of paths to contain an AS compromise and 0.9% to have
an IX compromise with default Tor selection. We find modify-
ing the path selection to choose paths predicted to be safe still
presents a 5.3–11% chance of compromise in a week while
making 5.1% of paths fail with 96% failing unnecessarily due
to false positives in path inferences. Our results demonstrate
more measurement and better path prediction is necessary to
mitigate the risk of AS and IX adversaries to Tor.
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1 Introduction

The Tor network for anonymous communication [14] is sus-
ceptible to end-to-end timing attacks [33], which allow an ad-
versary who observes traffic from a client to the first Tor router
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and at the same time traffic from the last Tor router to the des-
tination to deanonymize the connection. Both of these paths
traverse a number of Internet routers that belong to various
organizations, leaving the possibility that a single network op-
erator running an autonomous system (AS) or an Internet ex-
change (IX) will be in the position to observe both paths and
thus carry out the end-to-end timing attack [15, 17, 22, 23, 30].
This threat is made more likely by the concentration of Inter-
net traffic at Tier 1 ISPs and high-volume IXes.

To assess the vulnerability of Tor to AS and IX adver-
saries, it is necessary to predict the paths that traffic takes on
the Internet. Previous work characterizing this threat has relied
chiefly on AS-level routing predictions [31]. Such predictions
are well known to be incomplete and imprecise, producing er-
roneous path predictions. Our goal is to evaluate the impact
of these errors on the anonymity of Tor. In particular, we are
concerned with two research questions:

– Are AS-level routing predictions suitable for characteriz-
ing the threat of AS and IX adversaries in Tor?

– Can AS-level routing predictions be used to construct Tor
paths that avoid AS and IX adversaries (as has been sug-
gested in previous work [5, 15])?
To answer these questions, we performed a measurement

study, collecting traceroute probes from Tor relays to obtain a
more accurate picture of Internet paths actually used by net-
work traffic. In comparing results from traceroutes to state-of-
the-art path prediction, we found that the prediction accuracy
was notably worse than previously measured, despite the fact
that we are interested in a simplified prediction problem look-
ing for the set of ASes (or IXes) on a path, rather than the
exact sequence. The errors include both extraneous ASes and
IXes in the prediction that are not seen in traceroutes and, more
worryingly, ASes and IXes in the traceroutes that are missing
from the prediction. It is possible to produce an overestimate
of the AS and IX sets by considering several of the most likely
paths produced by the prediction algorithm, rather than just
the top one. Such overestimates reduce but do not eliminate
the problem of missing ASes and IXes, at the cost of signifi-
cantly increasing the number of extraneous predictions.

We next analyze the impact of these prediction errors on
the vulnerability of Tor to AS- and IX-level adversaries, with
the help of a simulator that faithfully reconstructs Tor paths
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that may have been chosen by a Tor user.1 We find that AS
and IX path prediction significantly overestimates the threat
of vulnerability to such adversaries; at the same time, most
users do run a significant risk of compromise by an AS-level
adversary as determined from the traceroute data, whereas IX-
level adversaries affect only a small fraction of paths.

We then modify our simulator to specifically avoid select-
ing paths that are vulnerable to AS or IX adversaries based
on predictions, as has been previously suggested. We show
that this significantly limits the choice of paths and frequently
results in no paths being available for use while following
the Tor practice of maintaining a long-term fixed set of entry
guards into the network. These limits would require reconsid-
ering the already complex set of tradeoffs in the design of the
mechanisms for selecting and updating the set of entry guards
used in Tor [16]; we note that the situation is made worse by
the recent move towards using a single entry guard instead of
3 [13].

On the other hand, we find that many of these failures are
a consequence of over-prediction, as we are often able to find
suitable non-vulnerable paths in our traceroute data set despite
covering only a fraction of the Tor relays. Our work suggests
that a defense based on proactive path measurement, rather
than AS path models, is likely to be more practical and offer
better security guarantees.

2 Background

2.1 Tor

Tor is a popular system for anonymous communication on-
line [14]. Tor consists of a network of volunteer relays that
form an overlay network and forward traffic sent by users run-
ning Tor clients. In February 2015, it contained approximately
7 000 relays and transferred around 70 Gbps of data for a user
population estimated at over 2 000 000.2

Tor uses onion routing to achieve anonymity. A client sets
up a connection to a destination by choosing a sequence of
three relays, conventionally called guard, middle, and exit, and
establishing a circuit through the sequence. The client encrypts
a message once for each circuit relay (a process called onion
encryption), sends it through the circuit, and each relay re-
moves one layer of encryption before forwarding. The final
relay sends unencrypted messages to the destination. The re-
verse process happens for messages from the destination to the

1 TorPS: http://torps.github.io/
2 https://metrics.torproject.org/

client. As a result of this process, the client identity is only di-
rectly observable in traffic between the client and the guard
relay, and the destination identity is only directly observable
in traffic between the exit relay and the destination.

In order to be real-time and efficient, Tor does not mix,
pad, or delay traffic. Therefore, it is vulnerable to attacks based
on traffic analysis. For example, an adversary that can ob-
serve a circuit between the client and guard and also between
the exit and destination can correlate the traffic patterns and
deanonymize the connection [8]. Thus entities that can observe
parts the underlying network infrastructure, such as Internet
Service Providers or Internet Exchanges, are a serious threat
to Tor. Previous work has shown that individual autonomous
systems and Internet exchanges are in fact frequently in a po-
sition to break Tor’s security [15, 17, 22, 23, 30]. However,
almost all of this analysis uses heuristic route-inference tech-
niques whose accuracy may not be satisfactory. Murdoch and
Zieliński [30] do study Tor security against IXes using tracer-
outes from Tor relays, but the traceroutes are performed from
the UK only, and the analysis does not consider whether IX
adversaries can be avoided during path selection.

2.2 Internet routing

Internet routing at the highest level is performed among
autonomous systems using the Border Gateway Protocol
(BGP) [32]. An AS is a network with an opaque internal
routing policy (e.g., using OSPF [29], IS-IS [9], RIP [27], or
iBGP [32]) that routes traffic to and from other networks. BGP
is a path-vector routing protocol since neighboring networks
advertise the whole AS path that they will use to send traf-
fic to a given destination. A path is advertised for an IP prefix
and represents the path used for all IP addresses sharing that
prefix. Path-vector routing enables each AS to make complex
routing decisions based on factors such as individual contracts
with other ASes.

Understanding the behavior of such complex routing poli-
cies on the Internet is a challenging problem. Routers just
propagate the routes that they provide for a given neighbor
to use, and so different Internet vantage points reveal dif-
ferent subsets of global routing behavior. Sources of rout-
ing data include the Route Views Project,3 which provides
BGP routing information from many large ASes, and CAIDA
Archipelago,4 which provides and analyzes traceroute data
from three teams of 17–18 monitors distributed worldwide.
Gao describes how to use such data to infer AS-level Internet

3 http://www.routeviews.org/
4 http://www.caida.org/projects/ark/
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routes [18]. Gao’s method uses heuristics to classify the ob-
served connections between ASes by their economic relation-
ship (viz. customer-to-provider, provider-to-customer, peer-to-
peer, or sibling). Shortest-path valley-free routing is used to
infer the route between two hosts. Valley-free routing verifies
paths have all costly customer-to-provider links first with an
optional sibling or peer-to-peer link followed by only preferred
provider-to-customer links on the path. Qiu and Gao improve
the accuracy of this technique by incorporating the observed
advertised BGP paths [31]. In addition, they describe how to
infer a set of possible paths rather than just one. Their results
show that these techniques can infer the exact correct AS path
for 60% of evaluation ASes; furthermore, the exact path is
found within the top 5 predicted possible paths for 83% ASes
and within the top 14 paths for 86% ASes.

Many links between ASes occur at Internet exchanges.
These are facilities that provide space and infrastructure for
ASes to locate routers and establish connections. Ager et
al. [4] describe how the largest IXes may provide links among
hundreds of ASes and carry petabytes of traffic per day. Au-
gustin et al. [7] describe how IXes on Internet routes can be
detected using traceroutes and an index of known IXes and
their IP prefixes. They identify 44 000 peering relationships
between ASes at IXes. Each peering between two ASes indi-
cates that some traceroute passed directly from one AS to an-
other through an IX. Discovering such links can improve the
accuracy of AS path inference techniques. However, as we will
observe, it doesn’t discern among different router-level paths
taken between the same two ASes, which may pass through
different IXes.

2.3 Traceroute measurement

The traceroute tool is extraordinarily useful in measuring rout-
ing behavior on the Internet. The basic algorithm iteratively
issues UDP packets with unique ports and an increasing time-
to-live (TTL) value. Then for any ICMP Time Exceeded re-
sponse it uses the contained UDP port number to identify the
TTL value used and infers that the source IP address is lo-
cated at that path position. There are many variations of the
basic algorithm [26] which provide different levels of success
depending on the traffic engineering (e.g., filtering and load
balancing) that occurs en route.

In addition to such problems with traceroute itself, it is
not always straightforward to make inferences about Internet
paths from a traceroute. For example, Mao et al. [28] describe
the difficulties of inferring an AS-level path from traceroutes,
which include that different iterations of a single traceroute
might take different paths, that reported IP addresses may be
from a network interface other than the one that actually re-

ceived it, and that mapping from IP address to AS number is
non-trivial due to inaccurate WHOIS information. Augustin et
al. [7] discuss similar issues in inferring the presence of IXes
from traceroutes.

Nevertheless, traceroutes do provide a generally accurate
picture of how packets are actually routed at the AS level. Re-
search on AS-level routing rarely uses any real ground truth
data because routing involves the proprietary information of
many parties. Instead, traceroutes and advertised BGP paths
are the most frequently used sources of data (e.g., [28, 31, 36]),
although each has inaccuracies. A thorough comparison of
these data [28] showed that among completed traceroutes (the
type that we consider), approximately 90% of their AS paths
matched the advertised BGP paths exactly.

Traceroutes serve as an important comparison point to
AS-level path predictions. These inferred AS paths are much
less consistent with advertised BGP paths, and in this paper, it
is the inferred paths that we are trying to evaluate. Only 60%
of AS paths inferred using the Qiu-Gao algorithm have an ex-
act match with advertised BGP paths on average [31]. Indeed,
Qiu and Gao justify their inference method over using tracer-
outes only because “traceroute requires the access to source
machines and is resource consuming”.

Moreover, the mismatches that do exist between tracer-
outes and advertised BGP paths often favor traceroutes for Tor
security analysis. Mao et al. [28] show that advertised paths
miss exchange ASes, sibling ASes, and tail ASes. These ASes
should be included when considering Tor security, and such
mismatches are found in 1–3% of the completed paths they
compare between traceroute AS paths and advertised BGP
paths.

For IXP inference, traceroutes are the main data used
in the literature (e.g., [7, 30]). Indeed, the IXP inferences
methodology that we apply uses traceroute data as a primary
data source.

3 Mapping Network Adversaries

3.1 Measuring Internet Paths

3.1.1 Generating Traceroutes

Our measurement study consists of running traceroutes from
Tor relays to various destinations in the Internet. We use the
scamper5 network tool, which probes multiple destinations in
parallel, and uses techniques to accurately discover the Inter-

5 http://www.caida.org/tools/measurement/scamper/
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net path traversed by packets in the presence of multi-path load
balancing [6, 24].

For our measurements, we extracted the set of advertised
destination IP prefixes from the September 2013 Routing In-
formation Bases (RIBs) of the Route Views routers. Each
relay running the measurements picks a random IP address
within each of the approximately 500K prefixes and performs
a traceroute to that destination. We also collected traceroutes
to the Tor relays themselves as well as a scan of all /24 IPv4
subnets, but this data was not used for the analysis in this pa-
per. We focus on the advertised prefixes to make the analysis
more tractable. We expect addresses within a prefix to use the
same or similar routes, and our analysis of CAIDA’s tracer-
outes to all /24 IPv4 subnets [3] found that 81% of the time
traceroutes destined to the same routable prefix traversed the
same set of ASes. Our measurement scripts are available for
public review.6

3.1.2 Processing Traceroutes

We next process the traceroutes to determine which ASes and
IXes an Internet path has traversed. First, we filter out tracer-
outes that do not successfully reach the destination. Note that
because we use randomized destinations, in many cases the
destination may not exist or may be down; indeed, only a small
fraction (8%) of probes reaches their target. However, 49%
reach the AS of the destination, as determined by the Max-
Mind GeoIP database [2].

We further find that 94% of the traceroutes are missing
some hops from the path. In some cases, we believe missing
paths are caused by routers close to the probe source rate lim-
iting their ICMP responses. To address this, we perform route
stitching, where gaps in a traceroute are filled by path seg-
ments observed in other traceroutes. For example, if we see a
path “A B C D E” and another path “A B * D F,” where “*”
denotes a missing hop, we can repair the second path by infer-
ring that the third hop must have also been C in this case. To
minimize inaccuracies introduced by this repair mechanism,
we only consider path segments that originate from the same
host, and which are contained within the same batch of 64K
traceroutes, which typically occur within an hour or two of
each other. We validated this approach on complete paths and
found that stitching would have given us the correct AS path
result 96% of the time.

We then compute the ASes corresponding to each IP in
the path using the GeoIP database. Similar to Mao et al. [28],
we consider the corresponding AS path complete if the tracer-

6 https://bitbucket.org/anupam_das/traceroute-from-tor-relays

oute reached the AS of the destination and there are no miss-
ing hops in the path on the boundary between ASes. For ex-
ample, an AS path “AS1 AS1 * AS1 AS2 AS3” is consid-
ered complete, because the missing hop is contained entirely
within AS1, whereas “AS1 AS1 * AS2 AS3” is considered in-
complete. Overall, 28% of the traceroutes yield a complete AS
path. We discard the other traceroutes from our analysis. We
also identify an IX as on the path if the path contains an IP
address from the list of known IP addresses of IX points as
outlined in the following section.

3.2 Inferring Path ASes and IXes

We are interested in comparing the AS and IX adversaries
identified from traceroute data compared to AS and IX adver-
saries inferred from AS maps which are much easier to attain
and maintain. We predict AS paths from source to destination
using Gao’s algorithm [18] to classify relationships and Qiu
and Gao’s algorithm [31] to infer the top k paths (for k = 1
to 5). While advances have been made in classifying AS link
relationships [25], we find that, when available, Qiu and Gao’s
method of matching RIB paths is more accurate than using
graph based methods based solely on AS relationships [23].
It is known that AS relationships are difficult to classify es-
pecially at the highly interconnected core of the AS graph.
Violations in the valley-free principle from advertised routes
often indicate erroneous AS relationship classification espe-
cially through top-tier ASes. Therefore Qiu and Gao’s method
of prepending advertised routes to complete paths yields accu-
rate results even with incorrectly classified AS relationships at
the core of the Internet. Since the prepended hops are almost
entirely easily classified customer-to-provider hops at the bot-
tom of the AS graph, improving the AS relationship classifi-
cation of the top-level ASes does little to improve overall AS
path prediction accuracy.

To predict the presence of IXes, we recreate the work of
Augustin et al.[7]. We scraped Packet Clearing House7 and
the Peering Database8 in February of 2014 creating a list of
732 Internet exchange points and their known prefixes. We
parsed over 200 million traceroutes from February and March
2014 collected from both the CAIDA routed IPv4 database [3]
and the iPlane project,9 and identified IXes in the traceroutes
using the list of IXes and IP prefixes. This analysis revealed
roughly 130 000 Internet exchange point peerings between
pairs of ASes. Our number is roughly twice the number of

7 http://www.pch.net
8 https://www.peeringdb.com
9 http://iplane.cs.washington.edu/
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Min Max Total

Traces 392 334 1 195 577 17 233 153
IP Reached 27 254 81 999 1 183 427
AS Reached 204 836 618 224 8 890 142
Repaired 26 375 876 386 9 643 679
Whole IP Path 0 16 694 253 058
Whole AS Path 11 285 397 533 5 350 713
Probed Hops 7 005 020 20 624 809 297 301 238
Responsive Hops 1 594 449 7 041 819 109 046 956
% Hops Responded 19 55 37
Inferred Paths 10 693 220 449 4 367 097

Table 1. Traceroute experiment statistics (28 hosts)

links found by Augustin et al. in 2009, which is unsurprising
considering the trend for ASes to peer at IX points. This IX in-
ference technique thus produces a list of inferred IXes between
AS pairs, where each entry in the list consists of a source AS,
a destination AS, and the set of IXes that were ever observed
in a traceroute from the source AS to the destination AS. We
use the list to identify potential IX points on AS-level paths
throughout our experiment.

4 Measurement versus Inference

We first investigate how closely ASes and IXes identified
through inference correspond to ASes and IXes measured with
traceroute. We conduct analysis on 17 million traceroute mea-
surements obtained from 28 Tor relay servers from January
19–26, 2014 as summarized in Table 1 Our 28 servers included
many of the largest Tor relays and cover a portion of the Tor
network which includes 23% of guard node capacity and 26%
of exit node capacity. Thus, their measurements can give us
good insight into how traffic is routed in and out of Tor. Of
these 17 million traces, only about 1 million reached the target
IP address with roughly 250 000 complete paths with no miss-
ing IP hops. We find that roughly 9 million paths can have
some hops filled in by using the repair techniques presented
in Section 3. We map each IP address to AS numbers using
the MaxMind GeoLite ASN database taken from January 15th
2014 [2]. The AS-level paths are then parsed to remove rout-
ing loops, duplicate hops, and missing hops directly preceded
by and followed by the same AS. After processing, we obtain
5.3 million complete AS-level routes.

4.1 Identifying AS Adversaries

We first investigate the accuracy of inferring ASes between an
arbitrary source/destination AS compared to the ASes iden-

Fig. 1. CDF of Missing ASes over all Traces

tified in our collected traceroutes. The analysis of path pre-
diction accuracy is conducted on traceroutes collected during
January 19–26, 2014 giving 5.3 million traces contain 450 000
unique AS source and destination pairs. We divide the tracer-
oute data into 24-hour windows. Routing table dumps are
downloaded from each server from the Route Views project
from the time closest to the 12th hour of the window. Each
day window contains an average of 15 prefix table dumps with
between four to six gigabytes of route information broadcasts.
Using Qiu and Gao’s model we predict the top k=5 paths for
roughly 400 000 of these pairs with the rest failing due to either
the source or destination AS missing from the Route-Views
routing tables. The 400 000 successful path inferences cover
4.5 million of our 5.3 million traces with AS paths. We con-
sider the inference identifying the correct path if it matches
the AS path seen in the traceroute for any of the top k paths
considered.

Figure 1 is a CDF showing the number of ASes seen in the
traceroute but missed by the top k predicted paths. Zero miss-
ing ASes correspond with a correct path prediction for at least
one of the k paths. Using only the top path from the prediction,
yields roughly 20% prediction accuracy with a decreasing re-
turn for higher levels of k and a maximum accuracy of 48%
when considering the top 5 paths. This accuracy is far lower
than the 83% accuracy for the top 5 paths attained by Qiu
and Gao; however, their validation was conducted using Route
Views data as the ground truth and not traceroute data [18]. We
surmise the lower accuracy is due to a combination of known
error sources both from the increase in prevalence of IX peer-
ing [4] and inherent errors in traceroute measurements from
actual AS-level paths [36]. We finally note that the overall ac-
curacy of prediction is similar to our extensive analysis of ac-
curacy against CAIDA traceroutes demonstrating that the Tor
network would benefit from improvements to path prediction
in the general case [23].
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Fig. 2. CDF of Missing IXes over all Traces Fig. 3. Observed Internet Exchange Points

Fig. 4. Avg Missing ASes and IXes Per Host Fig. 5. Extra ASes and IXes Per Host

4.2 Identifying IX Adversaries

Given an AS path, we can identify the set of potential IXes
that could occur on this path by considering which IXes can be
used for each AS–AS hop, as discussed in Section 3.2. Figure
2 compares the set of potential IXes for the top k predicted
AS paths to the set to the IXes identified by IP address prefix
in traceroutes. Once again, a value of zero indicates that all
IXes have been identified in the inference. We find that the top
path identifies roughly 40% of the IXes and the top five paths
identify roughly 74% of the IXes.

We expect traceroutes to provide a much more accurate
picture of which IXes were involved on a path than AS path
predictions. A pair of ASes will often have multiple peering
points, depending on the geographic location the source and
destination; as a result, only a fraction of traffic between the
two ASes will use a given IX. In Figure 3, we compare the
set of IXes on a traceroute to the predicted set of IXes that
could be used at each AS–AS hop in the traceroute. We see
that while most traceroutes do not traverse any IX, the AS–AS
hops result in 3–8 potential IXes on average. This experiment

demonstrates the limitations of using only AS-level informa-
tion to infer IXes on a path.

4.3 Choosing k Top Paths

Choosing the k top paths to consider when predicting AS
and IX points presents an important tradeoff between miss-
ing ASes/IXes versus severely overstating the number of
ASes/IXes on a given path. Figures 4 and 5 show the miss-
ing AS/IXes and extra AS/IXes seen by the path prediction
algorithms for the k top paths from k = 1 to 5. For ASes, we
see diminishing returns for missing ASes for larger values of
k with false positives increasing quickly for larger values of k.
Overall, the average attainable missing AS accuracy is close to
1 for the top path decreasing down to 0.6 for the top 5 paths.

We compare the IXes found using vulnerable AS–AS
hops from the inferred AS paths directly to the IXes identi-
fied by prefix in the traceroutes. In general, very few IX points
were seen in the traceroutes. In most hosts, IX identification is
helped very little by increasing the top paths with the average
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missing IX of about 0.2 per hop. This result is unsurprising
because if there are no IX points in the traceroutes, then there
can be no missing IXes in the inference. Unfortunately, the
false positives for IX points are problematic with linearly in-
creasing averages ranging from 10–25 for each of our hosts il-
lustrating the need for better methods in identifying IX points.

For AS adversaries, a k value of 1 or 2 seems most ap-
propriate to identify most AS adversaries without causing too
many false positives. Higher values of k give lower rates of
return while causing a linear increase in false positives. Iden-
tifying IX adversaries is much more problematic. Since the
traceroutes identify very few IX adversaries to begin with, a k

value of 1 appears to work well. The inaccuracy of the method
can be seen in the false positives which also increase linearly
with k but greatly over-predict the number of adversaries even
with a k value of 1. The inaccuracy of AS and highly inac-
curate IX prediction could potentially cause serious problems
when designing a system of AS/IX independence in Tor. We
analyze the effects of this inaccuracy in the following sections.

5 AS and IX Adversaries in Tor

Errors in path prediction call into question previous work that
has used path prediction to both evaluate the security of Tor
and propose changes to Tor’s path selection based on path pre-
dictions. Understanding the effect of the errors uncovered by
our traceroute measurements requires taking into account the
specific properties of Tor.

We accomplish such an analysis by simulating the Tor
protocol and network at a high level. We use and adapt the Tor
Path Simulator (TorPS)10 to perform Monte Carlo simulation
of Tor path selection by a single client. By using the hourly
network “consensuses” and server “descriptors” archived by
CollecTor,11 we can recreate the state of the Tor network over
the period we run our simulations, including features such as
the number, bandwidths, and addresses of Tor relays available
in any given hour. We simulate “typical” user activity using the
recorded volunteer trace of Johnson et al. [22], which includes
user behaviors such as web search and webmail on a plausible
daily schedule. Over the course of a week, this schedule re-
sults in 2632 streams (i.e., TCP connections over Tor), each to
one of 205 distinct IP addresses occupying 168 unique ASes,
on either port 80 or 443. Finally, we run simulations using the
most common client ASes as measured by Juen in Fall 2011
[23].

10 https://github.com/torps
11 https://collector.torproject.org/

Simulating path selection in Tor allows us to estimate
which Internet hosts a user’s traffic is likely to flow over in
a typical use case. Then we can use our traceroute data to de-
termine the specific Internet routes that traffic would take and
evaluate the resulting security. Specifically, we provide new
estimates for how often a Tor stream flows through the same
AS or IX between the client and the guard and between the
destination and the exit. When this happens, the AS or IX is in
a position to deanonymize the client. This issue was previously
studied only using inferred AS paths and IX sets.

In addition, using this method we provide an improved
evaluation of the repeatedly-proposed [15, 17] modification
to Tor to use AS/IX path inference to choose relays that
are path independent, that is, that result in paths for which
the same AS or IX cannot observe both the client and the
destination. We modify TorPS to produce the first simulator
for path-independent Tor (to our knowledge) that reproduces
how path selection occurs over time, including features that
have the potential to significantly alter the effectiveness of the
path-independence requirement, such as guard lists and circuit
reuse. We apply our traceroute measurements to the results of
these simulations to evaluate the effectiveness of path infer-
ence as a basis for path independence in Tor.

5.1 Vanilla Tor

All of our Tor simulations run over the week of January 19–
25, 2014. When producing and analyzing these simulations,
we generally use the same data sources and inference algo-
rithms as in Section 3.2 to produce AS path inferences, AS-
level IX inferences, and traceroute IX inferences. We use daily
AS-path inferences conducted from January 19–25, 2014 com-
pared to the traces from each day of the simulation week. We
also use the daily Route Views prefix-to-AS datasets to de-
termine routed prefixes and to map IPs to ASes. When an-
alyzing our simulations using traceroutes, we use all of the
traceroute measurements gathered during the week of January
19–25, 2014. In our analysis we match a traceroute to a pair
of communicating hosts in Tor if the source prefix and desti-
nation prefix match.

We first conduct a simulation using the default Tor path
selection algorithm. We consider clients coming from 50 of the
top 200 most common client ASes (as measured by Juen [23]).
Each AS advertises hundreds of possible prefixes in the Route
Views data. We select at random twenty prefixes per client AS
for a total of 1 000 client prefixes for the simulations. The sim-
ulator runs 10 000 repetitions of simulated traffic using input
data from the week of January 19th–25th 2014 yielding over
24 million traffic streams per client prefix with 18.2 million
unique streams. We identify the presence of AS and IX adver-

https://github.com/torps
https://collector.torproject.org/
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Fig. 6. Directional AS Compromises for k Top Paths Fig. 7. Directional IX Compromises for k Top Paths

saries using AS-path inference with the top k paths (k=1 to
5) and our collected traceroute data from January 19–January
25. In total, we have inferred path information for an average
of 18 million streams per client prefix (18 billion total) and
traceroute information for an average of 112 000 streams per
client prefix (14 million total).

5.1.1 Inferred Adversaries

We first look at the percentage of simulated Tor paths which
have the same AS or IX on both the client-to-guard path and
the exit-to-destination path using only the inferred paths. We
look at the percentage of compromised paths considering the
set of ASes and IXes in the forward direction (client to desti-
nation), the reverse direction, and the forward and reverse di-
rections combined. We also consider the direction of streams
leaving Tor; i.e., from the guard to the client and from the exit
to the destination. This direction matches the direction of our
traceroute measurements from Tor relays to external IP pre-
fixes and allows us to compare the predicted paths with tracer-
oute data, without errors being introduced due to asymmetric
Internet paths that traverse a different set of ASes and IXes.
We call this path the Tor path.

Figures 6 and 7 show the percentage of inferred ASes and
IXes for each direction and top k paths averaged over all 18
billion inferred streams. Considering only the top path, we see
11.6%, 11.6%, 12.1% and 21.6% AS compromise rates for the
forward, reverse, Tor, and forward/reverse paths respectively.
We see a significant increase in AS adversaries when consid-
ering more paths topping at 58.8%, 60.6%, 62.0%, and 71.8%
when considering the top 5 paths for the forward, reverse, Tor
and forward/reverse paths respectively. We notice little differ-
ence between the compromise rates of the Tor paths versus
the forward or reverse. As expected, the forward and reverse

combined represents a higher inferred compromise rate since
we consider two sets of ASes per path. The forward/reverse
has roughly a 10% greater rate of compromise for the top path
and roughly a 20% greater compromise rate when k is varied
from 2 to 5. For the top path, the IX compromise rates were
higher with 27.0%, 17.5%, 29.3% and 43.5% for the forward,
reverse, Tor and forward/reverse paths respectively. These in-
creased rapidly at first leveling off to 72.3%, 72.5%, 74.7%
and 77.2% for the top 5 paths. Once again, the forward/reverse
paths contain more potential IX adversaries due to consider-
ing more paths. There is little significant difference between
the compromise rates of the forward paths and the Tor paths.
We also note that the number of inferred potential adversaries
greatly increases when considering a higher number of top k

paths.

5.1.2 Measured and Inferred Adversaries

We now compare the inferred AS and IX adversaries to the
AS and IX adversaries actually present in the traceroute mea-
surements for all of our simulated Tor circuits. To make the
comparison fair, we only consider the traceroutes and inferred
paths going from the Tor guard to the client and from the
Tor exit to the destination. As seen in the last section, the in-
ferred paths using the Tor direction contains similar compro-
mise rates to the paths in the forward and reverse directions.
We thus consider the subset of paths for which we have both
AS inferences and measured traceroutes in the Tor direction
giving us a set of 141 million streams from 1000 unique client
prefixes.

Figure 8 shows the CDF of streams compromised in the
traceroute measurements compared to the inferred for various
k top paths. Interestingly, the AS compromise rates for the top
path is similar to the actual compromise rates seen in the mea-
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Fig. 8. AS Compromises Measured and Inferred Fig. 9. IX Compromises Measured and Inferred

Fig. 10. AS Compromise Agreement Fig. 11. AS Compromise False Positives

surements. Considering the top 2 paths more than doubles the
inferred compromise rate with lower increases with increas-
ing k topping out at a little under a 50% compromise rate for
half the paths. Figure 9 shows the CDF of streams compro-
mised with measured versus inferred IX adversaries. The ac-
tual percentage of paths with an IX adversary identified by pre-
fix is much smaller than the inferred value with only 0.8% of
streams seeing an IX adversary on both the client to guard and
exit to destination simultaneously. The inferred paths greatly
over exaggerate the threat with the top path giving an aver-
age of 40% compromise rate and the top 5 five paths giving
an average of nearly 60% compromise rate. Thus, the method
of inferring IX adversaries greatly over predicts the number of
actual IXes seen when measuring paths using traceroute.

We now consider the differences between adversaries seen
using the inference methods versus the adversaries seen in the
traceroutes. We consider adversaries seen in the inferred set
but not in the measured set as false positives and adversaries
seen in the measurements but not the inferred set false nega-

tives. While the traceroute measurement can contain errors and
does not constitute perfect ground truth, we consider it more
reliable than the inferred methods. In the following analysis
all percentages are the percentage of paths compared to the
set of all 141 million simulated paths for which we have both
inferred and measured data.

Figures 10 through 15 show the CDFs for the percentage
of streams compromised per prefix for both ASes and IXes
that both methods agree, the inference indicates an adversary
while the measurement does not (false positives) and the mea-
surement indicates an adversary while the inference does not
(false negative). We see that while the percentage of overall AS
compromises for the top path was similar in the last section,
they do not agree on which AS is causing the compromise. In
our measurements, we find roughly 10.9% of streams could
contain a potential AS adversary. Unfortunately, the measured
and inferred AS only agree for an average of 2.6% AS com-
promises when considering the top path. Increasing to the top
two paths improves agreement by a factor of 2 to 5.1% aver-
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Fig. 12. AS Compromise False Negatives Fig. 13. IX Compromise Agreement

Fig. 14. IX Compromise False Positives Fig. 15. IX Compromise False Negatives

age agreement with higher k values giving diminishing returns
after that. Unfortunately, increasing k from 1 to 2 significantly
increases the average number of false positives from 8.5% to
22.6% with a more linear increase with k up to 41.1% with
k = 5. For false negatives, the greatest drop once again oc-
curs when going from the top paths to the top two paths from
8.4% to 5.8% with diminishing returns with increasing k and a
minimum of 4.3% average with k = 5. Overall, the AS infer-
ence with the top 2 paths catch a little less than half the mea-
sured AS adversaries catching 5.1% and missing 5.8% of the
actually measured 10.9% of measured AS adversaries Unfor-
tunately, it still pre-emptively would eliminate 22.6% of paths
which had no measured adversary.

The agreement with the IX adversaries is even lower. Both
methods agree on only 0.36% of paths having an IX adversary
considering the top path increasing to 0.44% for the top two
paths up to 0.47% for the top 5 paths. The false positive rate is
unacceptably high with 34.5% for the top path and 48.1% for
the top 2 paths up to 55.7% for the top 5 paths. The false nega-
tive rate is 0.54% for the top path lowering to 0.45% for the top

two paths down to .42% for the top five paths. Thus eliminat-
ing paths based on the inference with the top path would catch
40.0% of the observed IX adversaries (0.9% of total paths)
while eliminating 34.5% of paths unnecessarily. Using the top
2 paths would catch 48.9% of observed IX adversaries while
eliminating 48.1% of paths unnecessarily. Thus, roughly half
of all potential paths would be eliminated to catch the 0.9% of
total paths with an observed IX adversary. These results moti-
vate the need for better methods of inferring IX adversaries in
order to effectively mitigate the threat to the Tor system.

5.2 Path-independent Tor

In order to avoid deanonymization by an AS or IX, Tor clients
could attempt to choose Tor relays such that the forward and
reverse paths between the client and guard are independent of
the forward and reverse paths between the exit and destina-
tion, in terms of the ASes and IXes that appear. However, it
is non-trivial to design a system that allows the client to do
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(a) Undetected compromise among streams that
successfully connected

Top 1
Path

Top 3
Paths

Mean fraction of streams
that have traceroutes 0.0037 0.0026

Mean fraction of streams
with traceroutes that

are w/o independence 0.0043 0.0014
Min prob of at least one

stream w/o independence 0.018 0
Mean prob of at least one
stream w/o independence 0.11 0.053
Max prob of at least one

stream w/o independence 0.22 0.18

(b) Unnecessary failure among streams without any
independent path

Top 1
Path

Top 3
Paths

Mean fraction of all
streams that fail due to

independence constraint 0.051 0.060
Mean fraction of streams

that have traceroutes 0.19 0.19
Mean fraction of streams
w/ traceroutes that have

an independent path 0.96 0.95
Min prob of at least
one stream failure 1 1

Table 2. Path-independent Tor traceroute analysis over 189 top client ASes

so, because he must preserve his anonymity while making this
decision, and Tor should be usable even by users with little
bandwidth and low-powered devices.

As we discuss in Section 6, Edman and Syverson [15] pre-
sented the first detailed proposal for solving this problem with
a system that provides enough data for clients to build an AS
Internet map on which to run AS-path inference. They pro-
pose a slightly less accurate algorithm than Qiu and Gao’s for
efficiency. Juen added IX inference to this idea [23]. None of
the previous work explains how AS/IX-independent circuits
should be created over time, and thus does not consider how
path independence interacts with Tor guards or circuit reuse.
Tor guards in particular are a key Tor feature that defends
against malicious observation and deanonymization [16, 22].
Thus the prior work does not give a clear idea of how well
AS/IX-independent path selection would work even if path-
inference techniques were very accurate.

The inaccuracy of path-inference techniques is likely to
negatively impact AS/IX-independent path selection in at least
two ways: (i) missing an AS or IX on a path could cause the
user to create a path vulnerable to deanonymization, and (ii)
incorrectly believing that an AS or IX exists on a path could
leave the user with few or no ways to connect to the destina-
tion. These problems are placed in tension by the inference
methodology because false negatives make (i) worse and false
positives make (ii) worse. For example, as the number k of
top paths used in inference increases, false negatives should
go down but false positives should go up. Moreover, the infer-
ence needs to have few false negatives on all paths collectively,
or a user will face an increasing risk of deanonymization as he
visits new destinations and is forced by network churn to use
different relays. Similarly, an increasing number of false posi-
tives over time could force the user to choose between not con-

necting to certain destinations and exposing himself to more
and more potentially-malicious guards.

We investigate the suitability of path inference as a ba-
sis for AS/IX-independent path selection using path simula-
tion and our traceroute data, similar to how they were used
in Section 5.1 to explore vanilla Tor security. As a byproduct
of our research, we also expose a security-performance trade-
off inherent in the path-independent approach and reveal some
opportunities to fill in and improve past proposals.

5.2.1 Methodology

In order to evaluate AS/IX-independent path selection via sim-
ulation, we must fill in the details of the algorithm sketched out
by prior work. We adapt the existing Tor path-selection algo-
rithm for this purpose. We require clients to have at least 3
guards in their guard list and to have at least 2 guards active
with AS/IX path information with the client when creating a
new circuit. Upon receiving a stream request, existing circuits
are examined for suitability, including path independence. If
none is suitable, then circuit-creation is initiated by choosing
an existing guard, then an exit, and then a middle. If a path-
independent exit cannot be found for a given guard, the other
guards are considered, and so on. If no exit is found for any
current guard, then the circuit creation fails. We note that to
enable a direct comparison with our traceroute data, our sim-
ulator only compares the inferred AS/IX path from the guard
to the client and from the exit to the destination when deter-
mining path independence (i.e. only reverse entry and forward
exit paths are used).

We generally follow the same experimental methodology
as that followed in Section 5.1. We will not be estimating full
distributions, and thus we use only 500 samples per client AS,



Defending Tor from Network Adversaries 12

but we run experiments with the 189 of the top 200 client ASes
that were in our AS-level routing map.

In our experimental analysis, we are able to use traceroute
data to identify false negatives and false positives. 50 client
IPs are chosen randomly from the set of the initial IPs in each
prefix advertised by the client’s AS (according to the Route-
Views prefix-to-AS file that appears most recently before that
stream occurred). To identify false negatives, we test streams
that were successfully assigned to a circuit by looking for a
traceroute from the guard’s routing prefix to the client’s and
from the exit’s prefix to the destination’s. When both tracer-
outes are found, we look for ASes or IXes that appear in com-
mon. To identify false positives, we test streams that failed
to connect by looking for a traceroute from any of the active
guards at that time to the client and from any potential exit to
the destination. If such a pair exists, we look for the lack of
any AS or IX in common.

5.2.2 Results

Table 1a provides estimates for the effects of path inference er-
rors on the security of path-independent Tor. The min, mean,
and max values are taken over 188 top client ASes (we fur-
ther excluded one that didn’t advertise any prefixes during the
simulation week). Our traceroute data provided path informa-
tion (i.e. matched both guard-client and exit-destination host-
prefix pairs in the direction out from Tor) for 0.26–0.38% of
the simulations’ streams (depending on whether the top 1 or
the top 3 inferred paths were used to determine independence).
Of these, between 0.14% and 0.43% were revealed to violate
path independence. While compromise rates may seem accept-
ably low, even one Tor deanonymization is potentially serious,
and over the course of the simulated week, a client had on av-
erage between a 5.3% and a 11% probability of experiencing
at least one path-independence violation. In the most unlucky
client ASes, path independence was violated with a probability
as high as 18–21%!

Table 1b shows that this insecurity cannot simply be han-
dled by increasing the number of top possible paths from
which the inferred ASes and IXes are taken. It reveals that by
increasing the number of top paths used in inference from 1 to
3, the fraction of streams for which no path-independent Tor
circuit could be created increased from 5.1% to 6%. For these
streams, no AS/IX path-independent exit could be found using
any of the client’s guards. Note that a stream failure of any kind
never occurred in simulation with Tor’s default path selection,
because Tor doesn’t require path independence, and many ex-
its are available for each stream in the user trace. Such failures
are particularly bad because the stream will not succeed until
the Tor relay population changes sufficiently, a process which

could take days or weeks. Thus even a 5.1–6.0% failure rate
has a severely deleterious effect on Tor’s suitability for general
Internet use. Moreover, we can see that every simulated client
experienced at least one stream failure (i.e. the estimated fail-
ure probability is 1.0 for all client ASes).

However, our traceroute measurements offer the hope-
ful news for this problem that most of these stream failures
may have been unnecessary. We were able to match a tracer-
oute guard-to-client and exit-to-destination for 19% of failed
streams. Our coverage of failed streams is so much higher
than for connected streams because we look for a traceroute
from any active guard of the client at the time and from any
exit that could be chosen with that guard and for that destina-
tion (ignoring only the path-independence constraint). Among
streams for which we were able to match at least one pair of
traceroutes, 95–96% had a guard and exit that the traceroutes
show would have been AS/IX-independent. In fact, this high
false-positive rate is not just a result of having many exit paths
about which to be be incorrect, an average of about 80% of all
guard and exit pairs with matched outgoing traceroutes were
observed to be path-independent for both experiments.

5.2.3 Discussion

Our evaluation of AS/IX-independent path selection is not in-
tended to make any definitive claims about its usefulness. In-
stead, we attempt to make reasonable choices about the al-
gorithm details in order to get some idea of how well it might
work overall and especially in conjunction with path-inference
techniques. Indeed, there are many plausible improvements to
the algorithm we have evaluated, such as choosing guards with
different network locations to minimize the chance of stream
failure, or perhaps allowing streams to use potentially unsafe
circuits but limiting the number of potential observing ASes
and IXes. Designing network-aware path-selection algorithms
for Tor remains an open challenge with unsolved vulnerabil-
ities such as adversarial relay placement [5] and path finger-
printing [12, 21].

6 Related Work

The threat to the Tor network for ASes to correlate traffic
was first investigated by Feamster and Dingledine [17]. Us-
ing a simplified AS model with shortest paths they determined
roughly 10–30% of circuits could be vulnerable to an AS ad-
versary. Edmond and Syverson furthered the understanding
of AS adversaries against the Tor network [15]. Using Qiu
and Gao’s AS path prediction model and an updated model
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Method Forward Reverse Both

Feamster and Dingledine [17] 17.7% 16.1% NA
Edmond and Syverson [15] 10.9% 11.1% 17.8%
Wacek et al. [35] NA NA 27.4%
Juen [23] 7.1% 7.2% 11.2%
Current Work 11.6% 12.1% 21.6%

Table 3. Inferred AS Compromise Comparison (Top Path)

for the Tor network, they determined each circuit had an 11–
18% chance that some AS adversary could compromise the
circuit. They also presented a technique to choose paths with-
out AS adversaries by using "Snapshots” of the AS topology.
Akhoondi et al. presented LastTor, an optimization to Tor path
selection to minimize latency by considering geographic loca-
tion [5]. They propose using the set of k top most likely AS
paths to eliminate AS adversaries. They do not report overall
chances for any given AS to compromise a circuit. Recently,
Wacek et al. studied Tor’s path selection algorithm [35]. They
find that using the iPlane’s Nano AS map, Tor paths have a
27.39% chance to be vulnerable to an AS adversary. Vanbever
et al. consider the threat of AS adversaries that actively ma-
nipulate BGP routing, showing that they can dramatically in-
crease the chances of deanonymizing a Tor user over a period
of time [34].

The danger of IX adversaries was first demonstrated by
Murdoch and Zielinski who demonstrated that an IX could use
a Bayesian approach to sample traffic and correlate Tor flows
across ASes peering at the IX [30]. Juen further investigated
the threat of AS and IX adversaries using Qiu and Gao’s AS
model and the top k paths estimating the chance of any AS be-
ing able to compromise the circuit ranging from 10% to 42%
[23]. He reports the chance of an IX compromise to be be-
tween 1% and 20%. Johnson et al. investigate the amount of
time required for an AS, IX, or IX organization to compro-
mise a circuit using Torps to simulate realistic Tor traffic [22].
They only consider the top 3 AS and IX adversaries as seen
in their inferred data and report the overall chance of an AS
compromise to be 1.6% for their top 3 ASes.

We now compare our results with the compromise rates
of Tor streams against previous work. We calculate the per-
centage of Tor streams which contain an AS on the client to
guard and exit to destination paths in the forward, reverse and
forward and reverse directions for each of our 18 billion calcu-
lated streams. We then compare the results of our directional
AS path inferences directly to the results from previous work
and confirm that our AS path inferences give similar results
for the top AS path as shown in Table 3. We find our results
most closely correlate with the work of Edmond and Syverson
with Juen’s results being lower than the average and Wacek et

al. being much higher. We find this result unsurprising since
we also use the AS inference algorithm from Qiu and Gao.
We surmise that the AS inference from iPlanes produce higher
compromise estimates as seen in Feamster and Dingledine and
Wacek et al. Juen also uses a modified AS mapping algorithm
which may produce lower compromise rates.

Johnson et al. investigated the time expected before a user
would most likely use a stream compromised by an AS or IX
adversary. Since we only have inferred and traceroute data for
0.8% of streams, it is not possible to directly compare the time
to compromise for our clients. Instead, we investigate the abil-
ity of the top 3 AS and IX adversaries to compromise a Tor
stream. Once again, we only consider streams which we have
both inferred and traceroute data. The ASes and IXes with the
highest probability to compromise a Tor stream are shown in
Table 4. Interestingly, we observe the same set of three top AS
adversaries but in a slightly different order. We also see the
top IX adversary as number 2 for compromise rates. We see a
similar 0.5% rate of AS streams compromised by our top AS
adversaries. We see a higher rate of overall streams compro-
mised by our top IX adversary at 0.4% compared to roughly
0.1% in Johnson’s work. The overall compromise rates of all
streams using the traceroute measurements is much more in-
teresting. The traceroute measurements never see AS6939, the
top compromising AS in the inferences. On the other hand,
the traceroute measurements indicate AS1299 can compro-
mise the same percentage of streams as indicated in the in-
ference. We see drops for both top IX compromise rates for
the measurements versus the inferences. Once again, Equinix
Ashburn is not observed in the traceroute measurements.

Overall, we expect a drop in the actual ability of an IX
point to compromise a Tor stream primarily due to the ex-
tremely high false inference of IX points. The difference be-
tween AS compromise rates shows that the path inference was
always wrong in identifying AS6939 when compared to tracer-
outes; however, AS 1299 was seen in the traceroutes at simi-
lar rates as predicted. Thus, the inference accuracy appears to
vary greatly depending on which AS is being considered as an
adversary.

7 Limitations and Future Work

The data in this study is limited in several ways. While our vol-
unteer measuring relays covered roughly 25% of Tor selection
probability at the AS level, it still only contains 28 hosts. In ad-
dition, all path inferences were done on paths from Tor relays,
leaving us without symmetric path information. Furthermore,
we collected most of our data in the span of weeks, and so
missed alternative routing paths and routing instabilities. We
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AS Our Rank Johnson et al. Rank Johnson et al. Comp % Comp % TR Comp %

AS6939 HURRICANE Electric 1 3 0.6% 0.4% 0.0%
AS3356 Level 3 Communications 2 1 0.4% 0.5% 0.13%
AS1299 TeliaNet Global 3 2 0.4% 0.5% 0.5 %

IX Our Rank Johnson et al. Rank Johnson et al. Comp % Comp % TR Comp %

LINX Juniper 1 NA NA 0.4% 0.05%
DE-CIX Frankfurt 2 1 0.1 % 0.4% 0.05%
Equinix Ashburn 3 NA NA 0.4% 0.0%

Table 4. Stream Compromise Rates for the Top 3 AS and IX Adversaries for our Work compared to Johnson et al. [22]

also lack ground truth because of measurement weaknesses
such as missing or incorrect traceroute hops, missing or stale
IP prefix announcements from the public route collectors, and
incomplete or incorrect IX prefix data. We look forward to the
opportunity to expand network measurement in cooperation
with Tor and using third-party vantage points such as Look-
ing Glass servers. We also hope to make use of advances in
measurement tools to advance this line of inquiry.

A problem posed by our results is to design solutions for
Tor to more accurately assess network routing and use that to
improve security. One promising approach is for Tor to adopt
the measurement techniques that we used in this study and
regularly perform traceroute measurements from each of its
relays. Our experience shows that it is feasible to do so and
cover the IPv4 address space at the prefix and even /24 subnet
level.

Evaluating the effectiveness of using measurements to de-
tect AS and IX adversaries requires an understanding of the
characteristics of internet paths. It is important to understand
how often internet paths between a given set of hosts change
in order to update measurements and alert clients to potential
adversaries. It is also important to understand what prefixes
can be aggregated when measuring paths. Previous work has
stated that between 66–83% of internet paths are stable over
the course of a 24-hour period [37].

While our measurements were not designed to track paths
over time, we do have enough measurements that we can ob-
serve the stability of repeated measurements to the same desti-
nation /24 prefix. Table 5 shows the number of pairs of paths,
percentage of identical paths and average number of missed
ASes and IXes on differing paths for various windows of time
between measurement. While the numbers of collected tracer-
outes are too small to make final conclusions, we do see only
19.9% of paths stable in measurements taken within two hours.
This result must be further investigated since the number of
divergent paths contain both a time delay and a different des-
tination IP address within the same /24. Thus, we have error
both from differences in target addresses and potential routing
changes between measurements.

As expected, we do see lower rates of identical paths
when increasing the time between measurements; however,
we do not see much difference in the number of extra ASes
and IXes introduced when measuring a different path. We can
expect to have between one to two different ASes when con-
ducting the second measurement and roughly 0.01 missed IX
point. The relatively low number of measurements with identi-
cal paths will require further study into path variability. Since
these questions can only be answered by a larger set of mea-
surements from Tor operators conducted over a longer period
of time, we leave this larger, more ambitious study as impor-
tant future work. However, we optimistically note that recent
work has shown promise in predicting what subset of Internet
paths change often and presented novel methods to estimate
the rate of change to keep measurements current [10, 11, 20].
We believe such work shows the potential in a measurement
based countermeasure to AS and IX adversaries, but leave the
specifics of the design and validation to future work.

Another remaining challenge is to move past the current
focus on AS-level techniques and adversaries. As Jaggard et
al. describe [19], an adversary may find it easier to control a
group of IP routers running a certain version of software than
to observe those in the same AS or IX. An adversary may also
combine strategies and both observe the Internet at certain lo-
cations and run relays in selected other locations. Evaluating
the threat of more complicated and realistic network adver-
saries will require both better adversary modeling and more
detailed route inference techniques.

8 Conclusions

We have presented a measurement study to evaluate the suit-
ability of Internet AS and IX path-prediction algorithms to as-
sess and mitigate the threats from network-level adversaries to
the Tor network. Using traceroute data from the volunteer op-
erators of 28 Tor relays, we show that current techniques for
inferring AS-level Internet paths and the IXes on them signifi-
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Period Measurements % Identical Average Missed ASes Average Missed IXes

2 Hours 128 19.9 1.7 0.01
12 Hours 474 17.2 1.6 0.005
1 Day 826 18.7 1.7 0.01
3 Days 2572 16.6 1.6 0.01
7 Days 13340 14.9 1.6 0.01
28 Days 19668 10.1 1.6 0.007

Table 5. Repeated Path Measurements over Time

cantly overestimate number of ASes and IXes traversed by Tor
traffic.

To evaluate how our results affect the current and future
security of Tor, we perform Monte Carlo simulations of Tor’s
current path-selection algorithm and the AS/IX-independent
path-selection algorithm proposed in the literature. When we
examine the results, we see evidence that Tor is likely less vul-
nerable to an AS or IX adversary than has been previously
found. A direct comparison with a prior evaluation shows that
it is likely to have overstated the risk of a single AS many times
over and that of a single IX by an order of magnitude.

We also find that the AS/IX-independent path-selection
algorithm may still leave a significant chance for users to be
deanonymized over time due to the errors in path prediction —
we estimate a 5–11% risk in just one week when the claimed
chance is 0%. Moreover, we find that this algorithm appears
to force a tradeoff between connection failures and exposing
users to potentially-malicious relays, even though in nearly all
cases the failures could be avoided with better measurement.

Our results suggest the importance of accurate measure-
ment both for understanding Tor security and for improving
it.
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Appendix

Details of Participating Tor Relays

Traceroutes from our 28 participating Tor relays originated in
14 different countries. Table 6 summarizes the guard and exit
probabilities of the participating relays in the Tor network at
the relay, AS, and prefix level. The guard and exit probabili-
ties for all relays are taken from the Tor consensus of January
19, 2014 (at 12am) obtained from CollecTor [1]. Guards are
taken to be relays with the following flags in the consensus:
Running, Valid, Guard, and Fast. Exits are taken to be re-
lays with the Running and Valid flags, without the BadExit
flag, and with an exit policy that doesn’t reject all ports and
IP addresses. Relay ASes and prefixes are determined using
the Route Views prefix-to-AS mapping of January 19, 2014
obtained from CAIDA 12 and longest prefix match on that
same data. The guard (exit) probability for an AS or prefix is
calculated as the sum of guard-selection (resp. exit-selection)
probabilities of all relays contained in that AS or with a longest
prefix match.

12 http://www.caida.org/data/routing/routeviews-prefix2as.xml
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IP Country AS Number
Relay Probability AS Probability Prefix Probability
Guard Exit Guard Exit Guard Exit

81.7.13.84 Germany
35366

0.14% 0%
1.66% 0.37% 1.4% 0.27%

81.7.11.129 Germany 0.24% 0%
37.200.98.5 Germany 34011 0.36% 0% 2.29% 0.048% 0.63% 0.028%

213.185.88.234 Germany 29354 0.19% 0% 0.19% 0% 0.19% 0%
185.15.244.124 Germany 24961 0.22% 0% 2.02% 3.39% 0.23% 0%
134.255.239.61 Germany 197071 0.09% 0% 0.10% 0% 0.09% 0%
23.239.134.29 United States 33182 0.03% 0% 0.05% 0% 0.034% 0%

206.217.135.164 United States
36352

0.07% 0%
0.89% 0.23%

0.12% 0%
192.3.142.234 United States 0.14% 0% 0.14% 0%

216.230.230.247 United States 40156 0.14% 0% 0.15% 0% 0.14% 0%
23.92.65.25 United States 54540 0% 0% 0.089% 0% 0% 0%

109.232.224.91 Netherlands 57172 0% 0% 0% 0% 0% 0%
146.185.143.144 Netherlands 46652 0.0002% 0.002% 0.90% 0.54% 0.24% 0.037%
88.191.162.192 France

12322
0.1% 0%

1.26% 0.35% 1.2% 0.34%
88.190.14.112 France 0.6% 0%
95.130.11.214 France 196689 0.06% 0% 0.23% 1.26% 0.23% 1.3%
37.187.20.59 France

16276
0.12% 0%

8.12% 3.78%
1.4% 0.45%

198.27.97.223 Canada 0.09% 0% 0.098% 0%
89.46.100.162 Romania 58207 0% 0% 0.096% 0% 0.096% 0%
5.254.101.92 Romania 39743 0% 0% 1.25% 8.38% 0.046% 0%
46.23.70.195 United Kingdom 13213 0.21% 0% 1.03% 4.68% 0.21% 0%
37.247.52.27 Italy 34971 0.005% 0% 0.066% 0% 0.05% 0%

217.12.199.190 Ukraine 15626 0% 0% 0.093% 0.66% 0% 0%
212.186.51.184 Austria 6830 0.001% 0.009% 0.55% 0.16% 0.0013% 0.0097%
91.219.237.110 Hungary 56322 0% 0% 0.71% 1.04% 0.71% 1%
37.0.123.152 Russia 198310 0.12% 0% 0.12% 0% 0.12% 0%

46.28.110.129 Czech Republic 197019 0.19% 0% 1.36% 0.68% 0.26% 0.23%
218.251.112.170 Japan 17511 0.005% 0% 0.021% 0% 0.0054% 0%

Total 3.12% 0.01% 23.25% 25.56% 7.64% 3.66%

Table 6. Details of our participating Tor relays.
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