
How Unique is Your .onion?
An Analysis of the Fingerprintability of Tor Onion Services

Rebekah Overdorf
Drexel University

Philadelphia, Pennsylvania
rebekah.overdorf@drexel.edu

Marc Juarez
ESAT-COSIC and imec KU Leuven

Leuven, Belgium
marc.juarez@kuleuven.be

Gunes Acar
imec-COSIC KU Leuven

Leuven, Belgium
gunes.acar@esat.kuleuven.be

Rachel Greenstadt
Drexel University

Philadelphia, Pennsylvania
rachel.a.greenstadt@cs.drexel.edu

Claudia Diaz
imec-COSIC KU Leuven

Leuven, Belgium
claudia.diaz@esat.kuleuven.be

ABSTRACT
Recent studies have shown that Tor onion (hidden) service websites
are particularly vulnerable to website fingerprinting attacks due to
their limited number and sensitive nature. In this work we present
a multi-level feature analysis of onion site fingerprintability, con-
sidering three state-of-the-art website fingerprinting methods and
482 Tor onion services, making this the largest analysis of this kind
completed on onion services to date.

Prior studies typically report average performance results for
a given website fingerprinting method or countermeasure. We in-
vestigate which sites are more or less vulnerable to fingerprinting
and which features make them so. We find that there is a high
variability in the rate at which sites are classified (and misclassified)
by these attacks, implying that average performance figures may
not be informative of the risks that website fingerprinting attacks
pose to particular sites.

We analyze the features exploited by the different website finger-
printing methods and discuss what makes onion service sites more
or less easily identifiable, both in terms of their traffic traces as well
as their webpage design. We study misclassifications to understand
how onion services sites can be redesigned to be less vulnerable to
website fingerprinting attacks. Our results also inform the design
of website fingerprinting countermeasures and their evaluation
considering disparate impact across sites.
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1 INTRODUCTION

Website fingerprinting attacks apply supervised classifiers to
network traffic traces to identify patterns that are unique to a web
page. These attacks can circumvent the protection afforded by en-
cryption [7, 13, 19, 25] and the metadata protection of anonymity
systems such as Tor [9, 12]. To carry out the attack the adversary
first visits the websites, records the network traffic of his own visits,
and extracts from it a template or fingerprint for each site. Later,
when the victim user connects to the site (possibly through Tor),
the adversary observes the victim’s traffic and compares it to the
previously recorded templates, trying to find a match. Website fin-
gerprinting can be deployed by adversaries with modest resources
who have access to the communications between the user and the
Tor entry guard. There are many entities in a position to access this
communication, including wireless router owners, local network
administrators or eavesdroppers, Internet Service Providers (ISPs),
and Autonomous Systems (ASes), among other network intermedi-
aries.

Despite the high success rates initially reported bywebsite finger-
printing attacks [6, 27], their practicality in the real-world remains
uncertain. A 2014 study showed that the success of the attacks is
significantly lower in realistic scenarios than what is reported by
evaluations done under artificial laboratory conditions [15]. More-
over, using a very large world of websites, Panchenko et al. showed
that website fingerprinting attacks do not scale to the size of the
Web [21], meaning that, in practice, it is very hard for an adversary
to use this attack to recover the browsing history of a Tor user.

Kwon et al. demonstrated, however, that a website fingerprinting
adversary can reliably distinguish onion service connections from
other Tor connections [17]. This substantially reduces the number
of sites to consider when only targeting onion services, as the uni-
verse of onion services is orders of magnitude smaller than the web,
which makes website fingerprinting attacks potentially effective in
practice. In addition, onion services are used to host sensitive con-
tent such as whistleblowing platforms and activist blogs, making
website fingerprinting attacks on this sites particularly attractive,
and potentially very damaging [8]. For these reasons, we focus our
analysis on onion services rather than the whole web.

In this work we choose to model the set of onion services as a
closed world. Our dataset contains as many landing pages of the
hidden service world as was possible for us to collect at the time.
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After removing pages with errors and pages that are duplicates
of other sites, we were left with a sanitized dataset of 482 out
of the 1,363 onion services that were crawled. While the exact
size of the complete onion service world cannot be known with
certainty, onionscan was able to find 4,400 onion services on their
latest scan (this number is not sanitized for faulty or duplicated
sites) [18]. This indicates that our set, while incomplete, contains
a significant portion of the onion service world. We consider that
an actual attacker can compile an exhaustive list of onion services,
which would effectively yield a closed world scenario, since, once
the adversary establishes that a user is visiting a onion service, the
onion service in question will be one on the adversary’s list. We
note that closed world models are not realistic when considering
the entire web, rather than just onion services.

Prior evaluations of website fingerprinting attacks and defenses
report aggregate metrics such as average classifier accuracy. How-
ever, we find that some websites have significantly more distinctive
fingerprints than others across classifiers, and that average metrics
such as overall classifier accuracy cannot capture this diversity.

In this work, we study what we call the fingerprintability of web-
sites and investigate what makes a page more vulnerable to website
fingerprinting. This issue has practical relevance because adver-
saries interested in identifying visits to a particularly sensitive site
may not care about the accuracy of the classifier for other sites, and
thus the fingerprintability of that specific site matters. Similarly,
the administrators of onion services likely care more about the
vulnerability of their users to fingerprinting attacks, rather than the
average vulnerability of a onion services to the attack. We extract
lessons from our analysis to provide recommendations to onion
service designers to better protect their sites against website finger-
printing attacks, including an analysis of a high profile SecureDrop
instance.

The contributions of this study are:
Large .onion study. 1 We collected the largest dataset of onion

services for website fingerprinting to date and evaluated the perfor-
mance of three state-of-the-art classifiers in successfully identifying
onion service sites. For comparison, previous studies considered
worlds of 30 [11] or 50 [8, 17] onion services, an order of magnitude
smaller than our study, that analyses 482 onion services.

Fingerprintabilitymatters.While the average accuracy achie-
ved by the classifiers is 80%, we found that some sites are consis-
tently misclassified by all of the methods tested in this work, while
others are consistently identified correctly, and yet others provide
mixed results. In particular, 47% of sites in our data set are classified
with greater than 95% accuracy, while 16% of sites were classified
with less than 50% accuracy. Throughout this paper, we use the
term fingerprintable to mean how many of the visits are correctly
classified. Depending on the requirements of the specific analysis,
we use different ways to distinguish more and less fingerprintable
sites. This includes comparing top 50 sites to bottom 50 sites or
taking sites with F1 < 0.33 as less fingerprintable and sites with
F1 > 0.66 as more fingerprintable.

Errorsmade by differentmethods are correlated. Fully 31%
of misclassified instances were misclassified by all three classifiers.

1This data along with the code used for analysis in this work is available at
https://cosic.esat.kuleuven.be/fingerprintability/

This implies that weaknesses of the individual classifiers cannot be
fully overcome using ensemble methods. We nonetheless propose
an ensemble that combines all three classifiers, slightly improving
the results offered by the best individual classifier.

Novel feature analysis method. We present a method for an-
alyzing fingerprintability that considers the relationship between
the inter-class variance and intra-class variance of features across
sites. The results of this analysis explain which features make a site
fingerprintable, independently of the classifier used.

Size matters. We show that size-based features are the most
important in identifying websites and that when sites are misclassi-
fied, they are typically confused with sites of comparable size. We
show that large sites are consistently classified with high accuracy.

Dynamismmatters for small sites.While large sites are very
fingerprintable, some small sites are harder than others to classify.
We find that misclassified small sites tend to have more variance,
and that features related to size variability are more distinguishing
in sets of small sites. Put simply, smaller sites that change the most
between visits are the hardest to identify.

Analysis of site-level features. Site-level features are website
design features that cannot be (directly) observed in the encrypted
stream of traffic but can be tweaked by the onion service operators.
We identify which site-level features influence fingerprintability
and we provide insights into how onion services can be made more
robust against website fingerprinting attacks.

Insights for Adversarial Learning. Website fingerprinting is
a dynamic, adversarial learning problem in which the attacker aims
to classify a traffic trace and the defender aims to camouflage it,
by inducing misclassifications or poisoning the learning system.
In the parlance of adversarial learning [2], we have conducted an
exploratory attack against three different approaches, to help site
owners and the Tor network design better causative attacks. A
causative attack is an attack against a machine learning system
that manipulates the training data of a classifier. Most adversarial
learning approaches in the literature consider the adversary to
be the evader of the learning system, not the learner. However,
this is not the case in website fingerprinting nor in many other
privacy problems. For this reason, most adversarial learning studies
investigate an attack on a specific learning algorithm and feature
set. In contrast, we study the three top-performing learners and
introduce a classifier-independent feature analysis method to study
the learnability of a particular class (a web page).

2 BACKGROUND AND RELATEDWORK

Encryption alone does not hide source and destination IP ad-
dresses, which can reveal the identities of the users and visited
website. Anonymous communications systems such as Tor [9]
route communications through multiple relays, concealing the des-
tination server’s address from network adversaries. Moreover, Tor
supports onion services which can be reached through Tor while
concealing the location and network address of the server.

Website fingerprinting is a traffic analysis attack that allows an at-
tacker to recover the browsing history of a user from encrypted and
anonymized streams. Prior work has studied the effectiveness of this
attack onHTTPS [7], encrypted web proxies [13, 25], OpenSSH [19],
VPNs [12], and various anonymity systems such as Tor and JAP [12].

https://cosic.esat.kuleuven.be/fingerprintability/


We focus on Tor because it is, with more than two million daily
users [1], the most popular anonymous communications system.

In website fingerprinting the adversary is a network eavesdrop-
per who can identify the user by her IP address, but who does not
know which website the user is visiting (see Figure 1). The attacker
cannot decrypt the communication, but can record the network
packets generated by the activity of the user. To guess the web
page that the user has downloaded, the attacker compares the traf-
fic recorded from the user with that of his own visits to a set of
websites. The best match is found using a statistical classifier.

Website fingerprinting attacks are based on supervised classifiers
where the training instances are constructed from the traffic samples
or traces the adversary collects browsing sites of interest with
with Tor, and the test samples are traces presumably captured
from Tor users’ traffic. Next, we will give an overview of website
fingerprinting attacks that have been proposed in the literature.

2.1 Attacks against Tor
In 2009, Herrmann et al. proposed the first website fingerprinting
attack against Tor, based on a Naive Bayes classifier and frequency
distributions of packet lengths [12]. Their study only achieved an
average accuracy of 3% for 775 websites, but their attack was im-
proved by Panchenko et al. who used a Support Vector Machine
(SVM) and extracted additional features from traffic bursts to clas-
sify Herrmann et al.’s dataset with more than 50% accuracy [22].

Panchenko et al.’s study was also the first to perform an open-
world evaluation of website fingerprinting attacks [22]. Prior work
relied on a closed-world assumption, which assumes that the uni-
verse of possible pages is small enough that adversary can train the
classifier on all sites. The open-world evaluation is appropriate for
a web environment as it accounts for users visiting pages that the
classifier has not been trained on. Based on Herrman et al.’s dataset,
Cai et al. [6] achieved more than 70% accuracy in an open-world
setting. Wang and Goldberg’s [27] approach obtained over 90%
accuracy for 1,000 sites in an open world setting.

The results reported by these attacks were criticized for using
experimental conditions that gave unrealistic advantages to the
adversary, compared to real attack settings [15]. However, new

−
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Figure 1: The client visits an onion service site over the Tor
network. The adversary has access to the (encrypted) link
between the client and the entry to the Tor network. For clar-
ity, we have omitted the six-hop circuit between the client
and the onion service. The attacker cannot observe traffic
beyond the entry node.

techniques have been shown to overcome some of those limitations,
suggesting that attacks may be successful in the wild [28].

Even though an open-world is a more realistic evaluation setting
than a closed world for the web, our evaluation considers a closed
world because: i) the universe of onion services is small enough that
is feasible for an adversary to build a database of fingerprints for
all existing onion services; and ii) we are interested in the best-case
scenario for the adversary because we evaluate the vulnerability to
website fingerprinting from a defender’s point of view.

As in most prior work on website fingerprinting, we only con-
sider the homepages of the websites and not inner pages within a
website. We justify this for onion services by arguing that, given
their unusable naming system and their shallowness in terms of
not having a deep structure, it is reasonable to assume that visitors
of onion services will land first on homepage more often than for
regular sites before logging in or further interacting with the site.

In this paper, we focus only on onion services because a 2015
study showed that the website fingerprinting adversary can distin-
guish between visits to onion services and regular websites with
high accuracy [17]. Even though Panchenko et al.’s study shows that
website fingerprinting does not scale to the Web, website finger-
printing has been identified as a potential threat for onion services
for two reasons [8]: first, in contrast to the Web’s size, the onion
service space’s size may be sufficiently small for an adversary to
build a fingerprint database for all existing onion services; second,
onion services tend to host sensitive content and visitors of these
sites may be subject to more serious, adverse consequences.

2.2 State-of-the-art attacks
We have selected three classifiers proposed in recent prior work for
our study because they represent the most advanced and effective
website fingerprinting attacks to date. Each attack uses different
classification algorithms and feature sets, although they have some
features in common. The details of each classifier are as follows:

Wang-kNN [26]: Wang et al. proposed an attack based on a k-
Nearest Neighbors (k-NN) classifier that usedmore than 3,000 traffic
features. Some of the most relevant features are the number of
outgoing packets in spans of 30 packets, the lengths of the first 20
packets, and features that capture traffic bursts, i.e., sequences of
packets in the same direction. They also proposed an algorithm to
tune the weights of the custom distance metric used by the k-NN
that minimizes the distance among instances that belong to the
same site. They achieved between 90% to 95% accuracy on a closed-
world of 100 non-onion service websites [26]. Kwon et al. evaluated
their own implementation of the attack for 50 onion service sites
and obtained 97% accuracy.

CUMUL [21]: Panchenko et al. designed CUMUL, an attack based
on a Radial Basis Function kernel (RBF) SVM. Each feature instance
is a 104-coordinate vector formed by the number of bytes and pack-
ets in each direction and 100 interpolation points of the cumulative
sum of packet lengths (with direction). They report success rates
that range between 90% and 93% for 100 regular sites. In addition,
they collected the largest and most realistic dataset of non-onion
service websites, including inner pages of websites and popular



links extracted from Twitter. They conclude that website finger-
printing does not scale to such large dataset, as classification errors
increase with the size of the world.

k-Fingerprinting (k-FP) [11]: Hayes and Danezis’s k-FP attack
is based on Random Forests (RF). Random Forests are ensembles of
decision trees that are randomized and averaged to reduce overfit-
ting. In the open-world, they use the leafs of the random forest to
encode websites. This allows them to represent websites in function
of the outputs of the random forest, capturing the relative distance
to pages that individual trees have confused with the input page.
The instances extracted from the random forest are then fed into a
k-NN classifier for the actual classification. The study uses a set of
175 features that includes variations of features in the literature as
well as timing features such as the number of packets per second.
Hayes and Danezis evaluated the attack on a limited set of 30 onion
services and obtained 90% classification accuracy [11].

In the following subsection we provide an overview of prior
results on features that has inspired the feature selection made by
these three attacks.

2.3 Feature analysis for website fingerprinting
We consider two types of features: network-level and site-level fea-
tures. Network-level features are extracted from the stream of TCP
packets and are the typical features used in website fingerprinting
attacks. Site-level features are related to the web design of the site.
These features are not available in the network traffic meta-data,
but the adversary still has access to them by downloading the site.

Most website fingerprinting feature analyses have focused on
network-level features and have evaluated their relevance for a
specific classifier [5, 10, 22]. In particular, Hayes and Danezis [11]
perform an extensive feature analysis by compiling a comprehen-
sive list of features from the website fingerprinting literature as
well as designing new features. In order to evaluate the importance
of a feature and rank it, they used the random forest classifier on
which their attack is based.

Unlike prior work, our network-level feature analysis is classifier-
independent, as we measure the statistical variance of features
among instances of the same website (intra-class variance) and
among instances of different websites (inter-class variance).

2.4 Website fingerprinting defenses
Dyer et al. presented BuFLO, a defense that delays real messages
and adds dummy messages to make the traffic look constant-rate,
thus concealing the features that website fingerprinting attacks
exploit. They conclude that coarse-grained features such as page
load duration and total size are expensive to hide with BuFLO and
can still be used to distinguish websites [10].

There have been attempts to improve BuFLO and optimize the
padding at the end of the page download to hide the total size of the
page [4, 6]. These defenses however incur high latency overheads
that make them unsuitable for Tor. To avoid introducing delays,
a website fingerprinting defense based solely on adding dummy
messages was proposed by Juarez et al. [16]. These defenses aim at
crafting padding to obfuscate distinguishing features exploited by
the attack. Instead, we look at sites and examine what makes them
more or less fingerprintable.

There are defenses specifically designed for Tor that operate
at the application layer [8, 20, 23]. However, these defenses do
not account either for feature analyses that can help optimize the
defense strategy. Our study is the first to analyze the features at both
the website and network layers. Based on our results, we discuss
ways to reduce the fingerprintability of onion service sites and
inform the design of server and client-side website fingerprinting
defenses without requiring any changes to the Tor protocol itself.

3 DATA COLLECTION AND PROCESSING
We used the onion service list offered by ahmia.fi, a search engine
that indexes onion services. We first downloaded a list of 1,363
onion service websites and found that only 790 of them were online
using a shell script based on torsocks. We crawled the homepage
of the 790 online onion services.

Prior research on website fingerprinting collected traffic data by
grouping visits to pages into batches, visiting every page a number
of times each batch [15, 27]. All visits in a batch used the same
Tor instance but Tor was restarted and its profile wiped between
batches, so that visits from different batches would never use the
same circuit. The batches were used as cross-validation folds in the
evaluation of the classifier, as having instances collected under the
same circuit in both training and test sets gives an unfair advantage
to the attacker [15, 27].

In this study, we used the same methodology to collect data,
except that we restarted Tor on every visit to avoid using the same
circuit to download the same page multiple times. We ran the crawl
on a cloud based Linux machine from a data center in the US in
July 2016. The crawl took 14 days to complete which allowed us to
take several snapshots of each onion service in time.

We used Tor Browser version 6.0.1 in combination with Selenium
browser automation library 2. For each visit, we collected network
traffic, HTML source code of the landing page, and HTTP request-
response headers. We also saved a screenshot of each page.

We captured the network traffic traces using the dumpcap 3 com-
mand line tool. After each visit, we filtered out packets that were
not destined to the Tor guard node IP addresses. Before each visit,
we downloaded and processed the Tor network consensus with
Stem 4 to get the list of current guard IP addresses.

The HTML source code of the index page was retrieved using Se-
lenium’s page_source property. The source code and screenshots
are used to extract site-level features, detect connection errors and
duplicate sites. The HTTP requests and response headers are stored
using a custom Firefox browser add-on. The add-on intercepted all
HTTP requests, including the dynamically generated ones, using
the nsIObserverService of Firefox 5.

Finally, we collected the logs generated by Tor Browser binary
and Tor controller logs by redirecting Tor Browser’s process output
to a log file.

2http://docs.seleniumhq.org/
3https://www.wireshark.org/docs/man-pages/dumpcap.html
4https://stem.torproject.org/
5https://developer.mozilla.org/en/docs/Observer_Notifications#HTTP_requests
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3.1 Processing crawl data
We ran several post-processing scripts to make sure the crawl data
was useful for analysis.

Remove offline sites. Analyzing the collected crawl data, we
removed 573 sites as they were found to be offline during the crawl.

Remove failed visits.We have also removed 14481 visits that
failed due to connection errors, possibly because some onion sites
have intermittent uptime and are reachable temporarily.

Outlier removal. We used Panchenko et al.’s outlier removal
strategy to exclude packet captures of uncommon sizes compared
to other visits to the same site [21]. This resulted in the removal of
5264 visits.

Duplicate removal. By comparing page title, screenshot and
source code of different onion services, we found that some onion
service websites are served on multiple .onion addresses. We elim-
inated 159 duplicate sites by removing all copies of the site but
one.

Threshold by instances per website. After removing outliers
and errored visits, we had an unequal number of instances across
different websites. Since the number of training instances can affect
classifier accuracy, we set all websites to have the same number of
instances. Most datasets in the literature have between 40 and 100
instances per website and several evaluations have shown that the
accuracy saturates after 40 instances [21, 27]. We set the threshold
at 70 instances which is within the range of number of instances
used in the prior work. Choosing a greater number of instances
would dramatically decrease the final number of websites in the
dataset. We removed 84 sites for not having a sufficient number of
instances and removed 9,344 extra instances.

Feature Extraction. Following the data sanitization steps out-
lined above, we extract features used by the three classifiers. Further,
we extract site level features using the HTML source, screenshot,
HTTP requests and responses. Site level features are explained in
Section 6.

In the end, the dataset we used had 70 instances for 482 different
onion sites.

4 ANALYSIS OF WEBSITE CLASSIFICATION
ERRORS

This section presents an in-depth analysis of the successes and
failures of the three state-of-the-art website fingerprinting methods.
This analysis helps identify which pages are the most fingerprint-
able and which are more likely to confuse the classifiers, giving
insight into the nature of the errors produced by the classifiers.

4.1 Classifier Accuracy
Even though the classification problem is not binary, we binarize
the problem by using a one-vs-rest binary problem for each site: a
True Positive (TP) is an instance that has been correctly classified
and False Positive (FP) and False Negative (FN) are both errors with
respect to a fixed site w ; a FP is an instance of another site that
has been classified as w ; a FN is an instance of w that has been
classified as another site.

In the closed world we measure the accuracy using the F1-Score
(F1). The F1-Score is a complete accuracy measure because it takes

into account both Recall (TPR) and Precision (PPV). More precisely,
the F1-Score is the harmonic mean of Precision and Recall: if either
is zero, the F1-Score is zero as well, and only when both achieve
their maximum value, the F1-Score does so too.

Note that there are the same total number of FPs and FNs, since a
FP ofwy that actually belongs towx is at the same time a FN ofwx .
Thus, in the closed world the total F1-Score equals both Precision
and Recall. However, when we focus on a particular site, the FP
and FN for that site are not necessarily the same (see Table 2).

Table 1: Closed world classification results for our dataset of
482 onion services (33,740 instances in total).

k-NN CUMUL k-FP

TPR 69.97% 80.73% 77.71%

FPR 30.03% 19.27% 22.29%

We have applied the classifiers to our dataset of 482 onion ser-
vices and evaluated the classification using 10-fold cross-validation.
Cross-validation is a standard statistical method to evaluatewhether
the classifier generalizes for instances that it has not been trained
on. In most cases, ten is the recommended number of folds in the
machine learning literature and the standard in prior website fin-
gerprinting work. The results for each classifier are summarized in
Table 1 where we report the total number of TPs and FPs and the
average accuracy obtained in the 10-fold cross-validation. Thus, we
note that using TPR as an accuracy metric is sound in the closed
world but, in the open world, TPR is a partial measure of accuracy,
as it does not take into account Precision.

As we see in Table 1, while CUMUL and k-FP achieve similar
accuracies, the k-NN-based attack is the least accurate. Even though
these results are in line with other studies on website fingerprinting
for onion services [8], we found some discrepancies with other
evaluations in the literature. For 50 sites, Hayes and Danezis obtain
over 90% accuracy with k-FP [11], and Kwon et al. obtained 97%
with k-NN [17]. However, for the same number of sites and even
more instances per site, our evaluations of k-FP and k-NN only
achieve 80% maximum accuracy. Since our results show that some
sites are more fingerprintable than others, we believe the particular
choice of websites may account for this difference: we randomly
picked 50 sites from our set of 482 sites and even though Kwon et
al. also used onion URLs from ahmia.fi, they do not explain how
they picked the URLs for their evaluation.

4.2 Classifier Variance
In order to determine which features cause a site to be finger-
printable, we look into two types of sites: i) sites that are easy to
fingerprint, i.e., sites that consistently cause the least amount of
errors across all classifiers; and ii) sites that are difficult to finger-
print, namely sites that are most frequently misclassified across all
three classifiers. In the following sections, we compare the features
of these two types of sites and look for evidence that explains their
different degree of fingerprintability.



Table 2: The top five onion services by number of misclassi-
fication for each attack (repeating services in bold).

URL (.onion) TP FP FN F1

k-
N
N

4fouc. . . 4 84 66 0.05
ykrxn. . . 3 62 67 0.04
wiki5k. . . 3 77 67 0.04
ezxjj. . . 2 76 68 0.03
newsi. . . 1 87 69 0.01

CU
M
U
L

zehli. . . 2 15 68 0.05
4ewrw. . . 2 29 68 0.04
harry. . . 2 29 68 0.04
sqtlu. . . 2 35 68 0.04
yiy4k. . . 1 14 69 0.02

k-
FP

ykrxn. . . 4 62 66 0.06
t4is3. . . 3 42 67 0.05
wiki5. . . 3 55 67 0.05
jq77m. . . 2 54 68 0.03
newsi. . . 2 63 68 0.03

In our analysis, we evaluated the accuracy for each website in
isolation and ranked all the websites to find a threshold that divides
them into the two types described above. We found that only 10
(in kNN) to 40 (in CUMUL) sites are perfectly classified, while the
other sites have at least one misclassified instance – some of them
are consistently misclassified by all three classifiers.

We have compared the misclassifications of all three attacks to
find sites that are misclassified by all the classifiers as opposed to
sites that at least one of identified correctly. Table 2 shows the top
five onion services ranked by number of misclassifications, where
we see a partial overlap of which sites are misclassified the most.
This means there is not only variation across websites within a
given classifier but also across different classifiers.

4.3 Comparison of Website Classification
Errors

Figure 2 shows a scaled Venn diagram of the classification errors.
The circles represent the errors made by each of the classifiers, and
the intersections represent the fraction of instances misclassified
by the overlapping classifiers. All numbers in the Venn diagram
add to one as each number is a fraction of all misclassifications, not
a fraction of the misclassifications for a specific classifier. This is to
represent how misclassifications are distributed over classifiers and
intersections of classifiers. The black region in the center represents
the errors that are common to all three classifiers, which accounts
for 31% of all classification errors. This large intersection indicates
that classification errors for a given website are correlated and
not independent for each classifier. Note that if the errors were
independent, the adversary would benefit from employing multiple
website fingerprinting classifiers; but the correlation suggests that
such gains will have limited returns.

The diagram in Figure 2 does not take into account whether the
classifiers that erred predicted the same mistaken label or not. In
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Figure 2: Scaled Venn diagram of classification errors. Each
circle represents the set of prediction errors for a method:
kNN, CUMUL and kFP. In the intersections of these circles
are the instances that were incorrectly classified by the over-
lapping methods. 31% of the erred instances were misclassi-
fied by all three methods, suggesting strong correlation in
the errors.
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Figure 3: Scaled Venn diagram of classifications errors by
coinciding guess. The intersections contain instances that
were incorrectly classifiedwith exactly the same label by the
overlapping classifiers. Only 2% of the errors were misclas-
sified to the same incorrect site by all three methods, while
85% were misclassified differently by each method, showing
that the methods do err in different ways.

Figure 3, we depict the Venn diagram of misclassifications accord-
ing to the (erroneous) guessed label. The percentage of instances
that were mislabeled in the same way by all three classifiers is
substantially smaller: only 2% of the errors are errors that all three
classifiers erred with the same predicted label. Interestingly, this
small intersection implies that even though these classifiers err on
the same instances (Figure 3), they do so in different ways, making
different predictions for a given instance.



4.4 Ensemble Classifier
In Figure 2 we observe that more than 25% of the errors occur in
only one of the methods, and an additional 17% of errors appear in
only two of the methods. A third of the errors were misclassified by
all three methods. Thus, an ensemble classifier that appropriately
combines the three classifiers can achieve higher accuracy than any
individual classifier alone, by correcting classification errors that
do not occur in all the methods.

We can estimate the maximum improvement that such an en-
semble could achieve by looking at the potential improvement
of the best classifier. In our case, CUMUL has the greatest accu-
racy with 874 errors that could be corrected using kNN or kFP. So
if CUMUL did not make these errors, its accuracy would be im-
proved by 874

33,740 = 2.6%. Even though the margin for improvement
is small, we build an ensemble to reduce the dependency of our
results on a single classifier. In addition, by choosing an ensem-
ble we ensure that we are not underestimating an adversary that
combines all the state-of-the-art classifiers. We therefore use the
results of the ensemble to determine fingerprintability, and com-
pute a site’s fingerprintability score as its F1 score from the
ensemble classifier.

We analyze the overlap in errors and TPs for the three classifiers
for different ensemble methods, as follows:

Random. For each instance, randomly select one of the pre-
dictions of the three classifiers. With this method the ensemble
achieves 79.98% accuracy.

Highest confidence. For each instance, take the prediction of
the classifier with highest confidence. kFP and CUMUL use Random
Forests and SVM respectively, and both output a classification prob-
ability for each of the possible classes. For kNN we use the distance
to the nearest neighbor as the confidence metric. The accuracy was
80.91% using this method.

P1 − P2 Diff. For each instance, use the output of the classifier
with the greatest difference in confidence between its first and
second predictions. We obtained 80.91% accuracy with this method.

We decided to use the P1 − P2 Diff for the rest of our analysis
because it uses most information about the confidence vector. Fig-
ure 4 shows the F1 score histograms for all classifiers including the
ensemble. The vertical dashed lines show the mean F1-scores. We
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Figure 4: F1 score histograms for each classifier. Vertical
dashed lines represent the mean F1 score.
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Figure 5: Median of total incoming packet size for misclas-
sified instances (true vs predicted site). We also plot the
dashed diagonal line, y = x , for comparison. We chose the
total incoming packet size for this analysis because it is the
most distinguishing feature (see Section 5).

note that the ensemble is only marginally better than CUMUL. The
main visible difference is in the relative weights of the second and
third highest bars: the ensemble improves the F1 score for a subset
of instances that in CUMUL contribute to the third bar, and to the
second in the ensemble.

In the histograms we can once more see the accuracy variation
across sites (horizontally) and across classifiers (vertically). Even
though for CUMUL and the ensemble most of the sites have high
F1 scores, we see there still are several sites in the low ranges of F1
scores that even CUMUL and ensemble cannot perfectly fingerprint
(the ones shown in Table 2).

4.5 Sources of Classification Error
In order to gain insight about the nature of the classifier errors, we
performed an exploratory analysis specific to the features of the
erred instances. We use the total incoming packet size as example
for illustrating the analysis, because, as we show in the following
sections, it is the most salient feature. However, this analysis can
as well be applied to any other feature.

In Figure 5, each point represents a misclassified instance, with
the x axis value being the median incoming packet size of the ‘true
site’ (site the instance truly belongs to), and the y axis value being
the median incoming packet size of the ‘predicted site’ (according
to the ensemble classifier). Note that the total incoming packet
sizes have been normalized to the interval [0, 1] using Min-Max
normalization across all instances. For visualization purposes, we
have clipped the range to focus on the region where approximately
80% of the data points are (101 points were excluded).

Figure 5 shows that the median incoming packet sizes of the
predicted and true sites are highly correlated: most of the instances
are close to the diagonal y = x (dashed line), meaning that for
most of the errors, true and predicted sites are similar to each
other in terms of median incoming packet size. In fact, since the
median incoming packet size approximates to the median total
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Figure 6: Density plot for absolute value of Z-score distribu-
tion of total incoming packet size. Correctly classified (dark
gray) andmisclassified (light gray) instances are plotted sep-
arately to contrast themwith respect to their deviation from
the class mean.

size of the page, this shows that most of the misclassified pages
were confused with pages of similar size. Furthermore, as shown
by the histograms most of the misclassifications occur on pages of
small sizes, confirming the hypothesis that large pages are easier
to identify.

We also measure the deviation of each instance from its class
mean. We use Z-score, which indicates the number of standard de-
viations a sample is away from the mean. The Z-score is a standard
statistic that normalizes the deviation from the mean using the
class’ standard deviation. Unlike the standard deviation, this allows
to compare Z-scores between classes with standard deviations that
differ by orders of magnitude. This property is suited to our case
because the sites in our set have large differences in terms of the
total incoming packet sizes.

On the left side of Figure 6 we plot the density for the deviation
from the median for the total incoming packet size feature. Z-score
values around the origin correspond to low-deviation, whereas
values far from the origin correspond to high-deviation. We observe
that the correctly classified instances are more concentrated in the
center, while the misclassified instances are more concentrated in
the extremes. This confirms that the instances with higher deviation
from their class mean are more likely to be misclassified.

The right subfigure in Figure 6 shows the number of correctly
and erroneously classified instances for the 1, 755 outliers found
in our dataset. We used the Tukey’s method for outlier removal
based on the inter-quartile range and the first and third quartiles to
identify outliers. The bar plot shows that an outlier is three times
more likely to be misclassified (1, 327) than correctly classified (428).
An instance is counted as misclassified if it is misclassified by at
least one of the classifiers.

Figure 6 suggests that variation within a class such as that pro-
duced byweb page dynamism can be beneficial to induce confusions
with other pages.

4.6 Confusion graph

Confusion matrices have been used in prior website fingerprint-
ing literature to visualize and help understand the nature of con-
fusions [11, 21]. However, for a multi-class problem of size 482,

the confusion matrix is too large for any visualization to be useful.
This can be addressed by using confusion graphs instead, which
represent misclassifications as a directed graph [29].

To better understand the nature of classification errors we draw
a directed graph where nodes represent classes (onion services)
and edges represent misclassifications. Source and target nodes of
an edge represent true and predicted sites, respectively. The edge
weight encodes the misclassification frequency (i.e., number of
times the source class is misclassified as the target class). We have
created a confusion graph for CUMUL, which is the best performing
classifier in our dataset, shown in Figure 10 in the Appendix.

The nodes are colored based on the community they belong to,
which is determined by the Louvain community detection algo-
rithm [3], as implemented in the Gephi graph software. Node size
is drawn proportional to the node degree. We observe highly con-
nected communities on the top left, and the right which suggests
clusters of onion services which are commonly confused as each
other. Further, we notice several node pairs that are commonly
classified as each other, forming ellipses.

The mean outdegree and indegree of the graph is 4.9, meaning
that, on average, a site is misclassified as 5 distinct sites and con-
fused with 5 distinct sites. The onion service with the maximum
outdegree had 42 outgoing edges, meaning it is misclassified as 42
distinct sites. The onion service with the maximum indegree had
28 incoming edges, meaning it is confused with as many different
sites. Interestingly, the same onion service has zero outdegree, i.e.,
its instances are never misclassified as belonging to another site.

We have looked into the size of the sites for each community in
the graph. The sites in the dark green community at the bottom of
the graph are all of similar size and significantly larger than all the
others, explaining why they are confused between each other and
clustered into a community. For the other communities, however,
it is not obvious which common features define the community.
Further, we discovered that a few of the pairs of sites that form
ellipses are false negatives of our duplicates detection in the data
cleansing step, while the others require further analysis. We leave a
more detailed graph-based analysis of these communities for future
work.

We analyze three cases of the symmetry of classifications:
• Symmetrical: Site A is misclassified as other sites and other
sites are misclassified as Site A.

• Asymmetrical: One or more sites are misclassified as Site A,
but A is consistently classified as A.

• Asymmetrical: Site A is misclassified as one or more other
sites, but other sites are rarely misclassified as A.

For each distinctmisclassification pair (A → B) we checkwhether
there is a symmetric misclassification (B → A). The total number
of misclassifications with symmetric counterparts:

• CUMUL: 74.8% (4868/6502)
• kFP: 73,4% (5517/7519)
• kNN: 80.6% (8174/10132)

The results show the majority of the misclassifications are sym-
metrical, meaning that there are sets of pages that provide cover
for each other, effectively forming anonymity sets . This suggests
that onion services may benefit from designing their site to have
features that enable them to join one of those sets.



5 NETWORK-LEVEL FEATURE ANALYSIS
We use classifier-independent feature analysis methods to deter-
mine which features are better predictors for website fingerprinting.
Knowing which features are more distinct across classes and less
distinct within a class helps us understand which features are im-
portant to each website fingerprinting method.

5.1 Methodology
To analyze the nature of the classification errors we borrow two
concepts from the field of machine learning: inter- and intra-class
(or cluster) variance. In particular, we use these concepts in the
following sense:

The intra-class variance of a feature is defined as the variance
of its distribution for a certain class, in this case a site. It quantifies
howmuch the feature varies among instances of the class. Inwebsite
fingerprinting, low intra-class variance indicates a feature remains
stable across different visits to the same page.

Inter-class variance is a measure of how much a feature varies
across different classes. We define it as the variance of the averages
of the feature for each class. That is, we create a vector where each
coordinate aggregates the instances of visits to a site by averaging
their feature values. Then, we calculate the inter-class variance as
the variance of that vector. In website fingerprinting, high-inter-
class variance means that websites are very distinct from each other
with respect to that feature.

In Section 4 we have shown evidence that both inter- and intra-
class variance play a role as the cause of classification errors: mis-
classified pages have similar sizes to the pages they are confused
with, and slightly larger variance in size than correctly classified
ones. To rank features by taking into account both intra- and inter-
class variance, we use the relative difference between the inter-
and intra-class variance, where we define relative difference as:
d(x ,y) = (x − y)/((x + y)/2). This formula normalizes the differ-
ences by their mean to values between 0 and 2, where features
with a relative difference close to 0 are similar and features with a
relative difference close to 2 are far apart. This allows features of
different scales to be compared. We consider features that are close
to 2 better predictors, as they have a relatively higher inter-class
variance than intra-class variance.

Many of the features that appear as most predictive for the con-
sidered classifiers are directly related to the size of a site (e.g., the
number of packets). Further, the misclassifications described in Sec-
tion 4 show that the smaller sites are more likely to be misclassified.
In addition to running feature analysis on the entire dataset, we
also look only at the small sites to determine which other features
have predictive value.

We start with an analysis of the network-level features used
by the three fingerprinting attacks detailed in Section 2 and ana-
lyzed in Section 4. Most traditional applications of feature analysis
aim to reduce the dimensionality of the data to more efficiently
classify instances. Instead, the goal of our feature analysis is to
determine which features can be modified to trick a classifier into
misclassifying an instance. Unlike many adversarial machine learn-
ing problems with the same goal, this analysis lacks knowledge of
the specific classifier (or even the classification algorithm) used for

fingerprinting, as there are many different classifiers in the litera-
ture to consider, and the site should ideally be hard to classify for all
of them. In addition to the wide variety of classification techniques
available in the current literature, novel classification techniques
could be easily developed by an adversary.

Therefore, the network-level feature analysis we present here is
classifier-independent. That is, we use only information about the
feature values themselves and do not use classification methods
to determine the importance of the features. Figure 7 shows the
relationship between how likely a site is to be fingerprinted vs its
size. All of the larger sites have high fingerprintability scores, while
the scores of smaller sites are much more varied.

Figure 7: Larger sites are easily fingerprinted while results
are mixed for smaller sites. Note also the vertical clusters
of sites with low fingerprintability that are similar in size.
Incoming packet size (in bytes) is plotted in log scale.

In a website fingerprinting attack, only features based on the
traffic traces are available to the adversary. Each attack uses a
distinct set of features derived from these traces and as a result the
exact feature analysis varies.

This analysis is classifier independent, meaning no classification
techniques were performed on the dataset prior to this analysis
and the results do not rely on any specific classification algorithm
or task. We cannot, however, perform any feature analysis that is
completely independent from the website fingerprinting methods,
as the types of features we analyze rely on the features chosen by
each method. For each attack, however, we can determine which
features are most predictive.

5.2 Network-Level Feature Results
Here we analyze which network-level features are the best predic-
tors in state-of-the-art website fingerprinting attacks.

5.2.1 CUMUL. The first group of features we consider come
from the CUMUL attack. There are two types of features used in
CUMUL: direct size features (Table 3) and interpolated features. The
interpolated features are formed by the number of bytes and packets



in each direction and 100 interpolation points of the cumulative sum
of packet lengths (with direction). We calculate the inter and intra-
class variance for each of these features. The direct size features
are the most important to classification (Table 3). We found that
the interpolated features are more predictive at the end of the trace
than the beginning, with the minimum relative difference (0.37)
being from the very first interpolated feature and then increasing
to the greatest relative difference (1.51) being the last interpolated
feature from the very end of the trace.

Feature Name Relative Diff
Total Size of all Outgoing Packets 1.605
Total Size of Incoming Packets 1.520
Number of Incoming Packets 1.525
Number of Outgoing Packets 1.500

Table 3: Network-Level Feature Variance Analysis for CU-
MUL Method. These features had a higher relative differ-
ence than most of the interpolated features and alone are
great predictors.

5.2.2 k-fingerprinting. The next group of features we look at
come from the k-fingerprinting attack. The features used in the
k-fingerprinting attack are more varied as well as more straightfor-
ward than those in CUMUL. They include not only features that
give information about the size and number of packets, but also the
timing of the packets. The features with the highest inter-class to
intra-class variance ratio are shown in Table 4.

The feature analysis we present here is similar to the original
analysis presented with the method by the authors, but without
the use of any classification technique. Further, we also look at
which features are more predictive for small sites, as we see that
misclassifications are much more common for smaller sites.

Table 4 shows that features correlated to the total size of a site
(e.g. # of outgoing packets) have the highest relative difference and
thus are among the top features. This result is consistent with the
analysis done by Hayes and Danezis[11] on the same set of features.

When only smaller sites are analyzed however, standard devia-
tion features become important. In Section 4, we show that large
sites are easily identified, and the fact that size features are very
predictive is not at all unexpected. However, that standard devia-
tion features are top features for the smaller sites implies that the
dynamism of the site makes a difference, as small dynamic sites are
generally the least fingerprintable.

5.2.3 kNN. The last set of features are those of the kNN attack.
Like with the other classifiers, we find that the most important
features are those that relate to the size of the traffic flow. In this
case, we find that almost all of the top predictive features (with the
highest relative difference) are related to “packet ordering” – which
in practice acts as proxy for the size of the flow.

The packet ordering feature is computed as follows: for each
outgoing packet oi , feature fi is the total count of all packets sent or
received before it. Essentially, these features measure the ordering
of incoming and outgoing packets.Note that not all sites, however,
have the same number of outgoing packets. Therefore if the end of

Feature name Relative Diff
All Sites
Percent incoming vs outgoing 1.895
Average concentration of packets 1.775
# of outgoing packets 1.740
Sum of concentration of packets 1.740
Average order in 1.720
Smallest 10% of Sites
Percent incoming vs outgoing 1.951
Average concentration of packets 1.944
Standard deviation of order in 1.934
# of packets 1.927
# of packets per second 1.927

Table 4: Network-level feature analysis for kFP method.

the number of outgoing packets is less than some n (we use n = 500
to be consistent with the original implementation), the rest of the
features are filled in with zero or null values. Similarly, some sites
may have over n outgoing packets. If this is the case, the packets
over the nth packet are ignored. Similar to the features used in
CUMUL, we observed that the later features in this sequence are
more important, this is because for most sites (size < n) they are
zero and thus these features are a proxy for the total size of the site.

The only other feature-type with high relative difference be-
tween inter and intra-class variance is the number of packets (1.96),
a direct measure of the size of the site.

6 SITE-LEVEL FEATURE ANALYSIS
In website fingerprinting attacks, the adversary records the network
traffic between a user and Tor, and analyzes its features to identify
the site that was visited. Network-level features and their relative
contribution to fingerprintability are, however, not informative for
onion service designers who may want to craft their site to be
robust against website fingerprinting attacks. To gain insight into
which design choices make sites vulnerable to attacks, and how
websites can be designed with increased security, we need to look
at the features at a site-level.

In this section we investigate which site-level features corre-
late with more and less fingerprintable sites. Site-level features are
those that can be extracted from a web page itself, not from the
traffic trace. Driven by adversarial learning, we investigate the task
of causing misclassifications for any set of network-level features
and any classification method. This information can help sites de-
sign their web pages for low fingerprintability, and also assist in
developing more effective server-side defenses.

6.1 Methodology
Site-level features are extracted and stored by our data collection
framework as explained in Section 3. The list of all site-level features
considered can be found in Table 6 (in the Appendix).

We build a random forest regressor that classifies easy- and hard-
to-fingerprint sites, using the fingerprintability scores (the F1
scores from the ensemble classifier described in Section 4) as labels,



and considering site-level features. We then use the fingerprint-
ability regressor as a means to determine which site-level features
better predict fingerprintability.

In this section we aim to understand which site-level features
are more prevalent in the most and least fingerprintable sites. For
the sake of this feature analysis, we remove the middle tier of sites,
defined as those with a fingerprintability score in (0.33, 0.66). 44
sites in our dataset were assigned a mid-ranged F1-score, leaving
438 sites for this analysis.

The next challenge is that the high and low-fingerprintability
classes are unbalanced, because of the disproportionately higher
number of easily identifiable sites compared to the amount of sites
that are hard to identify. Recall that a full 47% of sites in our dataset
have a fingerprintability score greater than 95%. A regressor trained
with such unbalanced priors will be biased to always output a predic-
tion for of “very fingerprintable,” or values close to 1, and therefore
any analysis on the results would be meaningless. To perform the
feature analysis, we remove randomly selected instances from the
set of more fingerprintable sites, so that it is balanced in size with
that of low fingerprintability.

We train a random forest regressor using the features from Ta-
ble 6. We use the feature weights from the regression to determine
which of these site-level features are most predictive of sites that are
easily fingerprinted. We use the information gain from the random
forest regression to rank the importance of the site-level features
in making websites more or less fingerprintable.

While in its current state this regression is only useful for fea-
ture analysis, this could be extended into a tool that allows sites to
compute their fingerprintability score, and be able to determine if
further action is needed to protect their users from website finger-
printing attacks.

6.2 Results

Figure 8: Most important features by information gain. Fea-
tures related to the size of a site are important.

Figure 8 shows the results of the analysis. We see that features
associated with the size of the site give the highest information gain
for determining fingerprintability when all the sites are considered.
Among the smallest sites, which are generally less identifiable, we

see that standard deviation features are also important, implying
that sites that are more dynamic are harder to fingerprint.

Additionally, Table 5 shows how different the easy- and hard-to-
fingerprint sets of sites are in terms of total HTTP download size, a
straightforward metric for the size of a site. The median site size for
the 50 most fingerprintable sites is almost 150 times larger than the
median size of the harder to classify sites. The standard deviation of
the total site size for the most and least fingerprintable sites, relative
to their size, is similarly distinct, showing the most fingerprintable
sites are less dynamic than the 50 least fingerprintable sites. That
is, they are less likely to change between each visit.

Total HTTP Download Size 50 Most 50 Least
Median Std Dev 0.00062 0.04451

(normalized by total size)
Median Size 438110 2985

Table 5: Differences in the most and least fingerprintable
sites. The 50 most fingerprintable sites are larger and less
dynamic than the 50 least fingerprintable sites.

While the smallest sites are less fingerprintable, some are still
easily identified. Figure 9 shows the distribution of sizes consid-
ering only the smallest sites, distinguished by whether they have
a high or low fingerprintability score. We can see that the least
fingerprintable sites are clustered in fewer size values, while the
most fingerprintable are more spread, meaning that there are fewer
sites of the same size that they can be confused with.

Figure 9: Distribution of sizes for the most and least fin-
gerprintable sites, considering only the sites smaller than
25,000 bytes.



7 IMPLICATIONS FOR ONION SERVICE
DESIGN

Overall, our analysis showed that most onion services are highly
vulnerable to website fingerprinting attacks. Additionally, we found
that larger sites are more susceptible to website fingerprinting
attacks. Larger sites were more likely to be perfectly classified by
all attacks while many smaller sites were able to evade the same
attacks by inducing misclassifications.

We also observed that the small sites that are harder to iden-
tify also have a high standard deviations for many site-level and
network-level features, implying that dynamism plays a role in why
these sites are less identifiable. While our results show that small
size is necessary, it is not sufficient. As a result, our recommendation
for onion service designers is “make it small and dynamic.”

Mostwebsite fingerprinting defenses rely on some form of padding,
that is, adding spurious traffic and therefore increasing the down-
load size. Our analysis, however, shows that this type of defense
may not be robust when features such as download size become
sparse. Often, these defenses are tested against a single attack with
a single feature set and a specific classification algorithm. We see,
though, that classification errors do not always coincide for dif-
ferent attacks, and argue that any website fingerprinting defense
needs to be tested against a range of state-of-the-art attacks, prefer-
ably relying on different algorithms and feature sets, in order to
provide more general guarantees of its effectiveness.

As a case study, we consider the results that our ensemble classi-
fier achieved in identifying SecureDrop sites. These sites are onion
services that are running the SecureDrop software, a whistleblower
submission system that allows journalists and media publishers to
protect the identities of their sources. Given the sensitive nature
of the service that they provide and the nation-state adversaries
that they may realistically face, these SecureDrop sites have strong
anonymity requirements.

Our dataset contained a SecureDrop site owned by ‘Project On
Gov’t Oversight’ (POGO)6. The SecureDrop site had an F1-Score
of 99%, meaning that it is much more vulnerable to website finger-
printing attacks than the average onion service site.

There were other SecureDrop sites present in our initial dataset,
associated with The New Yorker, The Intercept and ExposeFacts.
These sites were flagged as duplicates of the POGO SecureDrop
site and thus removed during the data processing stage. Since they
were identified as duplicates, all these SecureDrop sites have very
similar characteristics and can thus be expected to be identifiable
at a similarly high rates as the POGO site. In particular, we noted
that these pages embed images and use scripts and CSS styles that
make them large and therefore distinguishable.

It can be argued that the existence of various similar SecureDrop
sites creates an anonymity set and makes some sites cover up for
each other. On the other hand however, it may be enough for the
adversary to ascertain that the user is visiting a SecureDrop site
for the anonymity of the source to be compromised.

We did a small, manual analysis of some of the most and least
fingerprintable sites (by F1 score) to see if there were any strong
correlations with content. We found that pages at the bottom end of

6https://securedrop.pogo.org

the spectrum were smaller and simpler (a hidden wiki, a listing of a
directory, nginx config page, etc.) whereas the most fingerprintable
pages were larger and more complex (a bitcoin faucet site, a forum,
the weasyl art gallery site, propublica, a Russian escort service site).
Pages in the middle of the spectrum varied, but were often login
pages. It is worth pointing out that the onion services ecosystem
has a 90’s, GeoCities “look,” where pages tend to be simple HTML
and sites that do not follow this aesthetic will stand out.

8 LIMITATIONS AND FUTUREWORK

With 482 onion sites, this is the largest website fingerprint-
ing study of onion service sites. Even so, our results may not be
representative of the entire onion service universe. We made our
best effort to collect as many onion service URLs as possible us-
ing ahmia.fi. While there are more effective methods to collect
.onion addresses, such as setting up a snooping Hidden Service
Directory [24], they are ethically questionable.

Our data is a snapshot of the onion services space over 14 days.
As the onion services change constantly, and fingerprintability
depends not just on individual sites but the whole set, the dataset
and the analysis should be updated regularly for a diagnosis of
current levels of fingerprintability.

As newwebsite fingerprinting attacks are proposed, features that
are important to fingerprintability now may become less so, espe-
cially if defenses are introduced or if the design of websites changes.
The methods introduced in this paper for extracting features and
understanding what makes certain sites identifiable, however, are a
lasting and relevant contribution. In particular, we argue that the
effectiveness of a proposed defense should be examined not only
on average, but that it should account for possible disparate impact
on different sites depending on their features. For example, even
if a defense significantly lowers the average accuracy of a website
fingerprinting attack, it could be that certain sites are always cor-
rectly identified, and thus left unprotected by the defense. We also
point out that we focus on whether a site blends well with other
sites, triggering frequent misclassifications in the context of web-
site fingerprinting attacks, and that the effectiveness of using such
techniques as basis for defending against website fingerprinting,
has dependencies on the actions taken by other onion services.

Our data collection methodology follows standard experimental
practices in the website fingerprinting literature when crawling
only home pages. On the one hand, limiting the evaluation to home
pages (rather than including all inner pages of a site) reduces the
classification space and gives an advantage to the adversary com-
pared to considering that users may directly browse to the inner
pages of a site. We argue that a fraction of users will still first land
on the homepage of a site before visiting inner pages and thus this
adversarial advantage is not unrealistic. We also note that the link
structure of inner pages in a website can be exploited to improve
the accuracy of website fingerprinting attacks.

Compared to using wget, curl or headless browsers, our Tor
Browser based crawler better impersonates a real browser, limiting
the risk of differential treatment by onion services. Still, it is possible
detect the presence of Selenium based automation using JavaScript.

The adversary can sanitize training data by taking measures
such as removing outliers, but cannot do so for test data. Since we

https://securedrop.pogo.org


measure an upper bound for the fingerprintability of websites, we
sanitize the whole dataset including the test data. Note that this is
in line with the methodology employed in prior work [21, 27].

We acknowledge that redesigning a site to be small and dynamic,
as suggested best practice by our analysis, may not be an option
for some sites for a variety of reasons. This is a limitation of our
approach to countermeasures, but might be a limitation to website
fingerprinting defenses in general, as large sites are easily identified
by website fingerprinting attacks. However, we believe that our
results can inform the design of application-layer defenses that
alter websites in order to perturb site-level features [8]. This would
allow to optimize existing application-layer defenses by focusing
on the features that our site-level feature analysis has identified as
most identifying, thus reducing the performance that these defenses
incur in Tor.

Previous studies on website fingerprinting have shown that data
collected from regular sites get stale over time, namely, the accuracy
of the attack drops if the classifier is trained on outdated data [15].
For onion services, Kwon et al. did a similar experiment and showed
that onion services change at a lower rate than regular sites and
do not get stale as quick [17]. For this reason, in this paper, we
assume the adversary can keep an updated database of website
fingerprinting templates.

Reducing the accuracy of website fingerprinting attacks can
be framed as an adversarial learning problem. A webpage can be
redesigned to modify its site-level features (especially those that
contribute the most to fingerprintability) to trick the classifier into
making a misclassification. In future work we plan to tackle finding
efficient ways to altering these website features to launch poison-
ing attacks against website fingerprinting classifiers [14] under
constraints such as bandwidth, latency and availability.

Finally, we acknowledge that the random forest regressionmethod
to determine the fingerprintability of a webpage given only web-
level features is currently useful only for feature analysis. This is
due to a number of factors, such as removing the middle of the
spectrum sites and balancing the priors. Although there are a few
challenges and limitations, creating an accurate tool that can de-
termine if a site will be easily fingerprinted from only site-level
features would be very valuable to onion services.

9 CONCLUSION

Our work intends to change the way that we build and analyze
website fingerprinting attacks and defenses, and differs from pre-
vious website fingerprinting contributions in several ways. We do
not propose a new attack algorithm (with the exception, perhaps,
of the ensemble method) or an explicit defense, but study instead
what makes certain sites more or less vulnerable to the attack. We
examine which types of features, with intentional generality, are
common in sites vulnerable to website fingerprinting attacks.

This type of analysis is valuable for onion service operators
and for designers of website fingerprinting defenses. A website fin-
gerprinting countermeasure may have a very disparate impact on
different sites, which is not apparent if only average accuracies are
taken into consideration. Further, we note that from the perspective
of an onion service provider, overall accuracies do not matter, only
whether a particular defense will protect their site and their users.

Our results can guide the designers and operators of onion ser-
vices as to how to make their own sites less easily fingerprintable,
in particular considering the results of the feature analyses and
misclassifications. For example, we show that the larger sites are
reliably more identifiable, while the hardest to identify tend to be
small and dynamic.

This work is also a contribution to adversarial machine learning.
Most work in adversarial learning focuses on attacking a specific
algorithm and feature set, but in many privacy problems this model
does not fit. Our study investigates methods to force the misclassi-
fication of an instance regardless of the learning method.
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A SITE LEVEL FEATURES
Table 6 shows the site-level features and statistic used to aggregate each site-level features within a site class. We followed the feature extraction step outlined
in Section 3 to obtain the site-level features. Here we present a more detailed overview of feature extraction for different site-level feature families.

Table 6: Site-level features and statistics used to aggregate them across download instances. Nominal and binary features such
as Made with Wordpress are aggregated by taking the most frequent value (i.e. mode) of the instances. Quantitative features
such as Page load time are aggregated using median, as is is less sensitive to outliers than the statistical mean.

Feature Median Mode Description
Number of HTTP requests Number of HTTP requests stored by the browser add-on
Number of HTTP responses Number of HTTP responses stored by the browser add-on
Has advertisement HTTP request matching EasyList 7
Has tracking/analytics HTTP request matching EasyPrivacy 8

HTML source size Size (in bytes) of the page source
Page load time As determined by Selenium
Made with Django As determined by generator HTML meta tag
Made with Dokuwiki As determined by generator HTML meta tag
Made with Drupal As determined by generator HTML meta tag
Made with Joomla As determined by generator HTML meta tag
Made with MediaWiki As determined by generator HTML meta tag
Made with OnionMail As determined by generator HTML meta tag
Made with phpSQLiteCMS As determined by generator HTML meta tag
Made with vBulletin As determined by generator HTML meta tag
Made with WooCommerce As determined by generator HTML meta tag
Made with Wordpress As determined by generator HTML meta tag
Made with CMS True if any of the “Made with...” features above is true
Number of audio As determined by the Content-Type HTTP response header
Number of domains As determined by the Content-Type HTTP response header
Number of redirections As determined by the presence of Location HTTP response header
Number of empty content Number of HTTP responses with Content-Length equal to zero
Number of fonts As determined by the Content-Type HTTP response header
Number of HTML resources As determined by the Content-Type HTTP response header
Number of images As determined by the Content-Type HTTP response header
Number of other content As determined by the Content-Type HTTP response header
Number of scripts As determined by the Content-Type HTTP response header
Number of stylesheets As determined by the Content-Type HTTP response header
Number of videos As determined by the Content-Type HTTP response header
Number of waterfall phases Approximate number of HTTP waterfall chart phases as determined

by switches from request to response or response to request.
Screenshot size Size (in bytes) of the screenshot saved by Selenium
Page weight Sum of the HTTP response sizes (in bytes)
Total request size Sum of the HTTP request sizes (in bytes)

7 https://easylist.to/easylist/easylist.txt
8 https://easylist.to/easylist/easyprivacy.txt
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B CONFUSION GRAPH FOR CUMUL

Figure 10: Confusion graph for the CUMUL classifier drawn byGephi software using themethodology explained in Section 4.6.
Nodes are colored based on the community they belong to, which is determined by the Louvain community detection algo-
rithm [3]. Node size is drawn proportional to the node degree, that is, bigger node means lower classification accuracy. We
observe highly connected communities on the top left, and the right which suggests clusters of onion services which are
commonly confused as each other. Further, we notice several node pairs that are commonly classified as each other, forming
ellipses.
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