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Abstract—Traffic analysis presents a serious threat to wireless
network privacy due to the open nature of wireless medium.
Traditional solutions are mainly based on the mix mechanism
proposed by David Chaum, but the main drawback is its
low network performance due to mixing and cryptographic
operations. We propose a novel privacy preserving scheme based
on network coding called Priv-Code to counter against traffic
analysis attacks for wireless communications. Priv-Code is able
to provide strong privacy protection for wireless networks as
the mix system because of its intrinsic mixing feature, and
moreover, it can achieve better network performance owing to the
advantage of network coding. We first construct a hypergraph-
based network coding model for wireless networks, under which
we formalize an optimization problem whose objective function
is to make each node have identical transmission rate. Then we
provide a decentralized algorithm for this optimization problem.
After that we develop an information theoretic metric for
privacy measurement using entropy, and based on this metric we
demonstrate that Priv-Code achieves stronger privacy protection
than the mix system while achieving better network performance.

I. INTRODUCTION

Traffic analysis is a powerful tool to deduce information

from communication patterns, no matter whether the messages

are encrypted or not. Numerous traffic analysis attacks have

been successfully applied to various communication networks,

including both military and civilian systems. Due to the open

nature of wireless medium, wireless networks are specially

vulnerable to traffic analysis attacks. Wireless telegraphy and

radio network are two typical examples attacked by traffic

analysis.

To fight against traffic analysis attacks, David Chaum [1]

proposed the idea of mix to hide correspondence between

message senders and receivers, and hence to protect communi-

cation privacy. Specifically, a Mix accepts a number of fixed-

length messages from sources, performs cryptographic trans-

formations on the messages, and then forwards the messages

to the next destination in an order unpredictable from the order

of inputs. An obvious feature of the mix-based system is that

messages are cached and reordered at each Mix before being

sent out, and the content of each message is not changed after

the mixing process. Following the idea of Chaum, a number

of anonymous communication systems have been proposed,

including Crowds [2] and Tor [3] for web browsing, Mixmaster

[4], and Mixminion [5] designed for email privacy.

Although the mix-based mechanism can be applied to

protect privacy, its deficiencies are obvious. First of all, each

Mix has to cache enough messages before sending them in a

random order, which introduces unpredictable delay into the

system. As a result, the mix-based system lacks ability to

support realtime network traffic or guarantee certain quality

of service. Next, the mix-based system requires each Mix to

perform decryption and re-encryption, normally public key

based operations, for each message. This leads to too much

computation cost for Mixes, and also increases message trans-

mission delay. Last but not least, efforts in this line of research

have been focused on privacy preservation using cryptographic

primitives, without considering network performance. There-

fore it is imperative to design an anonymous communication

system with the performance concern in the privacy preserving

design, as the increasing popularity of resource-constrained

wireless devices.

In this paper, we tackle the privacy-preserving communi-

cation system design problem based on the network coding

technique. The concept of network coding was first proposed

by Ahlswede et al. in 2000 [6], and has been viewed as a

promising technology for improving network performance and

enhancing network reliability. The network coding mechanism

works differently from traditional routers or Mixes in that

messages are coded at intermediate nodes, in contrast to

message reordering in mix-based systems. Although network

coding is proposed as a tool to improve network performance

and reliability, it has the intrinsic mixing feature like the

Mix in mix-based systems. Intuitively, Mixes in mix-based

systems can be modified to encode messages instead of simple

reordering for better performance and reliability.

However, there has been very limited research on employ-

ing network coding to counter against traffic analysis, and

most work on traffic analysis focuses on mix-based systems.

Until recently, the potential of network coding on resilience

to traffic analysis has been noted by Fan et al. [7]. They
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analyzed privacy enhancement with network coding in case

of traffic correlation attacks, while formal treatment of privacy

improvement due to network coding scheduling is not given in

their paper. And their scheme is designed for wired networks,

without considering the broadcast nature of wireless medium.
In this paper, we propose Priv-Code, a network coding-

based scheme to preserve privacy against traffic analysis for

wireless communications. This scheme formalizes the priva-

cy preserving problem as an optimization problem under a

hypergraph-based network coding model for wireless network-

s. It provides a decentralized algorithm for this optimiza-

tion problem. We develop an information theoretic metric

for privacy measurement using entropy, and based on this

metric we demonstrate that Priv-Code achieves stronger pri-

vacy protection than the mix system while achieving better

network performance. The contributions of our work can be

summarized as follows:

• We define a network model using the directed hypergraph

similar to [8] for network coding scheduling in multihop

wireless networks. The model not only captures the

broadcast nature of wireless networks, but also considers

the lossy characteristic and the MAC interference of

wireless medium.

• We formalize the privacy-preserving network coding

scheduling problem as an optimization problem, and pro-

vide a decentralized algorithm based on decomposition

techniques.

• An information theoretic metric for quantitative privacy

measurement based on information entropy is proposed

in this paper. It provides a general way to evaluate privacy

protection strength of various mechanisms with regard to

traffic flow information.

• We implement the algorithm and conduct experiments

for different network parameters to evaluate its privacy

protection and performance. The proposed scheme not

only provides strong privacy protection but also has good

network performance.

The rest of the paper is organized as follows. In the next

section we review related work on the mix system and network

coding. Then our scheme on exploiting network coding to

achieve privacy is described in detail in Section III. In Section

IV we analyze and discuss issues of the proposed scheme

on privacy protection. Details on the simulation to evaluate

the proposed scheme are provided in Section V. Section VI

summarizes and concludes the paper.

II. RELATED WORK

A. The Mix-based Systems
Since Chaum’s mix system was proposed, many similar

designs have been introduced in the literature [2], [3], [4],

[5], [9]. In these systems, a mix-net is formed by a set of

mix nodes, and messages are mixed when they traverse the

mix-net to achieve anonymity. Generally, these systems can

be grouped into real-time systems and non-realtime systems.
Crowds [2] and Tor [3] belong to the real-time mix sys-

tems. In Crowds, a user joins a “Crowd” as a “jondo”,

and each jondo acts as a proxy passing web requests to a

random Crowd member or the web server according to a

given probability. Thus, Crowds is able to preserve anonymity

against collaborating members, but only receiver anonymity

is provided in case of local eavesdropping. Cypherpunk,

Mixmaster [4], and Mixminion [5] are non-realtime systems

being used as anonymous re-mailers. Cypherpunk is the first

widely implemented mix-like system, without features like the

message padding or message pools, which makes it the “Type

I” anonymous remailer. Mixmaster, the “Type II” anonymous

remailer, fixed these problems in Cypherpunk, while the “Type

III” remailer Mixminion further enhance privacy by making

reply and forward messages indistinguishable. As analyzed,

the main drawbacks of the mix-based systems are its low

network performance and high computation cost.

Information theoretic treatment on privacy metric in mix-

based systems is studied in [10]. The anonymity is measured

by information entropy of the mix-based systems, which is

able to accurately characterize privacy protection strength.

The anonymity entropy measures the uncertainty that the

attacker on identifying a sender or receiver. Let the probability

distribution of a user u being the sender (or the receiver) of

a message M be pu, where
∑
u
pu = 1, then the anonymity

metric can be computed as H(M) = −∑
u
pu · log pu. This

entropy represents the anonymity status of the message M , and

the number of bits of additional information the attacker needs

to identify the message sender. In this paper, we use a similar

information theoretic method to analyze privacy protection

achieved for wireless networks with our scheme.

B. Wireless Network Coding

The network coding technique [6] was originally proposed

as a solution to improve network performance and soon

received extensive attention in the networking community.

This technique has been extensively studied in wireless en-

vironments to fully exploit the broadcast nature of wireless

medium.

Katti et al. [11] have implemented a real network coding

system COPE that XOR packets in the wireless network. The

performance improvement of COPE can be up to 70% for

wireless mesh network, and COPE even has 3-4 times of

throughput gain on the testbed.

Research on wireless network coding has studied network

coding scheduling for different purposes or applications, rang-

ing from broadcast, multicast, reliability, energy efficiency, to

maximizing throughput.

Security and privacy in network coding have also been im-

portant research directions. There have been a lot of research

on security issues in network coding, e.g., [12], [13], [14],

[15], [16], [17], [18]. However, the privacy issue of network

coding has been largely ignored by the research community.

Until recently, a scheme proposed by Fan et al. [7] is the on-

ly one to enhance privacy by network coding. They employed

network coding to counter against traffic analysis attacks in

wired networks, and use homomorphic encryption to protect
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code coefficients of messages. Although they analyzed privacy

enhancement due to network coding in case of packet size

correlation, time correlation and content correlation, formal

treatment of privacy with regard to traffic flows is not given

in their paper. That its, they did not answer the question on

how to schedule network flows, the central part of network

coding, in order to improve privacy. Also the proposed solution

is designed only for wired networks, and cannot be used in

wireless networks. Furthermore, the advantages of network

coding on performance improvement and energy saving are not

fully exploited for either wired networks or wireless networks.

III. THE PROPOSED SCHEME: PRIV-CODE

The proposed scheme Priv-Code considers concurrent u-

nicast sessions in multi-hop wireless networks, and employs

intra-session network coding for data communication, i.e., on-

ly packets from the same session can be encoded together. The

main goal of Priv-Code is to achieve strong privacy against

traffic analysis with proper network coding scheduling. The

intuitive behind Priv-Code is that one can make all nodes in the

network transmit traffic with the same traffic pattern, then the

attacker is not able to distinguish traffic senders or receivers. If

all nodes in the network transmit data with the same data rate,

and all transmission flows look no different from each other for

various traffic analysis attacks, then the attacker cannot obtain

any information on senders or receivers at all. This can be

done by using specially designed network coding scheduling

which schedules an end-to-end unicast session over multiple

paths. It will not only significantly enhances resistance against

traffic analysis, but also improves network performance due to

benefits of network coding.

In this section, we first introduce assumptions and threat

model in our scheme, then we describe our system model

which captures the broadcast nature and lossy characteris-

tic of wireless medium. Next, we propose an optimization

framework to find the optimal network coding scheduling

for enhanced privacy. After that, we provide a decentralized

algorithm for this optimization framework, which is specially

designed for distributed multihop wireless networks.

A. Assumptions and Threat Model

In this paper, we assume a multi-hop wireless network,

in which each node is equipped with only one antenna. All

nodes in the network have identical transmission range as

well as interference range. We also assume that the wireless

medium is lossy. An anonymous routing protocol for multi-hop

wireless networks providing anonymity and unobservability

is implemented as [19]. Hence routes can be securely and

anonymously established from a source to some destinations,

and an outside attacker cannot access the packet header to

know the packet type, or source/destination address. In order

to avoid packet size correlation, all packets are of the same

size.

We assume existence of a global adversary who can passive-

ly monitor the whole network. He can continuously observe

the entire wireless network, and hence obtain traffic flow

information including node transmission rates, inter-packet

intervals etc. The attacker can make use of existing traffic

analysis techniques used in [20] and [21]. However, he cannot

decrypt any encrypted packet with brute force attack. His goal

is to deduce who is the sender or receiver of a message from

network traffic information.

B. The System Model

The data flow of a session is divided into generations,

and packets from the same generation can be encoded. The

number of packets n in a generation can be configured to

suit the application. At each node, random linear network

coding is used to process the packets, and the encoded packets

are transmitted to the destination via multiple paths. How to

establish multiple paths will be described in the next section.

The network is modeled as a directed hypergraph

H = (N ,A) as in [8], where N is the set of nodes and A
is the set of hyperarcs. A hyperarc (i, J) is formed by a start

node i and a set of end nodes J , which is a non-empty subset

of N . Each hyperarc (i, J) represents a broadcast link from

node i to nodes in J . As we assume all nodes have identical

transmission range, each node i has a unique end node set

J . This definition captures the broadcast nature of wireless

medium. The hypergraph is degraded into a conventional graph

model when J contains only one node. A set of unicast

sessions U = {u1, ..., u|U|} is transmitted through the network.

Let Sk and T k (k = 1, 2, ..., |U|) be the source and receiver of

the unicast session k, and rk denote the flow rate of session

k.

For a unicast session k where the source Sk wants to send

data with rate rk to T k, by the flow conservation condition,

we have:∑
j∈J

fk
iJj −

∑
j∈N

∑
{I|(j,I)∈A,i∈I}

fk
jIi = δki , ∀i ∈ N , (1)

where

δki =

⎧⎨
⎩

rk, if i = Sk

−rk, if i = T k

0, otherwise

and fk
iJj is the flow rate over hyperarc (i, J) intended to

node j ∈ J . For session k, the equation represents the flow

conservation constraint that the source node’s net transmission

rate is rk, the destination node’s net transmission rate is −rk,

and any intermediate node’s net transmission rate is 0.

Under the hypergraph model, we further set up the broad-

cast MAC model to characterize the interference in wireless

networks, and the coding model how packets are coded with

network coding.

We use the broadcast MAC model of Zhang and Li [22],

which extends the unicast MAC model to obtain a necessary

condition for feasible broadcast schedules. In this model, the

transmission range and the interference range are considered

to be the same, and the reception probability beyond this range

can be ignored.

Specifically, the wireless network is modeled as an ideal

time-slotted broadcast MAC where competing transmitters can
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optimally multiplex the channel without any collisions. For a

unicast session k, let Bk
i [t] (0 or 1) be the decision variable

indicating whether node i is transmitting in slot t, and I(i) be

the set of all transmitters within i’s range (including i). Under

the hypergraph model, I(i) is equal to node i’s end node set

J . Then a schedule is collision free iff:∑
k

Bk
i [t] +

∑
k

∑
j∈I(i)

Bk
j [t] � 1, ∀i ∈ N\Sk. (2)

This equation indicates that any receiver i allows the

broadcast transmission from at most one transmitter within its

range at each time slot. Denote T as the period of a schedule,

and bki as the rate at which node i broadcasts packets to its

downstream nodes, then we have:

bki = lim
T→∞

1

T

T∑
t=1

Bk
i [t]. (3)

Apply (3) to (2), we can have:∑
k

bki +
∑
k

∑
j∈I(i)

bkj � C, ∀i ∈ N\Sk. (4)

where C = 1
T is the MAC layer capacity, equaling to

the maximal broadcast rate of a node when no interference

presents.

Meanwhile, it is noted that a constraint on capacity for

the broadcast link (i, J) should be satisfied. Since we assume

lossy wireless links in our scheme, the reception probability

of the link on the hyperarc (i, J) to node j is piJj . Then we

have the following link capacity constraint:

bki piJj � fk
iJj . (5)

C. Scheduling Optimization for Privacy

Before presenting the scheduling optimization algorithm for

privacy, we first show how to make a traffic flow indistin-

guishable from another flow. The question is what kind of

traffic pattern should the data flows take so as to make them

indistinguishable. The traffic pattern of a flow is determined

by packet arrival rate, inter-packet intervals and arrival time

distribution. If message arrivals of traffic flows are Poisson

processes with the same arrival rate, then the correlation attack

will be ineffective. Consequently, it is sufficient and necessary

to shape the traffic flows as Poisson processes with the same

arrival rate in order to counter against the traffic analysis

attacks based on these properties. In this case, the inter-packet

intervals are exponentially distributed and packet arrival times

are uniformly distributed. More discussion is left in Section

IV.

Based on the above conclusion, what we need to do is to

make every traffic flow have the same rate and shape the

traffic flows to be Poisson processes with the same arrival

rate, i.e., the same flow rate. As we assume an unobservable

routing protocol is used, the flow rate that the adversary

can observe is cumulated across concurrent unicast sessions.

Meanwhile, it is desirable to make the transmission rate of as

low as possible for energy efficiency. Thus, we formulate the

following scheduling optimization problem:

Privacy-Minimax: min
b,f

max
i

Ri (6)

subject to:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
j∈J

fk
iJj − ∑

j∈N

∑
{I|(j,I)∈A,i∈I}

fk
jIi = δki , ∀i, k,

∑
k

bki = Ri

∑
k

bki +
∑
k

∑
j∈I(i)

bkj � C, ∀i �= Sk,

fk
iJj � bki piJj , ∀i, ∀j ∈ J,∀k.

(7)

where i ∈ N , k ∈ K with K being the set of all concurrent

sessions in the network, and

δki =

⎧⎨
⎩

rk, if i = Sk

−rk, if i = T k

0, otherwise.

In this optimization problem, the objective is to minimize

the maximum flow rate Ri for all nodes. Though it would

not achieve the maximal privacy entropy as nodes’ flow

rate Ri’s may be different, the difference between Ri and

Rj for two nodes i and j is reduced. We can then inject

padding traffic into each node to make Ri be the same. A

more important result is this objective function tries to keep

nodes’ transmission rates low globally. The problem can be

equivalently formulated as follows:

Privacy-Minimax∗: min
b,f,t

R (8)

subject to:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
j∈J

fk
iJj − ∑

j∈N

∑
{I|(j,I)∈A,i∈I}

fk
jIi = δki , ∀i, k,

∑
k

bki +
∑
k

∑
j∈I(i)

bkj � C, ∀i �= Sk,

fk
iJj � bki piJj , ∀i, ∀j ∈ J,∀k,∑

k

bki � R, ∀i.
(9)

After a solution of the scheduling optimization problem is

obtained, all nodes may have the same transmission rate in the

ideal case. Then each node can transmit data in accordance

to Poisson distribution, so that the adversary is not able to

distinguish them. For the cases where not all nodes have the

same transmission rate (i.e. Ri =
∑
k

bki ), we can simply inject

dummy traffic at nodes to reach the maximum transmission

rate Ri so they have the same transmission rate.

D. A Decentralized Network Scheduling Solution

Though the Privacy-Minimax∗ problem can be readily

solved by standard linear programming algorithm, it is de-

sirable to provide a decentralized solution for the network

scheduling problem. In this section, we propose a decentral-

ized algorithm for the network scheduling problem based on

decomposition techniques [23]. Specifically, we decompose

the original problem into three separate subproblems with

decoupled variables based on the dual decomposition. Then
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we solve the subproblems independently, and finally solve the

master dual problem by updating dual variables.
We first introduce Lagrange multipliers λk

i , μi, ν
k
ij , and ϕi

to relax the four sets of constraints in (9) respectively. Then
the Lagrangian function is as follows:

L(b, f, R, λ, μ, ν, ϕ) = R +
∑
i

∑
k

λk
i (
∑
j∈J

fk
iJj

−
∑
j∈N

∑
I

fk
jIi − δki )

+
∑
i

μi(
∑
k

bki +
∑
k

∑
j∈I(i)

bkj − C)

+
∑
i

∑
j∈I(i)

∑
k

νk
ij(f

k
iJj − bki piJj)

+
∑
i

ϕi(
∑
k

bki −R)

Note that in our model the interference node set I(i) is equal
to node i’s end node set J . Thus, the original problem can be
decomposed into three independent subproblems as follows:

SUB1: F1 = min
R

(1−
∑
i

ϕi)R (10)

SUB2: F2 = min
f

∑
i

∑
k

∑
j∈J

fk
iJj(λ

k
i − λk

j + νk
ij) (11)

SUB3: F3 = min
b

∑
i

∑
k

bki (μi +
∑

j∈I(i)

(μj − νk
ijpiJj)+ϕi) (12)

Since all the three subproblems are linear, the Lagrange

multiplier method may not necessarily generate the optimal

solution. We adopt the proximal method and add a quadratic

term to make it strictly convex [24]. Take SUB2 as an example,

the optimization problem to be solved at each node i is:

min
f

∑
k

∑
j∈J

fk
iJj(λ

k
i − λk

j + νkij)

Then we can add a quadratic term into it which turns the

optimization problem to be:

min
f

∑
k

∑
j∈J

fk
iJj(λ

k
i − λk

j + νkij) +
1

2c
||fk

iJj − fk
iJj(t)||2

Then fk
iJj is updated by

fk
iJj(t+ 1) = [fk

iJj(t)− c(λk
i − λk

j + νkij)]
+

where c is positive constant scalar that makes the above update

to be arbitrarily close to the optimal value of fk
iJj , and [·]+

denotes the projection onto the non-negative orthant.

After the above three subproblems have been solved by each

node for given λ, μ, ν, ϕ, we proceeds to solve the following

master dual problem.

max
λ,μ,ν,ϕ

F1 + F2 + F3 +
∑
i

∑
k

λk
i δ

k
i +

∑
i

μiC (13)

subject to:

μi > 0, νkij > 0, ϕi > 0 (14)

where F1, F2, F3 are solutions to the subproblems for given

λ, μ, ν, ϕ. The subgradient method can be used here to find

the optimal solution to the master dual problem. In each

iteration of subgradient optimization procedure, each Lagrange

multiplier is updated according to its subgradient. For instance,

λk
i is updated in each iteration by:

λk
i (t+1) = [λk

i (t)+α(t)(
∑
j∈J

f̃k
iJj−

∑
j∈N

∑
I

f̃k
jIi−δki )]

+ (15)

where t is the index of the iteration, f̃k
iJj is the optimal solution

from subproblem SUB2, and [·]+ denotes the projection onto

the feasible set of λ. α(t) is the step size for iteration

t. A diminishing step size is adopted for the purpose of

convergence. Specifically, α(t) = A
1+B·t where A and B are

non-negative tunable system parameters.

To summarize all the above procedures, we formulate the

following decentralized Algorithm 1:

Algorithm 1 The Decentralized Privacy-Oriented Scheduling

Optimization Algorithm

Input: Hypergraph: (N ,A), Session Set: K, Flow rate set: R,

Link reception probability set: P , Link Capacity: C.

Output: fk
iJj and bki .

1) Initialization: set t = 0, λk
i equal to some initial value,

and μi, ν
k
ij , ϕi equal to some non-negative values for all

i ∈ A, j ∈ J, k ∈ K, where (i, J) ∈ N .

2) Each node i locally solves its subproblems from SUB1,

SUB2 and SUB3 for each session k ∈ K, and then broadcast

the result fk
iJj and bki to its direct neighbors, i.e., all nodes

j where j ∈ J for (i, J) ∈ A.

3) Each node i updates the Lagrange multipliers by the

subgradient method as illustrated in (15). Then it broadcast

ϕi(t+1) to all other nodes, and broadcast λk
i (t+1), μi(t+1)

to its direct neighbors.

4) Set t ← t+1 and go to step 2 (until satisfying termination

criterion).

It is important to note that it is unnecessary to broadcast

νkij(t + 1) to other nodes, and λk
i (t + 1), μi(t + 1) need to

be broadcast to i’s neighbors only. The convergence of the

above algorithm follows the general convergence properties

of subgradient and dual decomposition method.

After the optimal solution for the objective function is

obtained, each node stores, encodes, and forwards packets

towards the next hop with calculated transmission rate bki at

each session k. As the resulting network scheduling satisfies

the flow constraints and capacity constraints, we conclude that

the scheduling can achieve expected data rates.

In order to make each node have identical traffic pattern,

we require each node to add appropriate dummy traffic. An

obvious solution is to inject dummy traffic to the maximum

transmission rate Ri. A good way to create dummy traffic

is create redundant or linearly dependent packets, as these

packets can improve reliability in lossy wireless transmission.
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Then each node transmits packets in accordance to Poisson

distribution.

IV. TRAFFIC ANALYSIS AND PRIVACY METRIC

In this section, we first demonstrate that traffic analysis

attacks exploiting traffic patterns on inter-packet intervals,

packet arrival time or data rates are ineffective in distin-

guishing data flows conforming to Poisson distribution with

identical arrival rate. We do not consider content correlation

attacks as in [7] since we assume that no content correlation

information is leaked. Based on this result, we present an

information theoretic metric on privacy for wireless networks.

Then we use it to measure privacy quality offered by our

scheme Priv-Code.

As assumed, there is an anonymous routing protocol which

can provide unobservability [19] implemented in the wireless

network. The adversary is not able to know the content of any

packet, including the address field in the packet header.

A. Traffic Analysis

A node with an incoming flow conforming to Poisson

distribution and exponential delay times can be viewed as an

M/M/1 queuing system. According to Burke’s theorem, the

departure process of an M/M/1 queue is also a Poisson process

with the same rate independent of the arrival process. This

feature helps the proposed scheme Priv-Code thwart traffic

analysis attacks. If incoming flows and outgoing flows are

independent Poisson processes with the same arrival rate, it

is impossible for an attacker to distinguish them.

Traffic analysis attacks have been proposed to exploit dif-

ferent traffic patterns of a flow, e.g., packet delay characteris-

tic [20], number of packets in a fixed interval or window [21],

[25].

Danezis [20] uses maximum likelihood estimation to dis-

tinguish different flows based on packet delay characteristics.

Packets are delayed for a period conforming to the exponential

distribution at the mixes, which is the optimal mixing strategy

for a continuous-time mix network. Let X and Y are two

output links of an exponential mix that the attacker wants to

differentiate, CX and CY are two model probability distribu-

tions for the two output links. Then the likelihood ratio can

be formulated as

L =

n∏
i=1

CX(Xi)
m∏
j=1

u

n∏
i=1

u
m∏
j=1

CY (Yj)
,

where u is the uniform distribution parameter, and Xi and

Yj are sampled times coming out of channel X and Y
respectively. It can be verified that if CX and CY are uniform

distributions then the likelihood ratio is 1, which is the case

when the incoming traffic to the mix is a Poisson process.

So we can see the attack fails when all traffic flows follow

Poisson distribution with the same arrival rate.

Zhu et al.’s approach [21] correlates flows using number of

packets in in a fixed interval. The pattern vector Xi of an input

link or an output link i in Zhu et al.’s approach contains the

following element:

Xi,k =
Number of packets in batch k

Time elapses in batch k
.

Then the mutual information between Xi and another pattern

vector Yj is

I(X,Y ) =

∫ ∫
p(xi, yi) log

p(xi, yi)

p(xi)p(yi)
.

This attack is especially effective against TCP due to the TCP

loop-control mechanism. However, if the input flow and output

flow conform to independent Poisson distribution as in our

scheme, the attack will fail since the mutual information is

actually 0.

A timing analysis attack proposed in [25] adopts a similar

strategy as [21]. Specifically, for each possible entry-exit

pair, the attacker computes the cross-correlation of the two

sequences as

r(d) =
Σi((xi − μ)(x′

i − μ′))√
Σi(xi − μ)2

√
Σi(x′

i − μ′)2
,

where xi is the number of packets received or sent by a

mix during the ith window, μ and μ′ are means of the two

sequences. Correlation on the inter-packet intervals between

two network links may lead to conclusion that they are

carrying the same traffic. However, the cross-correlation is 0

for two independent Poisson processes, so the attack will not

succeed in Priv-Code.

The adversary can launch two types of active attacks:

artificial gaps and artificial bursts [25]. In the artificial gap

attack, the adversary gets control of some valid nodes in the

wireless network, and selectively drops several consecutive

packets in a target flow to create a gap, which will result in

a gap in other links. By examining the change on the inter-

packet interval pattern, the adversary can identify related links.

For artificial gaps, the attack must be prevented by injecting

dummy traffic into nodes being influenced, so as to make the

traffic pattern unchanged.

The artificial burst attack is to create a traffic burst by

holding up packets at some nodes and release them at once.

But such attacks can be effectively thwarted at each node

by modulating outgoing data as a Poisson process for a pre-

determined rate. Moreover, the burst packets may be relayed

through multiple paths, thus the burst is relieved by at each

of the multiple links. As a result, the risk of one output link

being found to be related to an input link is removed.

B. Information Theoretic Metric for Privacy

We adopt and extend the information theoretic approach for

privacy measurement in [10], which proposed a privacy metric

for mix networks. This metric is designed for mix networks,

which have several differences with the network model used

in our scheme. The main difference is that a node in our

network model can be a sender or a receiver when it works as a

“mixing” relay for others, while a mix in a typical mix network
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is normally not a sender or a receiver. Another difference is

that nodes in in our network model may form a loop, which

does not exist in the mix network. Hence, we have to adapt

the information theoretic metric for privacy to our network

model.

The privacy metric defined in [10] uses entropy to describe

privacy quality. Specifically, sender anonymity (or receiver

anonymity) is the entropy of the attacker’s probability dis-

tribution of users being the sender (or receiver) with respect

to a message. Let Ψ be the set of all users, u ∈ Ψ be the

user, and pu be the probability of the user u being the sender

of a message M . Then the privacy measurement, called the

effective anonymity size, of the sender anonymity with respect

to M is:

H(M) = −
∑
u∈Ψ

pu · log pu.

The privacy metric can be interpreted as the number of bits

of additional information that the attacker needs to identify

the user u being the message sender. It is trivially to see that

if pu = 1 for some user u then the entropy is 0 bits, meaning

the attacker has identified the user already.

+

+
++

++

Fig. 1. A Simple Mix Network and Its Privacy Metric. The sender anonymity
of the output links of mix 1 is Htotal

1 = −( 1
2
log 1

2
+ 1

2
log 1

2
) = 1, and

the sender anonymity of the output links of mix 3 is Htotal
3 = −( 3

8
log 3

8
+

3
8
log 3

8
+ 2

8
log 2

8
) = 1.56.

Figure 1 illustrates a simple mix network consisting of 3

mixes, 3 senders and 3 receivers. Assume the attacker does not

have any a-priori knowledge about the senders and receivers

except the traffic pattern. When all message flows are Poisson

processes with the same rate, a message flow having arrived at

a mix was equally likely to have been forwarded to all of the

possible “next hops”. Then the probability distribution of the

output link of a mix forwarding input data flows is showed in

the figure. For example, the probability distribution of output

links of mix 2 is {A : 1
4 , B : 1

4 , C : 1
2}. We rewrite the

probability distribution as { 1
4A + 1

4B + 1
2C}. Thus we can

compute the privacy entropy coming out of mix node 3 is:

Htotal
3 = −(

3

8
log

3

8
+

3

8
log

3

8
+

2

8
log

2

8
) = 1.56,

which means the attacker needs 1.56 bits information to

identify who is the sender. Note that both mix 1 and mix

2 have contributed to the privacy entropy besides mix 3, and

the final privacy entropy is the synergistic effect of all three

mixes.

++++

+++++

++

++

Fig. 2. The Extended Network for Privacy Measurement. For each node M,
an auxiliary node M’ is created so as to support the cases where the mix
nodes can be senders or receivers. It also contains a loop from M1 to M3.

We extend the privacy metric to the network model where

the mixes can be senders or receivers and they can form

message flow loops. Fig. 2 extends the simple mix network

in Fig. 1 in two aspects. First, we introduce an auxiliary node

into the graph for each mix, and adds the same number of

incoming and outgoing edges between the auxiliary node and

the mix node. Then the resulting graph is able to correctly

describe cases in which the mix nodes are senders or receivers.

For instance, the new graph is able to describe two sessions

between B to M1 and M1 to M3 by B → M1 → M1′ and

M1′ → M1 → M3 → M3′. Next, if there is a message flow

loop from M3 to M1 in the graph as showed in Fig. 2, then we

need to determine the probability of the message flow over the

loop. In this case, we assume the message flow from M3 to M1

is X , then we can infer the message flow over every link as

shown in Fig. 2. Since the message flow from M3 to M1 is X ,

we can have 5
64X+ 5

64B+ 1
16C+ 5

32M1+ 1
8M2+ 1

2M3 = X ,

yielding X = 1
59 (5B+4C+10M1+8M2+32M3). Then the

privacy entropy of each flow can be obtained by the formula

above.

Then we can use this privacy measurement approach to

evaluate the proposed scheme Priv-Code. Suppose the wireless

network consists of N nodes and each node is transmitting data

as an independent Poisson process of the same transmission

rate. Then the privacy entropy of an output data flow of a node

can be computed from the probability distribution of the input

flows.

V. PERFORMANCE ANALYSIS AND SIMULATION

Computation Overhead: The computation overhead comes

from two sources, the encoding procedure and the anonymous

routing protocol. Computation cost of the anonymous routing

protocol is relatively lightweight, since there is very few public

key operations in the protocol. Hence we mainly focus on the

encoding computation overhead.

The proposed scheme does not rely on expensive public

key cryptographic mechanisms to protect encoding vectors,

either. At each source/intermediate node, a random coding
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(c) Average Privacy Entropy vs. Link Reception
Probability

Fig. 3. Privacy Entropy and Transmission Rate Comparison of Priv-Code, Single-Path and Multi-Path Mix Network. The Network size is 50, each node has
5 neighbors on average, link capacity is 100 units, and each communication session is 2 units.

vector is generated and used to encode packets from the same

session. Then the coding vector of the newly generated packet

is attached to the packet header. This procedure is much

more efficient than encoding/decoding using homomorphic

encryption.

For each packet received at an intermediate node, it needs to

verify whether it is independent from cached packets. Gauss-
Jordan elimination can be used to check whether a packet

is linearly independent, and the computation complexity is

O(n3), where n is the size of a generation.

Communication Overhead: For network coding, the en-

coding coefficients need to be put in the packet header for

the intermediate nodes or the destination node to re-encode

or decode packets. This part of overhead results in additional

communication cost. If the coefficients obtain their value from

0 to 255, i.e., the size of a byte, then the size of coefficients

in a packet header is n bytes. If the generation size is 20, that

is, 20 packets are grouped into a generation, then the network

coding coefficient overhead is 20 bytes. For a packet with size

of 1000 bytes, the overhead is only 2% of the whole packet

size.

Storage Requirement: In the proposed scheme, the source

node has to cache all packets in the generation before an

acknowledgement is received; the intermediate nodes need to

cache all received linearly independent packets in the gener-

ation before receiving an acknowledgement; the destination

also has to cache all linearly independent packets in the same

generation before they can be decoded. Thus, the network

coding mechanism demands much more storage space than

traditional transmission technique. If the size of a generation

is n, and on average there are m concurrent sessions passing

through a node, then a node has to allocate O(nm) packet

cache on average. Note that the intermediate nodes may not

need nm packet cache since the packets in a generation are

transmitted via multiple paths. This requirement on storage

can be tuned by setting the generation size n, and is also

determined by the network traffic.

Simulation and Evaluation: We implement our proposed

network coding scheduling scheme and conduct experiments

with MatLab and NS2 to evaluate its privacy protection capa-

bility and performance. We use the privacy metric presented in

Section IV to compare our scheme Priv-Code with two typical

mix networks, a single-path mix network and a multi-path

mix network. The single-path mix network always chooses

the shortest path from a source to its destination, while the

multi-path mix network selects multiple paths to transmit data

and it uses a similar optimization approach as Priv-Code. The

multi-path mix network is different from Priv-Code in that

transmissions over paths are independent of each other. Both

mix networks for comparison are composed of exponential

mixes that delay packets according to the exponential distri-

bution, so the output flows are independent Poisson processes.

The wireless network in our experiments consists 50 ran-

domly deployed nodes with node density 6, i.e., each node has

5 neighbors on average [7]. We assume that all links have the

same capacity, and nodes within the interference range share

the capacity. The link capacity must guarantee the optimization

algorithm has a optimal solution. In our experiments, we fix

the link capacity to be 100 units.

In our experiments, we change the following parameters in

our experiments:

• Concurrent session number: The number of concurrent

sessions ranges from 4 to 20, which means there are at

most 20 pairs of nodes are communicating at the same

time. The communication rate of each session is 2 units.

• Link reception probability: The reception probability of

each link piJj is a tunable parameter, whose distribution

conforms to the uniform distribution with a mean ranging

from 0.5 to 1.0.

We compute the average privacy entropy of all message

flows based on the privacy measurement method in Section IV,

and at the same time, we compute the average transmission

rate and the maximum transmission rate among all nodes in the

network. Fig. 3(a) shows the average transmission rate of the

single-path mix network, the multi-path mix network and our

scheme Priv-Code. Since we have to inject dummy traffic into

the network to make each node have identical transmission

rate, i.e. the maximum transmission rate, we also show the
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maximum transmission rate for each experiment in this figure.

It can be seen that the required transmission rate of Priv-Code

is between the single-path mix network and the multi-path

mix network, which accords with our expectation as Priv-Code

tries to provide both strong privacy and good performance. It

means that Priv-Code can transmit the given traffic with less

transmission rate than the multi-path mix network. Note that

dummy traffic of Priv-Code to be injected into the network is

also less than that of the multi-path mix network.

We show in Fig. 3(b) the average privacy entropy over all

nodes provided by Priv-Code, the single-path mix network and

the multi-path mix network. Since we make each node have

identical transmission rate by traffic padding, Priv-Code and

the multi-path mix network have the same privacy entropy.

In contrast, the single-path mix network always chooses the

shortest path for data transmission, the privacy changes with

the number of concurrent sessions in the network. When there

are fewer sessions, it is harder for the single-path mix network

to protect their privacy, but the privacy entropy grows as the

number of sessions increases.

Fig. 3(c) shows the average transmission rate versus differ-

ent link reception probability for Priv-Code and the multi-path

mix network. It shows that the required transmission rate of

both Priv-Code and the multi-path mix network decreases as

the link quality becomes better. But the transmission rate of

Priv-Code is almost half of that of the multi-path mix network,

which means Priv-Code can transmit the same amount of

traffic with about half of the transmission rate compared with

the multi-path mix network. demonstrates the great advantage

of network coding in performance improvement.

VI. CONCLUSION

In this paper, we investigate the problem of how to exploit

network coding to protect privacy against traffic analysis

attacks under a powerful threat model, in which the attacker

is able to continuously monitor the entire network and mount

both passive and active attacks against the wireless network.

Based on information theory, we formally define the privacy

entropy in terms of traffic flow information. Then we formalize

a hypergraph-based network model for wireless networks

based on network coding, and formulate an optimization prob-

lem to seek the optimal network coding scheduling. After that,

we provide a decentralized algorithm to solve the optimization

problem. Our analysis and experiment evaluation show that

the proposed scheme has substantial advantage over existing

schemes on privacy protection against traffic analysis.
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