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ABSTRACT
Disclosure attacks against anonymization systems have tra-
ditionally assumed that users exhibit stable patterns of com-
munications in the long term. We use datasets of real traf-
fic to show that this assumption does not hold: usage pat-
terns email, mailing lists, and location-based services are
dynamic in nature. We introduce the sequential statistical
disclosure technique, which explicitly takes into account the
evolution of user behavior over time and outperforms tra-
ditional profiling techniques, both at detection and quan-
tification of rates of actions. Our results demonstrate that
despite the changing patterns of use: low sending rates to
specific receivers are still detectable, surprisingly short pe-
riods of observation are sufficient to make inferences about
users’ behaviour, and the characteristics of real behaviour
allows for inferences even in secure system configurations.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues—
Privacy ; C.2.0 [Computer-communications networks]:
General—Security and protection

Keywords
Privacy; traffic analysis; anonymization; de-anonymization

1. INTRODUCTION
Anonymization is a key building block in providing con-

fidentiality in privacy-preserving technologies. Encrypted
confidential information, such as medical status or political
interests, may be inferred from the identities of communica-
tion partners (e.g., communicating with a specialized doc-
tor, or posting to a mailing list), or the location from which
the communication takes place (e.g., specialized clinics, po-
litical headquarters). Through anonymization, user actions
are separated from their identity to provide some degree of
privacy. In a system relying on anonymization actions can
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only be ascribed to a potential set of users, often called the
anonymity set.

Anonymization can be used directly to provide private
communications, such as email [7] or web-browsing[10]. Fur-
thermore, several privacy-preserving technologies assume that
an anonymization layer is available to ensure that data are
not linkable through the network addresses of their users.
For instance, selective disclosure credentials, like U-prove [14]
and Idemix [11], also assume that credentials are not link-
able through user network addresses. Anonymization is also
required in electronic election systems, to de-link the indi-
vidual casting a vote from the resulting plaintext ballot. As
a last example, specific location privacy-preserving mecha-
nisms need to ensure that the identity of users and locations
cannot be linked, e.g., as a means to computing privacy
friendly aggregate traffic density maps [5].

A perfect anonymization mechanism would guarantee that
all actions could always be ascribed to any user in the sys-
tem with equal probability. However, the creation of ano-
nymity sets is often constrained by implementation consid-
erations, such as latency or network overheads. As a result,
the protection that practical anonymization mechanisms of-
fer is never perfect and some amount of information about
the link between identities and actions is leaked. This work
proposes models to make use of these leakages to reconstruct
the behavioral patterns and actions of users over time.

There is a long line of work demonstrating that observa-
tions from anonymization systems, that provide both ano-
nymity and unlinkability between actions, can be used to
reconstruct user behavioural profiles [1] as long as these are
stable over time. In this work, we extend this class of attacks
to show that they are applicable in much wider settings: we
do away with the stability assumption, we show they are ef-
fective against real-world anonymized traces of actions, they
can be made robust to false-positives, and that they are
effective given much less time and traffic than previously
thought.

Specifically the contributions of this paper include:

• An analysis framework that allows an adversary to in-
fer the rate at which users perform specific actions
when these actions are mediated over an anonymous
channel, and when rates may change over time. We
call this new family of techniques sequential statistical
disclosure. To our knowledge, this is the first model
to tackle dynamic action profiles of users that change
over time – a key feature when deploying attacks in
the real world.
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• A Bayesian model to extract probability distributions
over a user profile from anonymized observations. Our
method is based on sequential Monte-Carlo techniques,
also known as particle filters. We adapt standard meth-
ods to the proposed traffic analysis model to ensure
that they effectively track user profiles over time; they
deal with users’ a-priori low sending rates without pro-
ducing unacceptable rates of false positives or nega-
tives; and they run efficiently. This is the first applica-
tion of principled Bayesian modelling combined with
Sequential Monte-Carlo to the problem of generic de-
anonymization.

• An evaluation of the sequential statistical disclosure
techniques and comparison with adapted state of the
art statistical disclosure attacks [18]. For the first time,
we evaluate the statistical disclosure attack’s perfor-
mance in presence of the dynamic profiles that are
extracted from real-world datasets. As opposed to
previous studies, that made extensive use of simpli-
fied synthetic traces, we study three real-world ap-
plications: traces of anonymized real email commu-
nications, traces of anonymized traffic to a mailing list
server, and traces of anonymized locations from a real-
world service. We show that our techniques can de-
anonymize a significant fractions of communications,
given surprisingly little information.

Our findings provide an insight into the effectiveness of
statistical attacks against real usage patterns. We conclude
that such attacks are more effective than anticipated: i) they
can be effective for rather low action rates, ii) they are ef-
fective over a much shorter period of time than previously
thought, and iii) they can be effective for secure configura-
tions of the anonymity system.

This paper starts with a review of the relevant literature
on traffic analysis, in Sect. 2, that a familiar reader can safely
skip. Sect. 3 describes the probabilistic model underlying
the sequential statistical disclosure attack, and Sect. 4 de-
scribes the training and sequential Monte-Carlo techniques
devised to infer its hidden parameters. Sect. 5 describes
the datasets used, and presents a thorough evaluation of
the proposed and previous schemes, especially in terms of
false-positives. The final section offers some conclusions.

2. BACKGROUND & RELATED WORK
The risks of de-anonymizing rich data sets has been high-

lighted in the context of census record microdata [24] (also
critically re-examined by Golle [13]), social networks [20,
27] and movie preference graphs [19]. These works attack
anonymized releases of full user profiles that contain fea-
tures (also known as quasi-identifiers) that can be used to
re-identify the profiles. Our work is concerned with anony-
mization at the level of individual actions, for example a sin-
gle message a sender sends to a specific email address, or to
a mailing list, anonymously; or a single location revealed by
a user anonymously. The anonymity mechanism used hides
the relation between the actor and the action, but also ob-
scures the relationship between actions over time, making
the techniques for re-identifying large profile unusable.

Anonymization of single actions over time is mostly per-
formed and studied in the context of anonymous communi-
cations. In fact we often use the term “sender” to be syn-
onymous to a generic actor, and“receiver” to simply indicate

the label associated with an observable action. Anonymous
communications channels were first introduced by Chaum [4],
and their goal is to hide communication partners in a net-
work.

The study of generic long-term attacks against anonymity
systems began with the exposition of long-term intersection
attacks by Berthold et al. [2]. They describe simple attacks
against senders in anonymity systems that persistently send
to a single receiver. The original intersection attack was
largely conceptual, but Kesdogan introduced the Disclosure
attack [1] that extended long-term attacks to senders with
multiple persistent contacts over time. In this work we show
that these attacks can be performed even against shorter
term (and changing) patterns of communications, without
the need for them to be persistent in the long term.

The Hitting Set attack [16] extends the reach of the Disclo-
sure attack and has been the subject of considerable study [15,
22]. The model of the Hitting Set attack is quite sensitive to
its assumptions: the anonymous channel has to be a thresh-
old mix, and the target sender Alice needs to have a bounded
and known number of friends, to whom she sends at a known
rate. The latter assumption makes the attack precise and
powerful, but also limits its generality. The family of Statis-
tical Disclosure [6] attacks, on the other hand, aggressively
simplifies and linearises the operation of the anonymity sys-
tem, and the behaviour of Alice. As a result, it is quicker to
perform and more adaptive, at the cost of providing less ac-
curate results. In this work we use a variant of the Statistical
Disclosure Attack [18] that focuses on accurately estimating
the background traffic to receivers, and adapt it to Timed
Mixes. To evaluate the performance of all attacks we use
the established least squares error metric [21].

Our approach takes into account that each observable in-
teraction of an actor can only be linked with a single observ-
able action (one message in the anonymity system results in
one message out of the system) in the tradition of the Per-
fect Matching Disclosure [26]. However, since we only con-
sider a single actor-action target at a time, the computations
become simpler. Furthermore, instead of following an opti-
mization approach, we try to characterize full posterior dis-
tributions of the knowledge of the adversary about the target
link given the evidence. This Bayesian approach follows the
same tradition as Vida [8], which first described long-term
attacks in the language of Bayesian inference. However, in-
stead of using Gibbs sampling we implement an inference
algorithm using on-line tracking methods namely sequen-
tial Monte-Carlo sampling. These techniques, also known as
particle filters, have been developed in the context of non-
linear tracking, for example for radar. An excellent tutorial
on particle filters by Arulampalam et al. [17] provides all
the background needed to follow the details of the proposed
inference algorithm. Those keen on an in depth background
on tracking techniques can refer to Ristic et al. [23].

We have taken a great amount of care to avoid making
classification mistakes, which have been overlooked by pre-
vious attacks, but are frequent when analysing real datasets.
Diaz et al. [9], discuss the dangers of applying a strict like-
lihood based model with a prior or side information that
is incorrect, since no amount of evidence contrary to the
prior improves the results. Finally, the base rate fallacy has
been identified as a key challenge when it comes to deploy-
ing traffic analysis techniques in the wild, most notably and
anonymously by The 23rd Raccoon [25]. One of the main
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advantages of the proposed model is that it directly incor-
porates information about the low prior associated with any
actor-action relationship in order to minimize false positive
rates.

3. A MODEL FOR TRACKING DYNAMIC
USER PROFILES

The problem of de-anonymizing messages sent through
an anonymity system can be cast as a problem of statistical
inference. Given some knowledge of the functioning of the
anonymity system, and some general assumptions about the
behaviour of users, the task of the adversary is to infer who
is talking to whom, from anonymized observations.

Our aim is to link senders (actors) with actions (such as
specific receivers) where patterns of behaviour change over
time. We use a model-based Bayesian inference approach
to solve this concrete traffic analysis inference problem: this
means we define a generative model of the system, namely
all the mechanisms and probability distributions involved
in generating the public traffic traces from the secret user
profiles. Then we “invert” this model (using Bayes’ rule)
to get the probability of the secret user profiles, given the
observations. Since doing so analytically is infeasible, we im-
plement an approximation based on sequential Monte-Carlo
sampling (also known as a particle filter). We note that, as
any model, the one we propose necessarily abstracts details
of any particular system and makes assumptions about its
operation and use. The quality of such a model cannot be
judged in terms of its faithfulness to every real-world detail,
but rather must be judged in terms of its effectiveness in
achieving the task at hand, namely de-anonymization.

In this work, we assume an adversary is provided with
records of users sending messages through the anonymity
system, and records of received messages / actions out of
the anonymity system, in “batches” over time. 1 We assume
that the traffic within distinct “batches” of the anonymity
system is opaque, and that the anonymity sets resulting are
perfect: any sender could have been sending messages to
any receiver within a batch. Real-world anonymity systems
need to keep“batches”small in order to minimize the latency
suffered by messages2.

This paper casts the profile inference problem in the con-
text of three example anonymity-based applications. How-
ever, we note that the problem we solve is isomorphic to
many other data privacy mechanisms. In fact, any privacy
system that involves hiding the relation between a visible set
of actors and a set of actions in consecutive periods can be
analysed using straight-forward variants of our techniques.

3.1 A Basic Model
We devote this section to describing the generative model

underlying the sequential statistical disclosure attack. Fig. 1
illustrates the model in the standard plate notation for graphic
models. Circles represent variables, while rectangles repre-
sent operations such as sampling or addition. Directed edges
denote conditional dependence amongst variables. Plates

1While this model is stronger than the more recent ones
applied to Onion Routing systems [12, 10], it allows us to get
an insight into the fundamental limits of strong anonymity
systems.
2As an example in our evaluation we assume messages (or
other actions) are batched daily.

Figure 1: The generative model underlying the Sequential
Statistical Disclosure in standard plate notation.

represent independent executions of a process. Observations
visible to the adversary are under the dotted line.

Consider an actor Alice (A), who may send messages to
user Bob (B) over a number of consecutive epochs (denoted
t, for time). We assume that in each epoch Alice sends a
number of messages through the anonymity system to Bob,
at some Poisson rate λtAB (λtAB → 0 if Alice does not send
any messages to Bob). Of course, other users (O) may also
send messages to Bob with an aggregate Poisson rate λtOB ,
as well as to other receivers with an aggregate Poisson rate
λtOO. Alice, may also send messages to others with a Poisson
rate λtAO.

We assume that all messages generated within an epoch
are anonymized using an arbitrary set of (perfect) anonymity
systems. Since epochs can be quite long, and the volume of
traffic large, in a realistic setting not all messages are mixed
with each other. To model this situation we consider that
N anonymizers are used consecutively in each epoch (e.g., a
timed mix with an equal time threshold, or a k-anonymity
based location privacy mechanism used over time).

We consider that all messages sent to an anonymizer are
perfectly mixed together. This means that an adversary can
only observe the aggregate volume of messages Alice sends

V
(t,n)
A to this anonymizer, and the aggregate volume that

Bob receives V
(t,n)
B from the anonymizer; along with the

volume sent and received by other users (V
(t,n)
O and V

(t,n)

O′

respectively). However, there is no way to tell whether a
message from Alice was sent to Bob or to someone else within
each mixing batch (t, n). The total number of messages sent

or received in an epoch t can be computed as V tx =
∑
n V

(t,n)
x

Alice draws a number of messages to be sent during a

whole epoch using a Poisson distribution: V tA
$←− Poisson(λtAB+

λtAO). The anonymity system then chooses an arbitrary
partition of the messages that Alice, into disparate mix-
ing rounds, such that the total number of messages across

rounds V
(t,n)
A is equal to V tA. Since both V

(t,n)
A and V tA are
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observed directly, we are not concerned about the distribu-
tion over partitions.

Furthermore, within a batch we model the number of mes-
sage sent from Alice to Bob as a binomial distribution, with
probability ptAB = λtAB/(λ

t
AB+λtAO). Similarly, others send

to Bob with a probability ptOB = λtOB/(λ
t
OB+λtOO) per mes-

sage. Thus, we have:

Hidden

{
V

(t,n)
AB

$←− Binom(ptAB , V
(t,n)
A )

V
(t,n)
OB

$←− Binom(ptOB , V
(t,n)
O )

(1)

Visible

{
V

(t,n)
B = V

(t,n)
AB + V

(t,n)
OB

V
(t,n)

O′ = V
(t,n)
A + V

(t,n)
O − V (t,n)

B

(2)

Observe that the exact volumes exchanged by each pair of
participants are hidden, while the total volumes sent and
received by each party, at each mixing round and epoch,
are revealed. We note that extending this model to allow
for dummy traffic, or other noise, is simple: one could sim-
ply add some noise from the distribution of dummy traffic
according to the process by which is it generated, or some
approximation of it, to the observed aggregates.

We assume that within an epoch the sending rates for Al-
ice and others are stable, but allow them to differ between
epochs. This way we can perform traffic analysis against
sender-receiver pairs that have changing patterns of commu-
nications. Our model assumes we can approximately model
the way in which sender rates-receiver change over time. In
particular, we assume that the adversary knows the distribu-
tion for the sending rate from Alice to Bob at time t (λtAB)
given the rate at time t − 1 (λt−1

AB ). We call this the profile
evolution probability E(λtAB |λt−1

AB ), and model the evolving
rate of Alice-Bob as sampled from this distribution as:

λtAB
$←− E(λtAB |λt−1

AB ) . (3)

The profile evolution probability E(λtAB |λt−1
AB ) expresses

both the existence of communications between any two par-
ties, as well as its intensity. Of course the initial λ0

AB has
no previous epoch to inform it, and thus we assume it is

generated from a very broad prior (λ0
AB

$←− prior).
While we want to accurately model changes in the rate

of traffic between Alice and Bob, we do not want our in-
ference to be influenced by other receivers’ actions. For
this reason we assume that the rate at which others re-
ceive traffic is Poisson and determined in each batch in-
dependently from other batches, with a very broad prior

(λtAO
$←− prior , λtOO

$←− prior). For the broad prior for all
rates we use a Gamma(α = 1, β = 1) distribution (which is
the conjugate prior of the Poisson distribution).

The model fully characterizes the distribution over all as-
pects of the system that lead to the adversary’s observations.
The main remaining challenge is to build a reverse inference
algorithm that, given the observations, provides estimates
of hidden variables. The key hidden variable of interest to
the adversary is the rate of sending between Alice and Bob
during each epoch, λtAB . All other quantities are nuisance
parameters in the eyes of the adversary, which need to be
co-estimated to ensure good accuracy.

3.2 The Likelihood Function
At the heart of our inference technique, in Sect. 4, lies the

likelihood function that is fully characterized by the gener-

ative model. The likelihood function:

L(V
(t,n)

{A,B,O,O′}|λ
t
{?}),

where λt{?} is a shorthand for λt{AB,AO,OB,OO}, represents
how likely the observation of the adversary is within an
epoch, given a set of sending rates from Alice and others to
all users. In the reminder of this section we use the short-
hand L when referring to the likelihood function.

At epoch t the adversary observes the total volumes of

traffic sent and received by each party: V
(t,n)
A , V

(t,n)
B , V

(t,n)
O ,

and V
(t,n)

O′ for every batch n ∈ N . Assuming a hidden state
of the system (i.e., the set of rates λtAB , λtAO, λtOB , λtOO),
the likelihood L that this state has generated the observation
can be computed as follows:

L = Pr[V tA;λtAB + λtAO] · Pr[V tO;λtOB + λtOO]

N∏
n=1

Ln (4)

Ln =

min (V
(t,n)
A

,V
(t,n)
B

)∑
k=0

Prb[k;V
(t,n)
A , ptab] · Prb[V

(t,n)
B − k;VO, p

t
ob]

where Ln is the likelihood that these set of rates gener-

ated each individual batch 0 ≤ k ≤ min (V
(t,n)
A , V

(t,n)
B )

models the possible number of messages sent from A to
B in the current batch n. Prb[n;N, p] is a shorthand for
the Binomial distribution, ptab = λtAB/(λ

t
AB + λtAO) and

ptob = λtOB/(λ
t
OB + λtOO). Pr[k;λ] is a shorthand for the

Poisson distribution, Pr[k;λ] = Poisson(k;λ) = λke−λ

k!
.

This expression can be computed incrementally and effi-
ciently. Given the Binomial distribution’s probability mass
function Prb[k;V, p] =

(
V
k

)
pk(1− p)V−k:

Pr[k + 1;V, p] = Pr[k;V, p] · V − k
k + 1

· p

1− p

Pr[k − 1;V, p] = Pr[k;V, p] · k

V − k + 1
· 1− p

p

3.3 The Profile Evolution Probability
The distribution E(λtAB |λt−1

AB ) represents the probability
that the sending rate λt−1

AB evolves to the rate λtAB in epoch
t. It is in effect a model of the relation of actor-action rates
across epochs.

We observe from our real-world datasets that rates λtAB
have structure. Either a sender knows a particular receiver
and they send messages with some positive rate, or they do
not know them which leads to a rate of zero. Whether a rate
is positive or zero is rather stable over time and we need to
model it as such.

As a result, we model the evolution of a rate λt−1
AB into

a rate λtAB as a two stage process. We first define a set of
probabilities that determine whether a link with a positive
or zero rate at time t − 1 retains a positive or zero rate at
time t. With probability pPZ a rate that is positive becomes
zero, and with probability pZZ a rate that is zero remains
zero. These are sufficient to determine the probabilities of
transiting from zero to a positive rate (pZP = 1− pZZ) and
retaining a positive rate (pPP = 1− pPZ).

If the rate at time either t or t − 1 is positive we define
a distribution on their difference. We have observed very
heavy tails over the distribution of differences of rates be-
tween epochs. Consequently, we model it as a mixture of two
exponential distributions: with some probability p the rate
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Figure 2: The goodness of fit between the mixture of exponentials (∆, Eq. 5) component (line) of the model for E(λtAB |λt−1
AB )

and the observed differences of positive rates in the three datasets (histogram).

difference is drawn from an exponential distribution with a
parameter λs, and with probability (1− p) it is drawn from
an exponential with a parameter λb. By naming convention,
we ensure that λs ≤ λb, which can be interpreted as the sec-
ond exponential modelling the long tail of the distribution
of differences of rates.

Overall the likelihood E(λtAB |λt−1
AB ) can be computed as:

δ = |λtAB − λt−1
AB |

∆ = p · Exp(δ;λs) + (1− p) · Exp(δ;λb) (5)

E(λtAB |λt−1
AB ) =


pZZ if λt = 0 ∧ λt−1 = 0
pZP ·∆ if λt > 0 ∧ λt−1 = 0
pPZ ·∆ if λt = 0 ∧ λt−1 > 0
pPP ·∆ if λt > 0 ∧ λt−1 > 0

(6)

The parameters pPZ , pZZ , p, λs and λb are sufficient to de-
termine the model for the transition probability E(λtAB |λt−1

AB ).
In our evaluation we infer those five numbers directly from
non-anonymized traces for each dataset separately, using an
expectation maximization (EM) algorithm. The parameters
are estimated on a separate partition of the data from the
one used for the evaluation, to prevent over-fitting.

Table 1 summarises these values for the datasets used in
the evaluation, and Fig. 2 demonstrates the goodness of fit
of the mixture of exponentials with the observed distribu-
tion of differences in the real datasets. We note that in all
datasets rates can vary considerably across epochs as wit-
nessed by the non-negligible probability of switching from
zero to positive and back, as well as the heavy tails exhibited
by the distribution over differences of positive rates. These
indicate that the assumption of stability of sending patterns
over time, at the heart of previous long-term attacks, does
not hold for traces of real-world actions.

4. THE PARTICLE FILTER
Sequential Monte-Carlo algorithms, also known as parti-

cle filters, are a family of techniques for inferring the hidden
parameters of sequential models. Our models are sequential
in nature, since λtAB is evolving forward in time, and infor-
mation needed to model λtAB at time t is contained in the
value of λt−1

AB at time t− 1.
Particle filters act on a collection of sample hidden states

of the system under observation, each represented by a parti-
cle. The distribution of particles follows the posterior prob-
ability distribution of the hidden states given the evidence
processed by the filter. Here, each particle represents a sam-
ple (λtAB , λtOB) at time t, and the collection of particles is a
non-parametric representation of the posterior distribution

function SSDFilter(V
(t,n)

A,O,B,O′)

for all particles i do
(λ0
ABi, λ

0
OBi) ∼ priors;

end for
for all epochs t do

for all particles i do

λAi, wAi
$←− Gamma(V tA + 1, 1);

λOi, wOi
$←− Gamma(V tO + 1, 1);

λBi, wBi
$←− Gamma(V tB + 1, 1);

λ′ABi, wθ
$←− Mixture M

if λ′ABi > λAi or λ
′
ABi > λBi then

reject & continue;
end if
λ′OBi ← λBi − λ′ABi;
wABi ← L(V

(t,n)

{A,B,O,O′}|λ
t
{?}) · E(λ′ABi|λt−1

ABi);

wi ← wABi/wAi · wOi · wBi · wθ;
end for
for all particles i do

(λtABi, λ
t
OBi)← Re-sample (λ′ABi, λ

′
OBi) ∼ wi;

end for
end for
return (λmax t

ABi , λ
max t
OBi );

end function

Figure 3: The SSD particle filter algorithm

over the hidden sending rates. Hence, the mean, variance
and other statistics of this collection can be used to estimate
hidden parameters of interest.

Particle filters make use of a crucial property of the poste-
rior distribution resulting from the application of Bayes rule.
The probability of a hidden state given the observations at
time t, is proportional to the likelihood of the observation
given the hidden state, as well as to the probability of the
hidden state given previous hidden states at time t−1. Con-
cretely, for the sequential disclosure attack model:

Pr[(λtAB , λ
t
OB)|V (t,n)

A,B,O,O′ ] ∼L(V
(t,n)

A,B,O,O′ |λ
t
{?})·

E(λtAB |λt−1
AB ) · Pr[(λt−1

AB , λ
t−1
OB )],

where L() is the likelihood of either the basic or robust model
(see section 3.2) and E() is the profile evolution probability
(see section 3.3). Conceptually, particles from previous time
periods represent the prior distribution Pr[(λt−1

AB , λ
t−1
OB )]. They

are each associated with a new particle, sampled from a
mixture distribution with heavy tails, which is re-weighted

using the likelihood L(V
(t,n)

{A,B,O,O′}|λ
t
{?}) and E(λtAB |λt−1

AB ).
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Finally, the new particle set is re-sampled according to the
weight to represent the posterior distribution at time t.

The pseudo-code for the particle filter algorithm is pre-
sented in Fig. 3. Particles are initialized with rates follow-
ing the prior distribution as zero or positive, as well as their
value if they are positive (using E(λ0

AB |0)). Then for each
epoch and particle we sample plausible candidate rates for
Alice, Bob, and other senders using a Gamma distribution
with a mean equal to the observed volumes of traffic. Each
particle, representing a possible prior state at t−1, is associ-
ated with a sampled candidate particle from a heavy tailed
distributionM, for time t. We tailor this distribution to pro-
pose some particles representing no communication, some
with typical communication volumes, and some with out-
landishly high rates (to ensure robustness). If the candidate
rate for λ′AB is larger than the rate with which Alice sends
or Bob receives, we simply reject it (without re-sampling).
The other sending rates and the likelihood of that particle
are then computed. We re-weight the candidate particles
multiplying the likelihood and the profile evolution prob-
ability, and dividing the probability which witch rates are
proposed. Once all particles have been processed, they are
re-sampled according to their weights. The new collection
of particles represents the posterior distribution at time t,
and the analysis of the next epoch can commence.

We experimented with a varying number of particles, and
found a number between 250–550 performs well, both to es-
timate the probability that Alice is sending to Bob at all, as
well as their communication rate. Lower number of particles
can be used for performance, but would only allow coarser
inferences to be drawn, that are also subject to more statis-
tical noise. There is an advantage in keeping the number of
particles low, as each additional particle requires computing
the likelihood function once more per epoch.

5. EVALUATION

5.1 Experimental Setup
To evaluate the sequential statistical disclosure attack we

use traffic extracted from three real datasets of different na-
ture:

eMail: The Enron dataset of email logs3 released on Au-
gust 2009. The dataset contains around 0.5M emails
messages from 150 Enron employees. We discard 11
users that have sent fewer than 20 messages during
the collection period. We note that traffic during the
weekend is systematically very sparse, but chose to not
remove it (or delay its delivery) to keep our analysis
faithful to the constraint of this dataset.

Mailing list: A dataset we collected through processing
the public archives of mailing list posts from the Inde-
pendent Media Centre4. For each publically archived
message we collected a pseudonym for the sender email
address, a pseudonym for the target mailing list, and
the date and time recorded. The dataset contains
293414 messages from 28237 unique senders, to 693
unique mailing list, over 105 months, in the period of
Jun. 2004 - Feb. 2013.

3http://www.cs.cmu.edu/~enron/
4http://lists.indymedia.org/

pZ pPZ pZZ p λs λe
eMail 0.958 0.04 0.995 0.88 1.0 4.0
Mailing list 0.982 0.02 0.998 0.97 1.0 22.0
Location 0.993 0.06 0.999 0.87 1.0 7.0

Table 1: Estimated parameters of prior and E(λtAB |λt−1
AB ).

Location: we use the Gowalla dataset5, collected from a
location-based social networking website where users
share their locations by checking-in. It contains of
6 442 890 check-ins from 196 591 users collected over
the period of Feb. 2009 - Oct. 2010.

The choice of datasets was based on both availability but
also relevance. In particular the email communications and
mailing list communications are collected from organizations
that may well have considered using privacy technologies,
such as anonymization, to protect their communications.

The traffic from each of the datasets is used as input to an
anonymity system that collects messages for one day before
outputting them in a batch. We choose this time threshold
to guarantee a reasonable balance between delay and anony-
mity. In Fig. 4 we show the batch size for different message
delays. For the eMail and Mailing list cases one day at least
is required to ensure a mean batch size in the order of a
hundred, i.e., to ensure that the mean size of the anony-
mity set of messages is ∼ 100. Shorter delay results in small
batches, some of them having only one message, and hence
provide small anonymity. Longer delays improve anonymity,
but we consider waiting more than one day to be intolerable
for users. The Location dataset, on the other hand, would
allow for smaller delays but we choose to maintain one day
for ease of comparison. (Note that the average batch size in
the Location case is larger than 15 000 messages).

We consider stable epochs to last only for one week (hence
the anonymity system outputs 7 batches per epoch). This
choice is validated by the experiments, in which we see sig-
nificant fluctuations in the users’ sending rates even for such
short periods. For this epoch duration we estimate the prior
probability of communication, and the mixture parameters
necessary to compute the probability of rate evolution ac-
cording to E(λtAB |λt−1

AB ) for the three datasets using separate
training datasets and the algorithm described in Sect. 3.3.
The estimated parameters are shown in Table 1. The addi-
tional prior pZ is computed directly and denotes the proba-
bility of a sender-receiver pair having a rate of zero within
an epoch.

In our experiments we refer to two types of traces: the
conversation traces set and the silent traces set. The former
is a set of traces in which a target sender (A) communicates
with a target receiver (B) for at least 16 weeks in a row (i.e.,
λtAB > 0), with at most three successive silent epochs in
between. The latter contains traces in which both A and B
appear in all epochs but the target sender A does not com-
municate with recipient B (i.e., λtAB = 0). The performance
of any analysis against the second set is very important as
the majority of traces encountered in the wild (96% in the
eMail dataset, 98% in the Mailing list dataset, and 99% in
the Location dataset) are silent, thus any analysis must yield
credible results against them.

5http://snap.stanford.edu/data/loc-gowalla.html
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Figure 4: Batch sizes (B) for the three datasets depending on the timed threshold (T).

The anonymized traces for each of the datasets processed
through a Timed Mix with period 1 day, and epoch length
of 7 days have the following characteristics. The Location
batches have a mean size of 14258 (σ = 4338), and the mean
sending rate of target relations in the communicating traces
is 5 per epoch (σ = 12), and the rate that others send to
the same target has a mean of 1095 per epoch (σ = 2360).
The eMail batches have a mean size of 231 (σ = 147). The
eMail communication set features an average rate of sending
of about 4 per epoch (σ = 5), and others send to the target
with an average rate of 1 per epoch (σ = 2). Finally, the
Mailing list set exhibits average batch sizes of 127 (σ = 147).
Users in the communication traces send with a mean rate of
2 per epoch (σ = 5), and others send to the same target with
a mean rate of 12 per epoch (σ = 12). The batch size of the
Mailing List and Location datasets never falls to zero (the
minimum batch size for the mailing list is > 10 and for the
Location dataset > 4000), while this is the case occasionally
for the eMail list set (on weekend days). All silent traces
exhibit similar characteristics to the communication trace
sets, except that the rate of sending of the target pair is
zero. (All numbers rounded, since their exact value varies.)

5.2 Baseline Analysis of Timed Mixes
Traditional statistical disclosure attacks (SDA), have been

formulated against simple threshold models of anonymity
systems as well as pool mixes, and assume that action pro-
files are stable over time. Yet, the anonymity system we
consider operates similarly to timed mixes, that gather mes-
sages for a fixed period of time, mix them, and send them
out in a batch. To provide a fair comparison, and tease out
the benefits of taking into account the evolving nature of
profiles, we adapt the statistical disclosure variant by Din-
gledine and Mathewson [18] to the timed mix model. At
any time the adversary keeps track of the background vol-
ume other senders direct to Bob using the volumes send by
others and received by Bob. When Alice participates in a
batch, this background estimate is used to approximate her
contribution of messages to Bob. As expected, the analy-
sis is extremely fast. For completeness, we reproduce the
algorithm in the Appendix.

We compare the new techniques to the timed-mix SDA
above, since it represents as a state of the art statistical
disclosure attack, adapted to the mix types under consider-
ation.6 We consider two different variants of the SDA. The
traditional long variant that all previous observed periods,

6We use techniques from [18] as a baseline since in
independent work we show that more recent tech-
niques such as [21] do not offer significant advan-
tages. For detailed comparisons see technical report
http://webs.uvigo.es/gpscuvigo/sites/default/
files/publications/main-globalsip.pdf

and effectively assumes that the behavior of Alice, as well as
the other senders, is overall stable. Since users are assumed
to change their sending behavior over the observation pe-
riod, we also consider a short variant that considers only
traffic within the batches of an epoch to estimate the rate
of a relationship.

5.3 Sample Trace Profile Inference
The SSD particle filter takes as input a sequence of counts

per round of mixing per epoch for Alice, Bob and others

(V
(t,n)

A,B,O,O′) and returns a set of particles per round t, namely

(λtABi, λ
t
OBi). Each set of particles represent the posterior

distribution of our belief about λtAB given all the evidence
in epochs zero to t. For every epoch we use these particles
to compute the estimated mean value of λtABSSD = 1/|i| ·∑
i λ

t
ABi. We also use each set of particles to compute the

95% confidence intervals around our estimate of λtAB , by
discarding particles with the top and bottom 2.5% extreme
values.

Figure 5 provides a graphical representation of the results
of the filter applied to a sample trace. The analysis is per-
formed over 16 weeks of traffic from a single user from the
eMail dataset transmitting to a single receiver at a varying
rate between 1 and 5 messages per week. The user mes-
sages have been mixed in batches of average size 244. The
continuous line represents the real sending rate. The discon-
tinuous line with squares � represents the mean estimate of
the SSD model about the sending rate (λ̂tSSD). The light
grey region illustrates the 95% confidence intervals around
the estimated mean. The value of each particle is also plot-
ted for each epoch t as a semi-transparent gray circle, to
illustrate their density.

For illustration purposes the result of the short term SDA
(λ̂short
SDA) and long term SDA (λ̂long

SDA) are plotted with stars
F and circles • respectively. We see the long term SDA
is overly sensitive to previous behavior, and the short term
SDA provides poorer accuracy. Neither provide any confi-
dence intervals or other indication of their accuracy. This
example illustrates that even at rather low sending rates
(< 5) the SSD model provides good results close to the ac-
tual sending rate, and confidence intervals that can distin-
guish sending behavior from silent behaviour.

We further estimate the probability the rate is very low,
defined as λtAB < 0.1, by computing the fraction of particles
under that threshold. The lower graph plots the fraction of
particles indicating no sending is taking place.

5.4 Evaluation against conversation and silent
trace sets

We measure the quality of the inference of the hidden λtAB
using a square error metric. For all attacks, we compute
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Figure 5: A sample trace with traffic analysis results over time.
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Figure 6: Square error between the rate prediction and actual rate of senders for individual epochs of the Sequential Statistical
Disclosure compared with the traditional statistical disclosure over the short and long term. Communication and Silent traces.

(λtAB − max(λ̂tAB , 0))2 (when SDA estimates are negative
we consider them to be equal to zero). Lower errors denote
higher accuracy when profiling. Figure 6 summarizes the
performance of the SSD model, as well as short and long
term SDA against 100 user traces over 16 weeks. A standard
box plot is provided summarising the distribution of square
errors in the communication trace set (comm) and silent
trace set (silent), for all attacks and for all data sets.

Fig. 6 illustrates that the typical quality of the SSD es-
timate of hidden communication rates is higher than for
the traditional SDA models. We observe this when deploy-
ing the SSD model against traces containing conversations
(Comm) in all datasets. The mean square error is for the
SSD 11.7, 5.18, and 84.7 in eMail, Mailing List and Loca-
tion respectively compared with 12.7, 9.1, and 3783.8 for
the short SDA and 19.6, 6.8, 83069.5 for the long SDA (the
difference between the means of the SSD and the long SDA
for the Mailing list dataset is only significant with CI 95%,
while other differences are significant with CI 99%). Im-
portantly the SSD model performs very well against traces
where no conversation is taking place (Silent). For silent
traces the square error of the SSD is 0.7, 0.6 and 1.2 for the
eMail, Mailing List and Location data sets respectively and
2.8, 7.0 and 2364.7 for the short SDA and 0.8, 4.3 and 358.3
for the long SDA (the difference between the SSD and long
SDA for the eMmail dataset if not significant, while others
are significant with a 99% CI). Long term SDA assumes that
the rates of Alice to Bob, as well as others to Bob are stable
across the weeks of analysis. It performs better against the
Mailing List and Location datasets, but worse against the

eMail dataset, where this assumptions does not hold. The
short term SDA, performs as well as the long term SDA in
the eMail dataset. Yet, it still under performs compared
to the SSD method for two key reasons: it cannot use any
past information, and it makes use of a much more naive
likelihood model within each epoch.

It is worth noting that the values of the square error in
Fig. 6 have a direct interpretation. They represent the vari-
ance of the error of the adversary when performing the traf-
fic analysis attack. The SSD error variance for the eMail
dataset is on average less than σ2

err < 12. Modelling the
error as a Normal distribution this means that the 95% C.I.
intervals would be within about 2 standard deviations of
the mean, i.e. µerr ± σerr = µerr ± 6.9 (or 3 standard devia-
tion for a 99% C.I.). This empirical error indicates that for
sending rates below about 7 messages per week the adver-
sary will not reliably detect a communication, and that more
frequent communications are susceptible to being detected.
For the Location data set this heuristic threshold is around
18. We stress this is a very approximate rule of thumb – the
confidence intervals resulting from the particle filter should
provide a better estimate of the actual error of any specific
trace under analysis, and Sect. 5.5 studies detection in more
detail.

While Fig. 6 illustrates the performance of different mod-
els epoch by epoch, Fig. 7 illustrates the sum of square er-
rors for a whole 16 epoch trace. The analysis is performed
on the conversation trace set (Comm) and the silent trace
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set (Silent). We can qualitatively7 say that lower per epoch
error leads to lower per trace error for the SSD compared
with the other models in the eMail and Location datasets.
For the mailing list set the SSD model and long term SDA
are equivalent for communication traces, but in all datasets
the SSD models outperform the SDA for silent traces. In-
terestingly, the noise of the short term SDA results in high
error for both the conversation and silent trace set. This is
troubling, as it would lead an analyst to mistakenly believe
some conversation took place within the period. The long
term SDA does suffers less from false positives against silent
traces.

5.5 Communication detection
Sect. 5.4 illustrates the square error of the SSD model and

the SDA models in infering the rate of selected communica-
tion and silent trace sets. Yet the most important factor to
determine the practicality of an attack is its susceptibility
to false positives, namely epochs when no messages are send
from Alice to Bob, that we nevertheless classify as contain-
ing communications. As all the datasets suggest the prior
probability that any communication takes place is extremely
low, and even a low false positive rate is likely to produce a
volume of mistaken patterns larger than the real patterns.

We study the true positive and false positive performance
of the SSD and SDA models using Receiver Operating Char-
acteristics (ROC) curves. An ROC curve plots the perfor-
mance of a binary classifier in terms of the trade-off that
it can achieve between true positive rate and false positive
rate. The true positive rate denotes the fraction of positives
that are classified as positives, and the false positive rate
denotes the fraction of negatives that have falsely been cat-
egorized as positive. We turn both the SSD and SDA mod-
els into binary classifiers to detect in each epoch whether
the rate between specific a sender and receiver was above a
threshold. For the eMail and Mailing list data set we chose
this threshold to be λAB ≥ 5 and for the location dataset
λAB ≥ 10, slightly lower than the heuristic based on the
square error observed (see previous section). The particle
filter implementing the SSD inference profiles a distribution
over the inferred rate, that allows us to calculate a probabil-
ity Pr[λAB ≥ 5] = γ. We can classify an epoch as positive
if γ exceeds some threshold, and negative otherwise. Mod-
ulating this threshold provides a different trade off between

7The relatively low sample of full traces we analyzed does
not allow us yet to state these with greater certainty.

true positive rates and false positive rates. The SDA models
do not provide a measure of certainty, so we use the actual
estimated rate as the feature, and categorize as positive or
negative traces according to a threshold on the estimated
rate.

Fig. 8 summarises the trade-off between true positive and
false positive rates for all attacks against all datasets. The
results were obtained through the analysis of 200 traces of 16
weeks each for each dataset. Note that the x-axis denoting
false negatives has been cropped at 0.25 to better illustrate
the performance for low false positives.

We observe that the SSD model outperforms the SDA
models for in the extremely low false positive region. In
fact in the eMail and Location datasets it achieves a sig-
nificant rate of detection of true positives (about 30% and
20% respectively) at less than 1% false positive rate. The
high performance in the eMail dataset may not come as a
surprise, due to the relatively small batch sizes; the SDA
models also offer good performance, for slightly larger rates
of false positives. What is extremely surprising is the good
performance against the Location dataset, where batch sizes
number thousands of messages. In this set the relatively high
performance could be explained by observing that a num-
ber of locations are only reported by a single sender. This
hypothesis is supported by the relatively poor performance
of all models against the Mailing List dataset, where a spe-
cific mailing list is expected to receive considerable volume
of traffic by multiple senders.

We conclude that in terms of certainty the SSD model
outperforms the traditional SDA models, and its estimates
of error are useful indicators of the quality of the inference
and the expected false positives. A higher level conclusion
relates to the quality of protection that can be expected from
an anonymity system: the literature has so far concentrated
on measures such as batch size, but in fact we demonstrate
that the nature of the high level traffic patterns can have a
profound effect on the ability to de-anonymize a large frac-
tion of relationships. The Mailing list and eMail datasets
have comparable batch sizes, yet the quality of protection
they lead to is quite different; while the Location dataset
leads to enormous batch sizes, the quality of protection for
a sizeable number of higher volume senders is pretty poor.

6. CONCLUSION
The Disclosure Attack [1] first illustrated that despite the

use of an anonymity system an adversary can infer users’
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Figure 8: ROC curves for the detection performance for the three attacks (eMail and Mailing list: λAB > 5, and Location:
λAB > 10).

communication profiles. The literature since predicated the
success of these attacks on observations over long periods of
profiles that are stable. Our results show that de-anonymi-
zation risks on real-world patterns of behaviour materialize
even when using anonymity systems for a relatively short
time, and despite profiles constantly evolving.

The sequential statistical disclosure (SSD) allows a traffic
analyst to systematically combine information from succes-
sive epochs to track behaviour changes despite of the ano-
nymity system. It is rooted in well-understood Bayesian
inference techniques, and yields profile estimates alongside
reliable information about their validity. These can be used
to assess the quality of the inference, and in particular distin-
guish the existence of a communication patterns with lower
false positives than previously expected.

The structured approach of defining a model, and then
a particle filter based inference engine to estimate its hid-
den parameters offers a lot of flexibility: tracking additional
hidden values simply involves augmenting the state of parti-
cles, and making use of additional side information involves
modifying the priors or likelihood function. A better model
of how profiles evolve over time can also be used straight-
forwardly.

We have evaluated the SSD against three real-world data
sets of different nature, comparing it to state-of-the-art dis-
closure attacks. Our method outperforms previous propos-
als both at detecting the existence of communication and at
quantifying its intensity. The key to this success is to cor-
rectly model real traffic transitions between communication
and silent periods, as well as carefully take into account the
prior rate of communications to tune the detector. We show
that in the presence of enough evidence (volumes larger than
5 messages per week for the eMail and Mailing list traffic,
and 10 for the Location dataset) the sequential statistical
inference identifies a significant fraction of conversing users
with high accuracy.

Thus the modelling assumptions that disclosure attacks
introduced inadvertently mislead the community to believe
that any attacks would be less effective on real-traffic than
what our experiment demonstrate: they can be effective for
rather low action rates; they are effective over a much shorter
period of time than previously thought; and they can be ef-
fective against system configurations previously considered
secure (e.g., in the Location dataset batches’ sizes vary be-
tween 6400 and 26600 messages). These observation should
motivate the study of anonymizing systems under real-world
patterns of use, and a re-examination of key figures of merit
such as the size of batches that have been used in the past
as proxies for the security offered.
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APPENDIX
A. TIMED MIX SDA ALGORITHM

function TimedMixSDA(V
(t,n)

A,O,B,O′)

ûO, ûOB , l̂AB ← 0, 0, 0

for all V
(t,n)

A,O,B,O′ do

T ← V
(t,n)
A + V

(t,n)
O . T ≡ Batch size.

ûO ← ûO + V
(t,n)
O

ûOB ← ûOB + V
(t,n)
O · V (t,n)

B /T

if V
(t,n)
A > 0 then
p̂OB ← ûOB/ûO

l̂AB ← l̂AB + V
(t,n)
B − p̂OB · V (t,n)

O

end if
end for
return l̂AB . Estimated rate from Alice to Bob.

end function
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