Private Web Search with Malicious Adversaries*

Yehuda Lindell and Erez Waisbard

Department of Computer Science
Bar-Ilan University, ISRAEL
{lindell,waisbard}@cs.biu.ac.il

Abstract. Web search has become an integral part of our lives and
we use it daily for business and pleasure. Unfortunately, however, we
unwittingly reveal a huge amount of private information about ourselves
when we search the web. A look at a user’s search terms over a period of
a few months paints a frighteningly clear and detailed picture about the
user’s life. In this paper, we build on previous work by Castella-Roca et
al. (Computer Communications 2009) and show how to achieve privacy
in web searches efficiently and practically without resorting to full-blown
anonymous routing. In contrast to previous work, our protocol is secure
in the presence of malicious adversaries.

1 Introduction

It is well known that users’ search terms to web search engines contain
significant amounts of sensitive information and, as such, the aggregation
and use of these terms constitutes a severe privacy breach. The only way
that a user can protect him or herself from this breach today is to use an
anonymous routing system like Tor [7]. However, this can sometimes be
an “overkill” measure. This is especially the case since in order to achieve
a high level of security, such systems cause a considerable slowdown.

Recently, an interesting model for solving this problem was suggested
by [2]. Essentially, their proposal is for a group of users to first shuffle
their search words amongst themselves. After the shuffle, each user has
someone’s search word (but doesn’t know whose), and the parties then
query the search engine with the word obtained. Finally, the parties all
broadcast the result to all others. This model is especially attractive be-
cause it doesn’t involve the overhead of installing a full-blown anonymous
routing system, and can be provided as a simple web service.

In [2], the authors present a protocol for private web search in the
above model that is secure in the presence of semi-honest adversaries.
That is, users’ privacy is maintained only if all parties follow the protocol
specification exactly. We argue that this level of security is not sufficient,

* This research was generously supported by the European Research Council as part
of the ERC project "LAST”.

especially due to the fact that the protocol of [2] has the property that
a single adversarial participant can easily learn the queries of all users,
without any malicious behavior being detected. This means that an ad-
versarial entity who is a participant in many searches can learn all of the
users’ queries without any threat of retribution.

Our results. In this paper we construct a protocol for private web search in
the model of [2] that is secure in the presence of malicious adversaries that
may arbitrarily deviate from the protocol specification in order to attack
the system. Our main technical tool is a highly efficient cryptographic
protocol for parties to mix their inputs [3] that guarantees privacy in
the presence of malicious adversaries. Unlike the usual setting of mix-
nets, here the parties themselves carry out the mix. The novelty of our
approach is based on the observation that, unlike the setting of voting
where mix-nets are usually applied, the guarantee of correctness is not
necessary for private web search. That is, we allow a malicious participant
to carry out a “denial of service” type attack, causing the search to fail.
In return, we are able to omit the expensive zero-knowledge proofs of
correctness in every stage of the mix.

We stress that simply removing the correctness proofs from a standard
mix protocol yields a completely insecure protocol that provides no pri-
vacy. For example, we still have to deal with “replacement attacks” where
the first party carrying out the mix replaces all of the encrypted search
words with terms of its own, except for the one ciphertext belonging to
the user under attack. In this case, the result of the mix completely re-
veals the search word of the targeted user (because all other search words
belong to the attacker). Our solution to this problem (and others that
arise; see Section 3) is based on the following novel idea: instead of in-
putting search words into the mix, each party inputs an encrypted version
of its search word. Then, after all stages of the mix are concluded, each
party checks that its encrypted value appears. If yes, it sends true to all
parties, and if not it sends false. If all parties send true, they can then
proceed to decrypt the search words because this ensures that no honest
party’s search word was replaced. However, this raises a new challenge
regarding how to decrypt the encrypted search word. Namely, a naive
solution to the problem fails. For example, if each party encrypted their
search word using a one-time symmetric key, then sending this key for
decryption reveals the identity of the party whose search word it is. We
therefore use a “one-time” threshold encryption scheme based on ElGa-
mal [8] and have the parties encrypt the search words with the combined
key. The parties then send their key-part in the case that all parties sent

true (a similar idea to this appears in [2] but for a different purpose).
We call this a private shuffle in order to distinguish it from a standard
mix-net. We provide a formal definition of security for a private shuffle
and have a rigorous proof of security under this definition.

As we have mentioned, the private shuffle is the main technical tool
used for obtaining private web search. However, as is often the case, the
cryptographic protocol at its core does not suffice for obtaining a secure
overall solution. In Section 5 we therefore discuss how a private shuffle
primitive can be used to obtain private web search, and in particular how
to bypass non-cryptographic attacks that can be fatal. One major issue
that arises is how to choose the group of participants, and in particular,
how to prevent the case that the adversary controls all but one participant
(in which case the adversary will clearly learn the input of the sole honest
party). This issue was not addressed in previous solutions.

Related work. A number of different anonymity-preserving techniques can
be used in principal for private web search. For example, private infor-
mation retrieval [4, 11] provides the appropriate guarantees. However, it
is far too inefficient. A more natural candidate is a to use a mix-net [3].
However, as we have mentioned, considerable expense goes into prov-
ing correctness in these protocols. In addition, doing this efficiently and
securely turns out to be quite a challenge; see for example [10, 6]. For fur-
ther comparisons of existing techniques to the model that we adopt here,
we refer the reader to [2] and the reference within. We remark that our
protocol is about twice as expensive as the protocol of [2], and thus the ef-
ficiency comparisons between their solution and other existing techniques
can be extrapolated to our solution. (For some reason, however, they used
ElGamal over Z; with a large p instead of an Elliptic curve group that
would be considerably more efficient.) Our solution has some similarities
to that of [2]. However, their protocol suffers from a number of attacks in
the case of malicious adversaries, as described below in Section 3.

2 Definitions

In this section we present our definition of security for a private shuffle
primitive. The shuffle functionality is simply the n-ary probabilistic func-
tion f(z1,...,2n) = (Y1,---,Yn), such that for every i, y; = x,;) where
7 is a random permutation over [n]. Intuitively, a shuffle is private if an
adversary cannot link between the inputs of the protocol and the outputs
of the protocol. Namely, the adversary should not be able to link y; to
an honest party P; where j = 7(7). Denoting the number of corrupted

parties by t, we have that a random guess regarding a “link” is correct
with probability ﬁ Thus, we formalize security by requiring that an
adversary controlling ¢ parties can output (i,j) where P; is honest and
j = m(i) with probability that is at most negligibly greater than ﬁ

The security experiment. We assume that the parties communicate
over an open network with unauthenticated channels. We model this net-
work by having all communication go through an adversary that can lis-
ten to all the communication, delete messages and inject messages of its
choice. This is formally modeled by providing the adversary with stateful
oracles that model the honest parties, as in [1]. The experiment modeling

the success of the adversary appears in Figure 1.

FIGURE 1 (The Security Experiment ExptShuferﬁ;{’”7r (k)

1. Invoke the adversary A with input 1% and with parameters ¢t and n (k is the
security parameter determining the key sizes).
2. Receive from A a set of ¢ indices I C [n] designating the corrupted parties

(note that |I| = t), and a vector of n — ¢ distinct inputs wy, ..., wn—; for the
honest parties.
3. Choose a random permutation 7 over {1,...,n — t} and initialize the ith

honest-party oracle with input wy .
4. Execute the shuffle protocol, where A interacts with the n — ¢ oracles (who
each runs the shuffle protocol honestly based on messages received from .A).
5. When it concludes, the adversary outputs a pair (4, j) for any 4, 5 of his choice.

We say that the adversary succeeds in the experiment, in which case the output of
the experiment ExptShuferfg{f7r (k) equals 1, if and only if 7 () = j.

Defining security. We are now ready to define security. First, we require
non-triviality, meaning that if all parties are honest, then the protocol out-
put is a permuted vector of the inputs. Next, we require that an adversary
controlling ¢t out of the n parties can succeed in the experiment ExptShuffle
with probability that is only negligibly greater than ﬁ (where negl is a
negligible function if for every polynomial p and all large enough k’s it
holds that negl(k) < 1/p(k)):

Definition 2 A protocol 7w is a private shuffle if it is non-trivial, and if
for every probabilistic polynomial-time algorithm A, every integer n € N
and every 0 < t < n, there exists a negligible function negl(-) such that:

1
Pr | ExptShuffle’" (k) = 1| < —— + negl(k)

3 Constructing a Private Shuffle

In order to motivate our construction, we begin by describing the protocol
of [2] that is secure in the presence of semi-honest adversaries. We then

describe the difficulties that arise when moving to the malicious model. A
basic tool that is used is called ElGamal remasking. Intuitively, a remask-
ing operation is a procedure that takes a ciphertext and rerandomizes it
so that the result cannot be linked to the original ciphertext. Recall that
an ElGamal encryption of a message M with public-key (g,y) is com-
puted by choosing a random r € Zj (where the group has order ¢) and
computing u = ¢" and v = y" - M; the ciphertext is the pair ¢ = (u,v).
The remasking operation is computed as follows:
remask(u,v) = (u-g" ,y" - v)

where 1’ €g Z;. Observe that when (u,v) = (¢",y" - M) it follows that
remask(u, v) = (¢" ",y M) and so it is a valid encryption of the same
message under the same public key. The fact that remask(u, v) cannot be
linked to (u,v) is due to the fact that r' is random and follows from the
decisional Diffie-Hellman (DDH) assumption. An informal description of
the protocol of [2] appears in Protocol 3.

Protocol 3 (The protocol of [2] for semi-honest adversaries (overview))

o Parties Py, ..., P, generate a joint ElGamal public key y = [[}_, g*¢, where
x; denotes the private key of each party.

e Every party P; encrypts its search word w; using the joint public key,
obtaining c? = (u(;, v?), and sends it to everyone.

e For every i = 1,...,n, party P; does the following:
~ Remasks the ciphertexts (ci™',..., ¢4 ") it received from Pi_;.
— Randomly permutes the remasked ciphertexts.
— Sends the shuffled and remasked ciphertexts to Pit1, except for party P,
who broadcasts the result to all the parties.

e Given the shuffled and remasked ciphertexts (ct,...,cy), each party P;
decrypts a single ciphertext ¢ = (uj, v;"). This is carried out as follows:
— Each party P; sends each P; the share (uj')® for every 4,5 € {1,...,n},
where z; is P;’s private key.

n
v

— Given the shares from all parties, each P; computes w; = W
j=1{%;

Although Protocol 3 was defined for the semi-honest model, it is in-
structive to see what attacks can be carried out by a malicious party:

Stage-skipping attack: A malicious party P, may remask and per-
mute the initial vector of ciphertexts sent by the parties instead of
the vector that it received from P,_;. In this case, when the vector
is decrypted P, will know exactly which party sent which message.
Observe that this behavior would not be detected because the remask
operation looks identical when applied once or n times.

Input-replacement attack: A malicious party P; can learn the input
w; of an honest party P; by replacing all the ciphertexts in the in-

put vector with individually remasked copies of the initial ciphertext
(u?,v?). In this case, all of the parties receive wj; in particular P
receives w; and so knows the search term of P;.

Targeted public-key attack: A malicious P, may compute its share
of the public key after given all of the g¥* values of the other parties.
Specifically, P, sets its share of the public-key to be h = g*»/ (H?;ll g*)
for a random x,. Observe that any encryption under y = [["; ¢™ is
actually an encryption under g** only because h -y = ¢®**. Thus, P,
can decrypt the values of all parties and learn who sent what. Once
again, this attack would go completely unnoticed.

Private shuffle for malicious adversaries. We now motivate our pro-
tocol for private shuffle that achieves security in the presence of malicious
adversaries. First, in order to guarantee privacy, we need to ensure that at
least one honest user remasks and permutes all of the ciphertext values.
This involves ensuring that all parties take part in the shuffle and that
the parties shuffle the actual input values (that is, we need to ensure that
neither a stage-skipping nor input-replacement attack is carried out). The
classic way of achieving this in the mix-net literature [3, 10, 6] is to have
each party P; prove (at each stage) that the values that it passed onto
P;41 are indeed a remasked and permuted version of what P; received from
P;_1. However, this is a costly step that we want to avoid. We therefore
provide an alternative solution that is based on a two-stage protocol with
double encryption of each input. In the first stage the parties shuffle the
inputs without verifying correctness, while gradually removing the outer
encryption. Then, at the end of this stage there is a verification step in
which all parties check that their input value is still in the shuffled array
(under the inner encryption). If all parties acknowledge that their value is
present then we are guaranteed that all parties participated in the shuf-
fle and that no inputs were replaced. We can therefore safely proceed to
the second stage of the protocol where the inner encryption is privately
removed, revealing the shuffled inputs. In addition to the above, we pre-
vent the aforementioned targeted public-key attack by having each party
prove that it knows its associated secret key.

We note that in order to prevent a powerful man-in-the-middle ad-
versary from playing the role of all parties except for one, we assume the
existence of a PKI for digital signatures; see Section 5 for a discussion of
how to achieve this in practice. In addition, we assume that all parties
hold a unique session identifier sid (e.g., this could be a timestamp), and
a generator g and order ¢ of a group for ElGamal.

Protocol 4 (Private Shuffle with Malicious Adversaries)
Input: Each P; has a search word wj, and auxiliary input (g, q) as described.
Initialization Stage:

1. Each party P; chooses random o, 8; € Z;, sends g%, g% to all the other
parties and proves knowledge of o, 3; using a zero-knowledge proof of
knowledge. P; signs the message it sends together with the identifier sid
using its certified private signing key (from the PKI).

2. Each party verifies the signatures on the messages that it received and
aborts unless all are correct.

3. Each party P; encrypts its input w; using the public g®* shares of all the
other parties. That is, it chooses a random p; €r Z; and computes an
encryption ¢; = (gfi, gPi=i=1% ;). (The value g>=i=1 % is computed by
multiplying all of the g%¢ values received in the previous stage.)

4. Each party P; re-encrypts its ciphertext c; using the public ¢”* shares:
(a) The party computes Ag = [[I_, ¢’ = g=i=1Pi
(b) It chooses a random value p; €r Z;))

(c) It encrypts c; by computing (u),v]) = (¢”7, (A0)"i - ¢;) and sends the
result to all the other parties.
The output of this phase is the list of the encrypted c;’s of all the parties,
denoted po = {(uf,v?), ..., (ud,v2)).
Shuflle stage: For j = 1,...,n, party P; receives vector p;—1 and computes
a shuffled version p; as follows:

Jj—1

1. For every (u] ,vf;l) in pj—1, party P; carries out the following steps:

a) Remask: it chooses a random 7% € Z; and computes
j a
(uhof) = (™" 5,0l (Aye)) where Ay_y = gBims

3
where the computation of A;_; can be carried out using the g% values
sent in the initialization phase.
(b) Remove g;: it computes (ul,v!) = (u;,u'i_ﬂj) - v})
2. Pj chooses a random permutation 7; over {1,...,n} and applies it to the
list of values (uz7 vf) computed above; denote the result by p;.

3. Pj sends pj to Pjy1.
The last party P, sends u, to all parties.

Verification stage:

1. Every party P; checks that its encryption ¢; of w; under public key
[I7, 9% is in the vector pn. If yes it sends (sid, Pj,true), signed with
its private signing key, to all the other users. Otherwise it sends (P;, false).

2. If P; sent false in the previous step, or did not receive a validly signed
message (sid, P;,true) from all other parties P;, then it aborts. Otherwise,
it proceeds to the next step.

Reveal stage:

1. For every (u;,v;) def (ui',vi') in pn, party P; removes its a; from the en-
cryption by sending s! = uiaj to P; (including sending sj- = u?’ to itself).
vj

%

2. After receiving all the shares s,

every party P; computes w; = =
i=1%j
thereby removing the second layer of encryption and recovering the clear-
text word w; (here j denotes the current index in u, and not the index of

the party who had input w; at the beginning of the protocol).

7

Remarks on the protocol:

1. For the sake of efficiency, the zero-knowledge proof in the initialization
stage can be implemented by applying the Fiat-Shamir heuristic [9]
to Schnorr’s protocol for discrete log [12]. In order to achieve indepen-
dence, we also include the sid and the party ID of the prover inside the
hash for generating the “verifier query”. It is also possible to use the
methodology of [5] at the expense of logn rounds of communication.

2. Observe that each input w; is encrypted twice under ElGamal. How-
ever, the result ¢; of the first encryption is actually two group ele-
ments. Thus, if the same group is used for both layers of encryption,
then we need to separately encrypt the two elements in c¢;. For the
sake of clarity, we present the protocol as if the second encryption
under Ag is a larger group in which encryption of both elements is
achieved in a single operation.

3. In the first stage of the protocol every party participates in the shuffle.
However, as we will see in the proof it suffices to ensure that one
honest party participated. Thus, if we assume that at most ¢ parties
are malicious (for ¢t < n), then we can run the shuffle stage for j = 1
to t 4+ 1 only, reducing the number of rounds from n to t + 1.

Non-triviality. The non-triviality requirement of a private shuffle is
that if all parties are honest then the output is a permutation of the input
values (w1, ..., wy,). We prove that this property holds for our protocol by
following a single message wy that goes through the protocol, and showing
that all the layers of encryption that are added are properly removed. For
clarity, we present this for the case that no permutations are applied (and
thus the indices remain the same); this clearly makes no difference.

1. In the initialization phase the message wy is encrypted first with
gz?ﬂ“i (using random py) resulting in ¢y, and then ¢ is encrypted
with g2-i=17 (using random value p}) yielding the pair (u?,v?) where
u) = gPe and vy = (Ag)Pt - ¢ = gPri=iBi . ¢,

2. Assume that before the jth iteration begins, the pair (ugfl,vgfl) is
an encryption of ¢, under the ElGamal public key A;_; = gzy:j Pi
This clearly holds for j = 1 by the way (u),v?) are generated. We
show that this holds after the jth iteration concludes. By the above
assumption, before the jth iteration begins, there exists a value r € Z;

such that ug_l = ¢" and vg_l = (A;-1)" - ¢¢. In the jth iteration of
i £ 4
the shuffle stage, party P; computes u), = u; Log = ¢"" and

4 Y4

vp =) (A) = (Aja) e (A1) = (A1) - ;. Thus
(ujy, vy) constitute an encryption of ¢, under public-key A;_;.

jo_ .1 rtrt i 1B
Next P; computes uy = u;, = g "7 and v, = u', "’

4
r+r]-

that o) = g A0 AT gy = g0 U B

- vy. It follows

! =

r4rt

g(Hrﬁ)Z?:Hlﬂi cg=A; 7 - cp. We therefore conclude that after the
jth iteration, the result is an encryption of ¢, under A;, as required.

3. From the above, we have that after all n iterations are concluded the
value ¢y is obtained in the clear (observe that A, = ¢ = 1).

4. Next, if all the parties are honest, then they all send true in the veri-
fication stage, and all send Py the values s) = uj® (for every). Recall
that ¢, = (ug,vg) where uy = g and v, = gPé’Z?:l @ . w,. Now,
[T, sh =TI upt = [, gPr*i. Thus, vy = []i, s} - we, implying

that ==£— = wy, as required.
115 s¢

We have proven that the output of the protocol consists of all the original
inputs. The shuffle function definition also requires that these be in a
randomly permuted order. However, since each party applies a random
permutation to the vector of ciphertexts, this immediately follows. We
conclude that when all parties are honest, the protocol computes the
shuffle functionality as defined.

4 Privacy of Shuffle Protocol

The security of the protocol is based on the decisional Diffie-Hellman
(DDH) assumption. Informally, this states that an adversary can distin-
guish tuples of the type (g, g%, g%, g?°) from tuples of the type (g, g%, ¢, g¢),
where a,b, ¢ are random in Zj, with probability that is negligible in k
(where k is the bit-length of ¢). We have the following theorem:

Theorem 5 Assume that the decisional Diffie-Hellman (DDH) assump-
tion holds in the group of order q generated by g. Then, for every prob-
abilistic polynomial-time algorithm A, every integer n € N and every
0 < t < n, there exists a negligible function negl(-) such that:

1
Pr | ExptShuffle’{" (k) = 1| < — -+ negl(k)

We now provide intuition as to why the above theorem holds. The
most important point is that as long as at least one honest party carries
out the shuffle (remask and permute) operation on the vector of inputs,
the adversary can succeed in ExptShuffle with probability at most neg-
ligibly greater than 1/(n — t). This is due to the fact that by the DDH
assumption, no polynomial-time adversary can link between an ElGamal

encryption (u;,v;) and its remasked version (u},v}), without knowing all

0; values. Thus, after an honest party remasks and permutes the values,
the trail from the party who initially sent the relevant encryption is lost.
Of course, it is necessary to show that the reveal stage at the end does
not de-anonymize the values; however, this is straightforward. In order
to show that at least one honest party carried out the shuffle, we show
that unless the vector pu, is the result of all parties carrying out the
shuffle in turn, the honest parties all abort (except with negligible proba-
bility). In order to see this, we first argue that if an adversary carries out
an input-replacement or stage-skipping attack (as described above), then
the honest parties all abort except with negligible probability.

1. Input-replacement attack: The honest parties all encrypt their inputs
w; under gH?:l % and then re-encrypt the result under gH?:l P . Thus
the adversary does not know the value of the ciphertext ¢; which is the
encryption of w; under gH7:1 % . Since this ciphertext value is of high
entropy (even if w; is not), it follows that if an honest party’s input
P; is replaced at any stage of the computation, the correct ¢; will not
appear in the verification stage. In this case, P; will send (P}, false)
and all honest parties will abort. Note that since the true confirmation
messages are signed, an adversary that controls the communication
channels cannot send a true message when the actual P; sends false.

2. Stage-skipping attack: This attack refers to a malicious party P; re-
masking and permuting a vector u; instead of j;_1, where 1 < j —1
and an honest party Py is between P; and P; (note that such an at-
tack is not a replacement attack). In order to see why such an attack
is detected, recall that the g% component of the outer encryption is
removed iteratively in each stage. Thus, if P; takes p; it follows that
the encryption under g? is not removed. In such a case, none of the
correct ciphertexts (encrypted under gHLlO‘J) will be obtained and
all honest parties will send false and abort. (This explains why the §;
components are removed iteratively, and not all together at the end.)

The intuition is completed by observing that if an adversary does not
carry out an input-replacement or stage-skipping attack, then it holds
that all honest parties participated in the shuffle, as required. The full
proof is omitted here due to lack of space in this extended abstract; the
full proof will appear in the full version.

5 Private Web Search

In this section we show how to use a private shuffle in order to achieve
private web search. As we will show below, a system for private web search

10

needs to take into account additional considerations that are not covered
by the notion of a private shuffle (or even a fully secure mix-net). In this
section we address these considerations, describe the assumptions that we
make, and present a general scheme that models real-world threats and
is thus implementable in practice.

5.1 Background

As in [2], the basic idea of the scheme is to allow many users who wish
to submit a web query to team up in a group, shuffle their queries in a
private manner and then have each of them perform one of the queries
without knowing who it belongs to. Upon receiving back the query re-
sults, each party just sends them to all others in the group so that the
original party who sent the query can learn the result. This methodology
prevents the search engine from linking between a user and its search
query. Furthermore, the users in the group do not know on whose behalf
they send a query; all they know is that it belongs to someone within
the group. An important question in such a system is how to group users
together. One possibility is to do this in a peer-to-peer way, so that when-
ever a user has a query it can notify the peer network in order to find
out who else has a query at this time. The parties with queries can then
join in an ad-hoc way in order to privately shuffle them before sending
them to the search engine. (Note that parties who are currently idle can
help by sending dummy queries, if they like.) This is a feasible model,
but has significant implementation difficulties. The alternative suggested
by [2], and one that we follow for the remainder of this section, is to use
a central server whom anyone interested in searching can approach. The
server then notifies the parties wishing to currently search of each others’
identities so that they can form a group in order to carry out a private
shuffle. This model is easily implemented by simply having the server be
a website offering a “private search” utility.

As we mentioned in the introduction, the problem with the scheme
suggested by [2] was that it assumed that all parties are semi-honest.
In our view this is highly unrealistic, especially since a single corrupt
party can completely break the privacy of the scheme and learn every
party’s search query. We now show how to achieve private web search
in the presence of malicious adversaries. In order to do this, we use the
private shuffle protocol presented in Section 3 that maintains privacy in
the presence of malicious adversaries. We stress that private shuffle within
itself does not suffice for obtaining private web search in practice for the
following reasons:

11

1. A malicious central server can choose the group so that it controls
all but one user. As we explain below, this completely bypasses the
security guarantees of the shuffle.

2. The result of the web search queries must be sent to all parties because
we don’t know which user sent which query. This means that users
learn the search results for all the members in their group, which is
much more information than necessary (although the search engine
must learn all queries, this is not the case for users).

Below, we will present a system for web search that uses the private shuffie
protocol, while addressing the above concerns.

5.2 A Private Web Search System

Our solution is comprised of four phases that together enable private web
search:

e Phase 0: Installation and initialization
e Phase 1: Ad-hoc group setup
e Phase 2: Private shuffle of the search queries

e Phase 3: Query submission and private response retrieval

We remark that an ad-hoc group can be used for many searches, and
ideally would be used for a session of a reasonable amount of time. This
enables us to reduce the overhead due to running phase 1.

Phase 0 — installation and initialization: Our private shuffle proto-
col requires a PKI and communication with a central server. A natural
realization of this would be as an Add-on to a web browser that would
supply a functionality which is similar to the search window in the most
common web browsers. This Add-on would contain the address of a cen-
tral server (or a list of servers). Regarding the PKI, since most users do
not have a certificate for digital signatures, we have to generate one. The
most practical way to do this would be to use a one-time activation of the
Add-on after installation, in which a key pair is generated and a digital
certificate then downloaded from a CA. Recall that without a PKI, the ef-
ficient verification in our private shuffle protocol does not guarantee that
it was the honest parties in the group that sent true in the verification of
the shuffle stage. We stress that a different certificate can be installed on
every machine using the Add-on.

12

Phase 1 — ad-hoc group setup: As mentioned above, users group
together with the help of a server S that aggregates the identities of
users that wish to currently engage in private web search. Conceptually
speaking, in terms of role and trust, the server should be no more than a
bulletin board for anonymous users who wish to create an ad-hoc group.
In [2], the server was assumed to be a trusted entity who does not collude
with any of the users nor with the web search engines. However, the role
of grouping users together carries with it a lot of power that can easily
be abused. Specifically, consider a server that has ¢ > n machines at its
disposal (or even a single machine that can pretend to be ¢ different users),
where n is the size of the group. Then, the server can always group some
single honest user with n — 1 of the ¢ server-owned users. If an honest
user runs a private shuffle in this way, then its privacy is completely lost
because the server knows the search queries of all the users except for the
honest one. Thus, at the end of the protocol when all queries are revealed,
the server knows the exact query made by the honest user. We stress that
this holds even if the mix carried out is perfectly secure.

In order to prevent the server from grouping the users as it wishes,
we have all parties run a type of joint coin tossing protocol so that the ¢
parties controlled by a malicious server are uniformly distributed within
all the groups running the shuffle. Let N denote the overall number of
parties in the system, let ¢ denote the overall number of parties under
the control of the malicious server, and let n be the size of each group
running the shuffle. Our coin-tossing protocol uses two random oracles
H; and Hs. Each party P; sends Hi(IP;, PK;,r;) to the server to be
posted (where r; is a long random string). Then, the groups are formed by
applying Hj to all the values Hi(I Py, PKy,r1),...,HiI(IPNn,PKN,TN).
Denote the output of Hy by o = (01,...,0n) where each o; is of length
log N. Letting o; be the temporary name of party P;, we have that the
output of Hy induces an order on the parties by taking the lexicographic
ordering of the temporary names. Using this order the users are grouped
into groups of size n. Observe that the server can choose the r; values
in Hi(IPj, PK;,r;) after it received all of the honest parties’ H; values
(where Pj is a party under its control). Furthermore, it can do so many
times in an attempt to obtain a “bad group” in which all but one party
are under its control We therefore need to make sure that the probability
that a group is “bad” is very small (e.g., 1074°). This will ensure that the
server, after seeing the inputs from the honest users, still cannot find input
values that would create a “bad group” in sufficient time. The reason that
we use the random oracle Hj in the process of sending the inputs, instead

13

of just having the parties send (IP;, PK;,r;) is in order to protect the
identities of the users. Specifically, the server S will send the relevant IP
addresses only to the relevant group, and so only the server & providing
the service knows the history of which party participated in each group.
As we will see below, it is important to prevent this information from
being leaked, especially to the web search engine. Otherwise, statistical
attacks can be carried out; see below for more details. The group setup
appears in Protocol 6.

Protocol 6 (Group setup protocol)

Let H; and H> be two random oracles where H; : {0,1}* — {0,1}* and
Hy:{0,1}* — {0,1}V1°9N Let n be the size of each group for the shuffle. We
set the initial indexing of the parties according to the lexicographical order of
their IP addresses.

1. Each P; chooses a random r; and sends H1(IP;, PK;, ;) to the center.

2. After a short predefined time everyone queries the center for the list of
parties who have registered.

3. Each party computes o = Ho(H1(IPi,PK1,71),...,Hi(IPN,PKN,TN))
and divides the result o into chunks of size log N, denoted o1, ...,on. Party
P; is associated with o; and the list is sorted according to the o; values.

4. Grouping is carried out by taking groups of n parties according to the
sorting. That is, for ¢ = 1,...,|N/n], the ith group G; is set to be the
parties associated with the values (0n.(;—1)41; - -+, On-i).

5. The center sends the IP addresses of the group members to the members
of each group (i.e. each member gets only the IP addresses of the members
in its group).

6. Members of each group send each other their IP address, public key and
randomness that were used when registering with the center.

7. Each group member computes H;(IP;, PK;,r;) for every party P; in its
group and verifies that it matches what was recorded by the center during
registration. In addition, it verifies that it received the IP address of all
parties that are in its group, by the computation of Hs. If no, then it sends
abort to all the parties in its group.

We now analyze the security of Protocol 6. Recall that in the random
oracle model, the output of Hy is uniformly distributed every time that
it is applied to a new value. We begin by analyzing the probability that a
bad grouping occurs for a given set of values {(IP;, PK;,r;)}Y . (Below
we will analyze what this means when the server is malicious.) We call
a group “bad” if it consists of n — 1 malicious parties together with a
single honest party. Clearly, this is bad because the server § then learns
the search query of that party. The cases that a group has only a few
honest parties is also quite bad, but there is still ambiguity regarding
each user’s search term. Furthermore, in Section 5.3 we discuss how to
further improve this.

14

Let bad; denote the event that the ¢th group is bad as defined above.
We begin by computing the probability that the first group is bad; i.e.,
that bad; occurs. Since the output of Hs is uniformly distributed, we can
compute this by counting the number of ways to choose n — 1 parties out
of t malicious ones times the number of ways to choose a single honest
party, divided by the total number of ways to choose a group of size n
out of N parties. That is, we have:

(th) ' (nil) o (N —1)- (t—n+1t)!!(n71)!
N o N!
(n) (N—n)!n!

Pr [badl] =

b) R
T VY
2t N—t

-11 (t—1)

(N—i) N—nt1 "

=1

Noting again that Hs is a random function, it follows that the above cal-
culation is true for any fixed group. Thus, the above gives the probability
of bad; for every i = 1,...,|N/n]. As we have mentioned, a grouping is
bad if there exists a bad group. Thus, applying the union bound over all
| N/n] groups we have that:

N/n n—2 .
, N (t—i) N-—t
: il < il = — = N ’
Pr{3i : bad] ;1: Pr{bad;} = - Pr{bad] LN =) N—n+1

Assuming now that N >> ¢, we have that Pr[3 i s.t. bad;] is approx-
imately (£)""2 - N. Concretely, consider the case of millions of users
running this protocol, a malicious server § that controls a few thousand
of them, and a group size of about 20. In this case, we have that the
probability that there exists a bad group for a given set of Hy values is
smaller than 10° - (%)18, which is 10748,

We stress that the above analysis alone is not sufficient. This is due
to the fact that, as we have mentioned, it is possible for a malicious
server S to modify the H; values many times in the aim of obtaining a
bad grouping. Specifically, once all honest parties have submitted their
values, the server can repeatedly modify the r; portion of party P;’s input
to Hq, where P; is a malicious user under its control. Since any change
to any of the H; values results in a completely different ordering of the
parties (because Hj is a random function), we have that the probability
of a bad grouping is T times the above, where T equals the number of

15

hashes that the server can compute in the required time interval. With
the above example parameters where the probability of a bad grouping
is 10748, the probability that a malicious server achieves a bad grouping
within seconds is very small.

Phase 2 — private shuffle of the search queries: Once the users have
been grouped together, they run the private shuffle protocol of Section 3.
However, as we discussed earlier in Section 5.1 (item 2 at the end of the
section), we would like to prevent the group members from learning all the
search results. This seems problematic because the parties do not know
whose query they have and they must therefore broadcast the result to
everyone. We overcome this problem by instructing each party to first
choose a random symmetric encryption key k; and then input the pair
wk; = (wj,kj) to the shuffle. As we will see next, k; will be used to
encrypt the search result.

Phase 3 — query submission and private response retrieval: After
the shuffle protocol is completed, each party holds a pair (w’, k'). Each
party then submits the search query w’ to the search engine and receives
back the result. The search result along with the original search term
is then encrypted using the key k' with a symmetric encryption scheme
(e.g., AES) and broadcast to all group members. Each party attempts
to decrypt all search results; the one that decrypts correctly is its own
result. In this way, each party only learns its own result and the result of
one other random user. Thus, privacy of the queries is better preserved.

5.3 Additional Considerations

We now address some of the issues that concern deployment of our scheme
in the real world and discuss the privacy that it provides.

Blending into a crowd: The main idea of our scheme is blending into a
crowd. The fact that millions of people from all over the world can partic-
ipate in the protocol provides a strong sense of privacy, but consideration
should be given to the way different populations are grouped together.
If 20 people from all over the world are grouped together and all submit
the query in their native language, then it is easy to learn the query of
each party based on the geographic location of its IP address. When de-
ploying such a system, consideration should be given to these issues and
blending into a crowd should actually be blending into a crowd of people
with similar characteristics.

16

The size of a group: Our private shuffle protocol provides anonymity
with respect to the size of the group; thus the bigger the group the more
anonymity one enjoys. Since the size of the group affects both the num-
ber of modular operations each party needs to perform and the number of
rounds in the private shuffle protocol, the size of the group is bounded by
the computing power of the users’ computers and the acceptable latency.
Nevertheless, it is possible to hide in a larger group at the expense of more
modular exponentiations but without increasing the number of rounds, as
follows. As we have described in remark 3 after Protocol 4, if we can as-
sume that the number of malicious parties within a group is some t' < n,
then it suffices to run the shuffle stage for ¢’ 4+ 1 rounds. Performing a
similar analysis to the one above, we have that the probability of having
19 malicious parties within a group of size 50 is actually very close to
the probability of having 19 malicious parties within a group of size 20
(when the total number of parties is about a million and the total number
of malicious parties is several thousand). Thus, if one can afford the ad-
ditional number of modular exponentiations that comes with increasing
the group size, we can enhance privacy significantly by increasing the size
of the group, without paying much more in latency. Observe that in this
calculation a group is “bad” if there are t' + 1 malicious parties. Thus, if
a group is not bad, each honest party’s search query is guaranteed to be
hidden amongst n — ¢’ other search queries.

Lifetime of a group: Our scheme creates ad-hoc groups that can be
changed over time. In terms of efficiency, it is easy to see that remaining
within a group for a while saves the cost of running the group selection
process. However, users may submit a query to the search engine and
logout. In this case the group size would shrink and if it is too small then
privacy is compromised. This can be dealt with by starting with a larger
group and regrouping once the group becomes too small.

Statistical analysis and changing groups: In terms of privacy, it
may seem that the more often people change groups, the more privacy
they gain. However, this actually may not always be the case. Consider a
central server that colludes with the web search engine. The server S and
search engine can then run a statistical analysis to group together queries
that are likely to belong to the same user (e.g., by grouping together very
low-probability queries). Now, if these queries are carried out in different
groups, then the server S can find the (most likely) unique IP address
that appears in all of the different groups, and conclude that the queries
originated from this address. Thus, changing groups can be problematic.
(Of course, without such collusion, this problem does not arise.)

17

An additional privacy enhancement: The system presented above
has the property that each user’s search query is revealed to one other
random group member. However, in some cases a user may prefer to be
able to say which user will submit and therefore learn their query (and
which users will not learn their query). We can extend our system for
private web search to allow this by adding one more layer of encryption to
the messages, using the public key of the designated party. Specifically, if a
party P; wishes to have party P; be the one who submits its query, then
it encrypts wk; along with some redundancy (to verify the correctness
when opening) using ¢%¢. Then P; executes the private shuffle protocol
with the encrypted wk;. After the messages are shuffied, each party sends
the message it received to everyone else, and all parties decrypt the results.
In this way, only the designated party F; is the one that can learn wk;
and it will send the query.

Acknowledgements

We would like to thank Gilad Asharov and Meital Levy for many helpful
discussions, and the anonymous referees for helpful comments.

References

1. M. Bellare and P. Rogaway Entity Authentication and Key Distribution. In
CRYPTO0Y3, Springer-Verlag (LNCS 773), pages 232-249, 1994.

2. J. Castella-Roca, A. Viejo and J. Herrera-Joancomarti Preserving User’s Privacy
in Web Search Engines. In Computer Comm., 32(13-14):1541-1551, 2009.

3. D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM, 24(2):84-88, 1981.

4. B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan. Private Information Re-
trieval. Journal of the ACM, 45(6):965-981, 1998.

5. B. Chor and M. Rabin. Achieving Independence in Logarithmic Number of
Rounds. In the 6th PODC, pages 260—-268, 1987.

6. Y. Desmedt and K. Kurosawa. How to Break a Practical MIX and Design a New
One. In EUROCRYPT’00, Springer-Verlag (LNCS 1807), pp. 557-572, 2000.

7. R. Dingledine, N. Mathewson and P. Syverson. Tor: The Second-Generation
Onion Router. In Proceedings of the 13th USENIX Security Symposium, pages
303-320 2004.

8. T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In CRYPTO’84, Springer-Verlag (LNCS 196), 1984.

9. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identifi-
cation and Signature Problems. In CRYPTO’86, Springer-Verlag (LNCS 263),
pages 186-194, 1986.

10. M. Jakobsson. A Practical MIX. In EUROCRYPT’98, Springer-Verlag (LNCS
1403), pages 448-461, 1998.

11. R. Ostrovsky and W.E. Skeith. A Survey of Single-Database PIR: Techniques
and Applications. In PKC, Springer-Verlag (LNCS 4450), pages 393-411, 2007.

12. C.P. Schnorr. Efficient Identification and Signatures for Smart Cards. In
CRYPTO’89, Springer-Verlag (LNCS 435), pages 239-252, 1989.

18

