Private Information Disclosure from Web Searches

Claude Castelluccia', Emiliano De Cristofaro2, Daniele Perito®

L INRIA Rhone Alpes, Montbonnot, France
2 University of California, Irvine

Abstract. As the amount of personal information stored at remote service providers
increases, so does the danger of data theft. When connections to remote services
are made in the clear and authenticated sessions are kept using HTTP cookies,
intercepting private traffic becomes easy to achieve. In this paper, we focus on
the world largest service provider — Google. First, with the exception of a few
services only accessible over HTTPS (e.g., Gmail), we find that many Google
services are vulnerable to simple session hijacking attacks. Next, we present the
Historiographer, a novel attack that reconstructs the web search history of Google
users — Google’s Web History — even though this service is supposedly protected
from session hijacking by a stricter access control policy. The Historiographer
uses a reconstruction technique inferring search history from the personalized
suggestions fed by the Google search engine. We validate our technique through
experiments conducted over real network traffic and discuss possible counter-
measures. Our attacks are general and not only specific to Google, and highlight
privacy concerns of mixed architectures mixing secure and insecure connections.

1 Introduction

With the emergence of cloud-based computing, users store an increasing amount of
information at remote service providers. Cloud-based services often come at no cost
for the users, while service providers leverage considerable amounts of user profiling
information to deliver targeted advertisement. However, storing large amounts of per-
sonal information to external providers raises privacy concerns. Privacy advocates have
highlighted the conceptual and practical dangers of personal data exposure over the
Internet [12, 14-16].

In this paper, we analyze private information potentially leaked from web searches
to third parties, rather than focusing on data disclosed to service providers.

Being the world’s largest service provider, we focus on the case of Google. In partic-
ular, we analyze one Google service: Web History: It provides users with personalized
search results based on the history of their searches and navigation. The history is ac-
cessible at http://google.com/history.

Web searches have been shown to be often sensitive [16]. Any information leaked
from search histories could endanger user privacy. For example, it is likely that search
histories contain personal health-related information: a recent research has, in fact, suc-
cessfully correlated the spread of influenza and the number of related search queries
divided by region [18]. Similarly, searches may be related to political or religious
views, sexual orientation, etc. Also, AOL’s release in 2006 of 20 million nominally
anonymized searches underlined that search queries contain private information [10].

The privacy of personal data stored by service providers has been long threatened
by the well-known attacks consisting of hijacking user’s HTTP cookies.! These attacks
have been addressed by Google in several ways. For instance, “sensitive” services such
as Gmail now enforce secure HTTPS communication by default and transmit authen-
tication cookies only over encrypted connections. Regarding Google Web History, the
login page states: “To help protect your privacy, we’ll sometimes ask you to verify
your password even though you’re already signed in. This may happen more frequently
for services like Web History which involves your personal information”. Frequently
requesting users to re-enter their credentials can thwart the session hijacking attack.
However, as illustrated in this paper, such an attack can still be effective if a user has
just signed in. Moreover, we show that search histories can still be reconstructed even
though the Web History page is inaccessible by hijacking cookies.

The Historiographer. To this end, we successfully design the Historiographer, an at-
tack that reconstructs the history of web searches conducted by users on Google. The
Historiographer uses the fact that users signed in any Google service receive suggestions
for their search queries based on previously-searched keywords. Since Google Web
Search transmits authentication cookies in the clear, the Historiographer—monitoring
the network—can capture this cookie and use the search suggestions to reconstruct a
user’s search history. We refer to Section 3 for more details on the reconstruction tech-
nique.

Contributions. This paper makes the following contributions:

1. We show that the Google infrastructure is vulnerable to the Historiographer, a new
attack that reconstructs part of the search history of users.

2. We show that the well known session hijacking attack is still applicable to many
Google services. More specifically, we evaluate the security of several Google ser-
vices, including Web History, against this simple attack and report the number of
services vulnerable along with the amount and type of information potentially dis-
closed by each service.

3. We conduct an experimental analysis over network traces from a research institu-
tion, a Tor [1] exit node, and the 20 million anonymized searches released by AOL
in 2006, in order to assess the number of potential victims and the accuracy of our
attack. Results show that almost one third of monitored users were signed in their
Google accounts and, among them, a half had Web History enabled, thus being vul-
nerable to our attack. Finally, we show that data from several other Google services
can be collected with a simple session hijacking attack.

Paper Organization. The rest of the paper is organized as follows. Section 2 presents
the necessary technical background. Section 3 details the new Historiographer attack.
Section 4 describes our experimental evaluations on real network traffic, and estimates
the number of potential victims and the accuracy of the Historiographer. Independently
of Historiographer, this section also evaluates the additional information leaked from
Google’s services through simple session hijacking. Section 5 discusses possible coun-
termeasures to thwart the Historiographer attack, while Section 6 overviews related

'In a session hijacking attack, an attacker monitoring the network captures an authentication
cookie and impersonates a user. In Section 6, we will discuss several related vulnerabilities.

work. Section 7 concludes the exposition. Finally, in Section 8, we discuss the actions
taken by Google in response to our findings.

2 Background

In the following, we present background information on several aspects discussed through-
out the rest of the paper: the HTTP cookies, and the Google architecture.

2.1 HTTP Cookies

The need of maintaining sessions in HTTP emerged with the creation of the first web ap-
plications (e.g., e-commerce websites), as HTTP is a stateless protocol. RFC2109 [22]
and RFC2965 [23] specified a standard way to create stateful sessions with HTTP re-
quests and responses. They describe two new headers, Cookie and Set-Cookie, which
carry state information between participating origin servers and user agents. A Cookie,
which contains a unique identifier, is typically used to store user preferences or to store
an authentication token. Cookies are set by the server as follows. After an incoming
HTTP request, a server sends back a HTTP response containing an HTTP header, re-
ferred to as Set-Cookie, requesting the browser to store one or several cookies. Such a
header is in the form of name=value, the so-called “cookie crumb”. As a result, pro-
vided that the user agent enables cookies, every subsequent HTTP request to a server on
the same domain will include the cookie in the Cookie HTTP header. A cookie may also
include an expiration date?, ora flag to mark it secure. In the latter case, the browser will
send the secure cookie only over encrypted channels, such as SSL. A set-cookie header
may optionally contain a domain attribute, which specifies the domain validity of the
cookie. If this attribute is set, the cookie is referred to as domain cookie, as opposed
to host cookie which is not specific to any particular sub-domain. For example, as we
will present in Table 1, a user accessing Google’s Calendar receives a domain cookie
for calendar.google. com as an authentication token. Such a cookie is then to be
included in every subsequent HTTP requests to the domain. In contrast, other Google’s
applications (such as the Search, History or Maps) only set host cookies, which are
used across different services and domains. Finally, a set-cookie header may specify a
path attribute to identify the subset of URLSs for the cookie’s validity. For example, as
we will present in Table 2a, a user that signs in Google receives three cookies, namely
SID, SSID, and LSID. While the latter only applies to the path “/account”, the other
two are can be used for different paths.

2.2 Google Architecture

As we mention in Section 1, we focus on the case of the world’s largest service provider,
i.e., Google. This section describes the Google architecture?.

?If an expiration date is provided, cookies survive across browser sessions, and are then called
“persistent”. Otherwise, the cookie is deleted when closing the browser.

3Since not all the components of the Google architecture are public, some of the details
presented in this section might not be completely accurate.

Google Web Products. Google offers more than 40 free Web services, including sev-
eral search engines (e.g. Google Web Search), maps (Google Maps), as well as per-
sonalized subscription-based services like email (Gmail), documents (Google Docs),
photos (Picasa), videos (Youtube), Web history. Even though some services can be
used without registration (e.g., search), other are user-specific (e.g. Gmail) and require
user authentication. Most of the services can be used by means of a single Google ac-
count, a combination of username and password. However, services that do not mandate
registration provide extra features if users are signed in. For instance, an authenticated
user can obtain personalized, potentially more accurate, search results on Google Maps
based on her default location.

Google Web History. This opt-out service — previously known as Google Search His-
tory and Personalized Search — is implemented by Google to provide signed-in users
with personalized search results based on the history of their searches and navigation.
Furthermore, users typing search queries in the Web interface are prompted with sug-
gestions resulting from their history. To this end, Google tracks all Web searches per-
formed by a signed-in user (with Web History service enabled), as well as the target
web pages clicked from the search result page. This service may be further enhanced by
installing the Google Toolbar, allowing Google to also track all visited web sites, inde-
pendently from the use of the search engine. Google Web History also provides a Web
interface at google.com/history, allowing users to view and delete their history.
Users are given the choice to pause Web History by accessing their account. Never-
theless, Google customizes searches and provides suggestions based on data recorded
before pause. Note that Google is offering Personalized Search not only to signed-in
but also to signed-out users. In fact, for these users Google performs the customization
using the information linked to the user’s browser with the help of an “anonymous”
cookie. Specifically, Google stores up to 180 days of activity linked to such cookie.
Again, users can explicitly disable this feature [3].

Google Authentication. Google services are accessible with a single set of credentials,
composed by a pair username/password. Different services are usually hosted as sub-
domains of google.com (or other Top-Level Domains for different countries) and
offer seamless integration between each other to minimize the need for users to re-
enter their credentials. Integration is achieved through the Accounts service. In practice,
requests to authenticate to a Google service are redirected to the Accounts page where
the user is asked to enter her username and password. If authentication succeeds, a
browser cookie is set (or refreshed) to track the session and the user is redirected back
to the page that was originally requested. An illustration of this mechanism is provided
in Fig. 1.

Access to Google Accounts is always secured using HTTPS. However, subsequent
connections might revert back to simple HTTP depending on the requested service. For
example connection to Maps Search are established with HTTP whereas HTTPS access
to Gmail is enforced.

Table 1 compares several Google Services. It may be the case that services con-
sidered more sensitive are protected by HTTPS, whereas those judged less sensitive are
left unencrypted. In particular, we noticed that the use of HTTPS is mandatory for some
services (e.g., Gmail), while impossible for others (e.g., Search). Additionally, there are

Google Service vl ~—_ Client Google Accounts

(3) Provide

credentials
T~ _— T

(2) Redirection to/ @
Accounts \
(4) Set Cookies + —
T (5) Authenticated /% D Redirection to
— Request original service
(6) Content

Fig. 1: The Google Accounts authentication management for Google services.

services accessed on HTTP by default, but users may force a secure connection speci-
fying https:// in the URL.

Service | Default | HTTPS |Domain specific Purpose
Name |Connect.|Support cookie
Search HTTP no no Web search
Maps HTTP no no Maps search
Reader HTTP yes no RSS/Atom feed reader
Contacts HTTP yes no Address book manager
History HTTP yes no Search history manager
Gmail HTTPS | mand. no ‘Web mail application
Accounts | HTTPS | mand. no Google account manager
News HTTP no no News aggregator
Bookmarks| HTTP yes no Bookmark manager
Docs HTTP yes yes Office application
Calendar HTTP yes yes Calendar application
Groups HTTP yes yes Discussion groups application
Books HTTP no no Personalized digital library

Table 1: Some of Google’s services

Google cookies. Authenticated sessions are kept by means of cookies that are set by
Accounts upon successful authentication. Two cookies, called SID and SSID, are used
as authentication tokens across most services* for unencrypted and encrypted connec-
tions, respectively. We believe their names might stand for Session ID and Secure Ses-
sion ID?.

A description of several Google cookies is reflected in Tables 2a and 2b. Note that:
(1) SID and SSID are valid for all Google sub-domains and are used to authenticate
users to several services, (2) SID is not a secure cookie, i.e., it is sent on every con-
nection to Google, while SSID is only sent over encrypted connections, and (3) NID
represents the “anonymous” cookie used to track unlogged users. There are also a num-

4All services that do not use domain cookies, such as Maps, History, Search, Reader, Books
and Contacts — see Table 1.

5 An additional list of domain-specific cookies, such as those for docs.google.com or
calendar.google.com, are sent in the clear text but are set only over a secure connection
upon user access.

ber of cookies not reported, which are used for miscellaneous purposes, e.g., to store
language or search interface preferences.

In our study, we will focus on the SID cookie, providing authenticated access to
most unencrypted services. In particular the SID cookie is sent in all web searches. It is
used by Google to identify the requesting account, populate the account’s Web History
and provide personalized web results and suggestions.

3 Historiographer: Reconstructing Search History

3.1 Attack Overview

In the following, we present the Historiographer, an attack aiming to reconstruct users’
search histories stored by Google. The attack consists of two steps.

First, it hijacks a session stealing the victim’s SID cookie. This can be done, for
example, by eavesdropping on her traffic, and in particular on any request to a Google
service, such as Google search. Eavesdropping can be performed by listening on a local
wired network, an open wireless network, such as a campus network, or by deploying a
Tor exit node (as detailed in Section 4). This does not necessary involve compromising
nodes, and therefore does not require special skills.

Second, it reconstructs the Web History using a partial precise inference attack
[17]. We recall that an inference attack is a technique used to disclose sensitive and pro-
tected information from presumably non-sensitive data. In this setting, we reconstruct
part of the potentially privacy-sensitive Web History from web searches. The technique
is partial, because, as shown in Section 3.2, it does not always reconstruct the whole
history. Finally, it is precise since it infers accurate items from the Web History without
introducing errors, as opposed to imprecise inference techniques that do it with a certain
probability.

Note that any user, in particular if equipped with a mobile device, is likely to ac-
cess the Internet via an unencrypted wireless channel at some point of time. As soon
as she signs in Google when connected to such unprotected networks, she becomes
vulnerable to our attack. Furthermore, the attack is effective even if the user is careful
and never inputs sensitive information during “insecure” browsing sessions over unen-
crypted wireless channels.

Cookie-Name|Secure| Domain Path ‘ Purpose
SID no |google.com / authentication token
SSID yes |google.com / secure authentication token
LSID yes |google.com|/accounts|secure authentication token

(a) Google’s cookies for signed in users

Cookie-Name|Secure| Domain |Path ‘ Purpose
NID no |google.com| / track unlogged users
PREF no |google.com| / |store search settings (e.g., language)

(b) Google’s cookies for not signed in users
Table 2: Description of the type and purposes of some cookies used in the Google platform.

Advanced Search

privac| Languone Tools
privacy Remove }H istory

privacy enhancing technologies symposium 2010 Remove suggestions
privacy guard -

privacy act
privacy assist
privacy policy Generic
privacy assist bank of america suggestions
privacy center

privacy yacht

privacy center virus removal

Google Search I'm Feeling Lucky

Fig.2: An example of Google Search Suggestions.

3.2 Reconstructing the web history through inference

Web history access control. Authenticated users can consult, modify, pause or delete
their complete history by accessing the Web History service. The history can be con-
sulted as an HTML page or an RSS feed. However, as mentioned above, Google access
control policy for Web History differs from the one implemented in other services. In
fact, users are frequently asked to re-enter their credentials even though they are already
authenticated. Preliminary tests showed that this mechanism is used quite frequently,
and in such a case a session hijacker would be prevented from downloading the history.

Exploiting the search suggestion feature. However, a feature provided by Google,
namely the search suggestions, helped us circumvent the access control enforced for
Web History. As mentioned in Section 2, Google search engine offers contextual in-
formation in the search interface that can be derived from the user’s search history.
Specifically, whenever a prefix is typed in the search box, an Ajax [21] request is sent
to a Google server, which replies with a list of associated keywords. Fig. 2 presents
an example of a user typing the prefix “privac” in the search box. The user is then
prompted with a list of related keywords to auto-complete the search, i.e., search sug-
gestions. These keywords can either be based: (1) on Google’s ranking of similarity (we
call them generic search suggestions), or (2) on user’s search history (we call them his-
tory search suggestions). Note that history search suggestions are only sent to the user
if the typed prefix corresponds to search queries that are in the Web History and were
followed by a “click” on one of the results. We call these queries: “clicked” queries.
History search suggestions are visually distinguishable from the generic ones, since
they include a link to remove them. This is reflected in the Javascript code, as history
search suggestions have a flag set to differentiate them. The access to the web server
that implements suggestions is carried out using Ajax and every request is authenticated
sending an SID cookie, which can be easily eavesdropped and hijacked. Therefore,
once an SID cookie has been captured, the user’s Web History can be reconstructed us-
ing the suggestion service: Historiographer steals a user authentication cookie and then
sequentially requests possible prefixes to the suggestion server to recover keywords
coming from the history.

Reconstruction algorithms. In order to reconstruct a search history, the Historiographer
needs to ask for suggestions for different prefixes. Hence, we need to carefully select
the list of possible prefixes to use, since the keywords in the history are unknown. We
encounter the following obstacles: (1) the number of requests for suggestions should
be kept to a minimum, in order to be as stealthy as possible; (2) at most three replies
come from the suggestion history upon each suggestion request, limiting the amount
of information discovered with each request; and (3) suggestions are only returned for
two-letter (or longer) prefixes, preventing from simply looking for all letters in the given
alphabet. A naive (brute-force) approach would involve requesting all the possible two-
or three-letter prefixes to harvest the replies coming from the history. However, this
would already require 262 = 676 requests for two-letter and 263 = 17, 576 for three-
letter combinations in the English alphabet, hence relatively high numbers that might
lead to detection. Instead, the Historiographer employs a more sophisticated technique:
it requests only prefixes that are common in a given language. For instance, if one con-
siders English, there are only 7 words starting with the two-letter prefix oo, while no
word starts with the prefix gr. Whereas, the most used prefix results to be co, used
in 3223 words. It is then reasonable to expect that in the search history there are more
entries starting with the letters co than with gr. As a result, we proceed as follows:
We extract all two-letter prefixes from a reference corpus, order them by frequency,
and we select only the prefixes in the 90¢h percentile. We used two different reference
corpora in our experiments: the English dictionary and the AOL dataset of 20 million
anonymized searches that was released in 2006 [10]. However, they both achieved very
similar performance. For the English dictionary, this yields a total of 121 two-letter
combinations and reduces the number of requests and the fingerprint of the attack®.
Further, we notice that at most 3 search suggestions can come from the history for each
requested prefix. Thus, if we get exactly 3 suggestions from the history, there are either
3 or more search queries starting with the corresponding prefix. This is a potential indi-
cation that this prefix is particularly frequent in the history, and it is worth being further
explored. Hence, whenever we encounter a two-letter prefix producing 3 suggestions,
we add another letter to the prefix and we repeat the request. Note that the resulting
three-letter prefix is again generated by extracting the most common three-letter pre-
fixes from the dictionary and not by simply adding every possible letter in the alphabet.
Fig. 3 visually depicts this procedure: The prefix co produces 3 results and is further
explored, contrary to de and ya who produce only 2 (resp., 1) results. A description
of the achieved accuracy and the related overhead in terms of requests is provided in
Section 4.2.

Implementation. We implemented the Historiographer as a Perl application. It is part
of a more complete tool that: (i) captures traffic from a network interface, (ii) recognizes
cookies sent to and from Google servers, and (iii) then uses them to hijack sessions and
retrieve personal information. Web History is only one of the services the software
collects data from.

SDifferent languages can be supported by simply changing the alphabet and the reference
corpus.

(1)

[co] refin]de] ..[oc]ya]

3 results 2 results 1 result

[conlcom| ... Jcoe] cof| stop stop

Fig.3: Smart tree approach. To reconstruct large portions of the search history, we start with the
most common two-letter prefixes (1). If a prefix produces 3 suggestions, then we descend in the
tree (2).

3.3 Beyond the Historiographer: Exploiting Personalized Results

The Historiographer attack uses Personalized Search to leak information from a user’s
Web History. However, one could also use the so-called Personalized Results, i.e., the
fact that search queries on Google often produce different results based on the user’s
search history. We present an example of this in Fig. 4. If the results contain at least one
linked page previously accessed by the user, the “View customizations” link appears at
the top right corner of the result page. One can easily identify the visited linked pages
(e.g., http://petsymposium.org/2010/ in Fig. 4) since they are marked with
a tag reporting the number of visits (e.g., 8), and the date of the last visit (e.g., March
Ist). Therefore, an adversary can verify that specific keywords belonging to a user’s
search history using the Personalized Results. We call such an attack a targeted check.
Note that the adversary does not have to test the exact matching keyword searched by
the user. It is enough to make a related search that includes the visited linked page
in the results. For instance, assuming that a user has searched for PETS 2010 and Oak-
land 2010, and has then clicked on the related links http: //petsymposium.org/
2010/ andhttp://oakland09.cs.virginia.edu/. A subsequent search for
the keyword Privacy would produce a result page with the “View customizations” link.
Looking at the result page produced by only one request, an adversary can find out that
the above pages were visited and conclude that the user is interested in privacy, in PETS
2010 and IEEE Security and Privacy. The adversary could then try other keywords and
broaden the information leakage or profile user’s interests. Note that this attack can be
amplified with the exploitation of the new Google’s Star service that allows users to
mark their favorite web sites. With stars, a user can mark his favorite sites by simply
clicking the star marker on any search result or map. As a result of this action, these
sites will appear in a special list next time the identical or a related search is performed.
This feature gives even more power to the adversary. Note that this attack only ap-
plies to signed-in Google users with Web History enabled (a significant proportion of
Google users as showed in Sec. 4). However, as discussed in Sec. 2, Google provides
customized searches to signed-out users too, using an “anonymous” cookie. Therefore,
we believe that a similar attack can be designed for signed-out users as well, although
the history would be limited to the life of this cookie.

GO (;g[L’ Search | Advenced Sssrch

Wiew customizations;
Web [#| Show options... Results 1 - 10 of about 118,000,000 for pets 2010. (0.25 seconds)

Privacy Enhancing Technologies Symposium 2010 = -8 visits - Mar 1

The 10th Privacy Enhancing Technologies Symposium (PETS 2010) July 21-23, 2010. Berlin,
Germany. The 10th Privacy Enhancing Technologies Symposium will ...

petsymposium.org/ - Cached - Similar

ZENIT - For the Love of Pets

14 Feb 2010 ... For the Love of Pets. The Growing Trend to Humanizing Animals. By Father
John Flynn, LC. ROME, FEB. 14, 2010 {Zenit.org). ...

www.zenit.org/article-283487=english - Cached

Fig.4: An example of Google Personalized Results.

4 Measurements and Analysis

Given the private nature of the information gathered and the difficulty of having users
willing to disclose them, we conducted four different experiments. These experiments
were aimed at collecting data to estimate: (1) the number of potential victims that access
Google services while being signed-in and, among them, how many have Web History
enabled; (2) the accuracy and the cost of the Historiographer; (3) the amount of private
data that can be retrieved from other services with the simple session hijacking attack;
(4) the applicabity of the Historiographer on smart phones.

4.1 Estimating the number of potential victims

In order to estimate the number of potential victims of our attack, we conducted an ex-
perimental analysis on the network traces collected from a research center with about
500-600 daily users and a Tor exit node. We collected one week of network traffic dur-
ing February 2010. The goal was to measure the percentage of users using Google while
signed-in, and that having the Web History service enabled. Note that only aggregate
data was stored. The data collected from the research center was analyzed passively,
i.e., no session was actually hijacked.

In order to count the number of users from a network trace, one needs reliable
identifiers to filter out duplicate queries or changes of network identifiers, e.g. IP churn.
Luckily we could use cookies gathered from the network captures to identify single
users. As explained above, Google issues persistent cookies both to signed-in and not
signed-in users. Among them we chose to use SID cookies to identify signed-in users
and NID cookies to identify not signed-in ones. Furthermore, in order to count the
number of users with history enabled, our application looked for a particular link to
the History service that is included in each search result page. The results of test are
presented in Table 3a. Around one third of the users resulted to be signed-in while
using Google services, including web searches. Furthermore, about half of the users
with an account have history enabled. The limited size and the lack of randomness in the
choice of our sample, does not allow us to draw conclusions about the entire population
of users. However, if we combine our results with the above mentioned popularity of
Google services, it would appear that a significant portion of web users are at risk.

10

Experiment | Number of [Number of users|Number of signed-in users
Google users signed-in with History enabled
Research center 1502 543 (36.1%) 223 (14.8%)
Tor Exit Node 1893 872 (46.1%) 441 (23.29%)

(a) Measurements on network traces

User ID| ny, |nc | ng [Recall nyequests History
Activation date
751 [4421308| 0.69 680 Aug 08, 2009
318 [142] 99 | 0.69 368 Mar 10, 2008
621 [321[176| 0.54 483 May 16, 2009
520 [248]169| 0.68 400 May 22, 2007
657 |309(231| 0.75 601 Feb 06, 2009
389 1202|130 0.64 365 Fen 12, 2009
3 . Jul 18, 2008
416 |219]143| 0.65 399 Aug 09, 2006
228 [127] 69 | 0.54 211 Aug 20, 2008
306 [164[118| 0.72 334 Sep 27, 2009
1567|930(506| 0.54 740 Oct 26, 2009
1163|680(533| 0.78 823 Dec 4, 2009

_— =
e T T

. o

o

S

w

W

Q

()

S

=

=]

=N

S

N

=N

=]

(b) Results from volunteers

Type of information Corresponding| Number of Accounts| Mean number
leaked service accessible of entries collected
Complete (unrestricted) Search History History 45(5%) 123
Blogs followed on Reader Reader 139(15%) 14
Address book Contacts 766(87%) 189
Maps search history Maps 696(79%) 22
Default address on Maps Maps 52(5%) 1
Financial portfolio Portfolio 11(1%) 8
First/Last name Maps profile 661(75%) 1
Bookmarks Bookmarks 236(27%) 79

(c) Aggregate Information analyzed from 872 Tor users.
Table 3: Results from the three experiments.

4.2 Estimating Historiographer’s accuracy

Volunteers. In order to evaluate the extent of potential leakage of private information
from Google web searches, we turned to volunteers. It would have been otherwise im-
possible to conduct our study on uninformed users without incurring legal and ethical is-
sues. We aimed at evaluating the accuracy of the Historiographer at reconstructing web
histories. To this end, we “attacked” the accounts of 10 volunteers using our software
and measured its accuracy. The performance of the Historiographer at reconstructing
search histories can be measured in terms of recall. For every user u, we call H the set
of entries in u’s history, H, the subset of searches whose results were clicked by w, and
S the set of entries reconstructed from suggestions. We denote n, = |H|, n. = |H,|
and n; = |S|. Since suggestions are only given for “clicked” queries, the recall R of
our reconstruction algorithm can be measured as the ratio R = % Results are reflected
in Table 3b. The Historiographer reconstructs a significant portion of a user’s history,
with a mean recall of 0.65. The mean number of requests per user to reconstruct the
history was 440. Since users are kept signed-in for two weeks, these requests can be
made at a low pace to increase stealthiness. For instance, an attacker could issue a re-
quest every hour and still expect to retrieve 65% of the “clicked” queries. Also, the

11

recall can arbitrarily be increased by increasing the number of requests. On average,
with about 2000 requests, we can obtain a mean recall of 0.81. The mean recall lowers
to 0.34 when considering the ratio of reconstructed entries over the complete set H.
Recall that the Historiographer can only recover “clicked” queries, although a complete
history typically contains more information and additionally stores the time and the
frequency of searches. We argue that only recovering “clicked” queries is not a tremen-
dous limitation. When inspecting volunteers’ history, we noticed that “clicked” queries
are often corrections of generic or misspelled queries. A more accurate analysis of this
phenomenon is left for future work. Note also that the Google’s algorithm producing
keyword suggestions is based on several parameters, such as dates and frequencies of
searches and visited web sites. Therefore, we believe that the accuracy and the amount
of information that can be retrieved by the Historiographer could be further improved
with a deeper understanding of the underlying algorithm. On the other hand, it appears
that the likelihood that an entry in the history is returned as a suggestion decreases over
time, which could negatively affect the recall for older entries.

AOL Dataset. Next, we tested our attack on a wider sample. We used the anonymized

query dataset released by AOL in 2006, containing 20 million searched made by 650, 000
users. From the dataset, we constructed the search history of each user. Then, simulat-

ing the search suggestions fed by Google drawing from the histories, we estimated the

recall of our reconstruction technique. The mean recall was 0.64, an accuracy similar

to that obtained for the volunteers.

4.3 Additional Information Leakage via Session Hijacking

As mentioned above, in addition to the Historiographer, an attacker can hijack a user’s
session to access several Google services. This section evaluates the extent of the infor-
mation leaked. We ran our software for a week on a Tor exit node, and we analyzed 872
Google accounts. We stress that our software only generated aggregate data automati-
cally and discarded the information immediately. Note that we used Tor only as a way
to collect anonymized network traces. This cannot, by any means, be considered as an
attack against Tor. In fact, even considering a malicious Tor exit node, the attacks can
be prevented by using the appropriate tool configuration to block cookies transmitted
over HTTP. (For more information, we refer to [4,5]). However, we point out that a
significant number of users are not aware of the dangers. In fact, they authenticate to
Google while connected in Tor and do not block HTTP cookies, thus endangering their
anonymity and privacy to potential malicious Tor exit nodes. In fact, a malicious entity
could set up a Tor exit node to hijack cookies and reconstruct search histories. The se-
curity design underlying the Tor network guarantees that the malicious Tor exit node,
although potentially able to access unencrypted traffic, is not able to learn the origin
of such traffic. However, it may take the malicious node just one Google SID cookie
to reconstruct a user’s search history, the searched locations, the default location, etc.,
thus significantly increasing the probability of identifying a user. Additional example
applications include RIAA tracking users that ever searched—although connected into
Tor—for torrent files related to unlicensed material.

Session Hijacking Attack. By means of session hijacking, we tried to access the fol-
lowing information: locations searched on Maps (along with the “default location”,

12

when available); blogs followed on Reader; full Web History (when accessible without
re-entering credentials); finance portfolio; bookmarks. For each of them, we counted
the number of entries retrieved and reported the mean over the 872 accounts. Table 3¢
summarizes the obtained results. We point out that for 5% of the accounts, we accessed
the Web History page without being asked to re-enter credentials (simply replaying the
SID cookie). We stress that the session hijack had a significant success rate for many
popular services. For instance, we retrieved 79% of the searched locations on Maps and
the 87% of address books (Contacts). Also, we were able to retrieve the first and last
name associated to the account in 75% of cases. Unfortunately, these numbers translate
into a significant amount of personal (and identifying) information leaked through ses-
sion hijacking. Notably, the information collected from the Maps service was composed
of maps queries coming from the histories of the users. Similarly to history suggestions,
users that access Maps are presented with entries that come from the locations they pre-
viously searched for. Differently from search suggestions, Maps suggestions are not the
result of an prefix based Ajax query to a remote Google server. Instead, for signed-in
users, the page at maps.google.com includes a Javascript array that includes all
previous searches. Accessing this information only requires retrieving the web page
once and does not require the use of the Historiographer. The provided information is
very detailed and includes: the exact location searched (address:), the time, in seconds
since the Epoch, it was searched (created:) and the number of times the location was
searched (count:). The information collected this way is of the same kind of the one
collected by the Historiographer but referred to maps searches instead of generic web
searches. However, the specifics of the design of Maps suggestions make the attack on
this service much easier. We can only speculate on the reasons behind such a design.
One could be that, since Maps history is relatively small in mean size 3c, it is more
efficient to send all the information at once, rather than relying on multiple Ajax re-
quests and replies. Whatever the reasons, this design makes location information stored
on Google more vulnerable to session hijacking than search history.

4.4 Web history and Smart Phones

With the increasing number of smart phones users, search history is likely to be strongly
correlated with users’ location of the users. We noticed that Google maintains a sepa-
rated Web History when the search page is accessed from an iPhone. Such a history
has a less strict access control policy. Similarly to Google Maps, the whole search his-
tory is sent as a Javascript list embedded in the page. Supposedly, this information is
presented only when using the iPhone. However, one just needs to set the appropriate
user agent string when accessing Google (for example through the User Agent Switcher
Firefox extension [7]. Then, replaying the SID cookie, the whole Web History becomes
accessible, with a single page access. We tested this strategy on the set of volunteers.
We were able to retrieve their iPhone search history from a regular PC by switching
the PC’s browser user agent to an iPhone user agent, and hijacking the victims’ SID
cookies.

13

5 Possible Countermeasures

The vulnerability targeted by the Historiographer is difficult to address because of the
complexity and scale of the Google architecture, as well as the performance and usabil-
ity requirements. However, we discuss some possible countermeasures. For instance,
users could take the following precautions, simultaneously: (i) always log out from any
Google service when performing a search, (ii) disable the Web History service, and
(iii) disable personalization from anonymous cookies or always delete Google cook-
ies, similarly to what is suggested by the Electronic Frontier Foundation On the other
hand, Google could either: (i) discontinue the Personalized Search service, or (ii) let the
users choose to enforce HTTPS for web searches (for instance, by clicking on a special
link when surfing from insecure networks) and trade off speed with privacy. However,
one can argue that solutions preventing personalized searches may degrade the service,
whereas the use of HTTPS on Web Search’ may be too expensive to put in place. Evi-
dence of this is given by the impossibility of accessing Google search page via HTTPS
and by the concerns already expressed by Google regarding the performance of using
HTTPS for Gmail [9].

Compartmentalized Searches. We propose an additional mitigation technique that
would allow to keep the Personalized Search service. Specifically, we propose that
Google could keep separate histories based on the networks from which user’s searches
originate. Then, it can provide different search suggestions (and personalized results)
based on different locations. We imagine an extension to the google.com/history
web page to allow a user to configure such locations and the privacy settings related to
them. Although this would not solve all possible information leakage, it would com-
partmentalize user’s private information: Consider for instance an employee reluctant
to reveal personal information to her employer (e.g., that she is looking for another
job). Fearing that her navigation within the company network is monitored, she might
avoid accessing potentially “compromising” information. If she signs in Google from
the company network, however, her search history —containing for instance “compro-
mising” searches made from home—(and more) can be leaked.

Binding authentication cookies to IP addresses. Several web sites, e.g., LiveJournal
[2], allow user agents to bind the authentication cookies to the current IP address. In
other words, the server does not accept an authentication cookie that originates from a
different IP address. However, this technique is not always enforced due to drawbacks
on the usability of the service. For example, “mobile” users, whose IP address often
changes, would be forced to frequently re-enter their credentials. However, depending
on the network configuration, binding cookies to IP addresses could not be enough to
prevent session hijack. For instance, an attacker operating on a local network could
succeed by poisoning the ARP table on the local Ethernet switch. Note also that at the
moment Google allows a single account to be signed-in from multiple locations and
with multiple IP addresses (although some services such as Gmail display the number
of simultaneous connections at the bottom of the page).

"Note that adopting HTTPS only for the Web History web page would not prevent the
Historiographer, but only the access to the page.

14

6 Related Work

To the best of our knowledge, this work is the first to focus on the private information
leaked from web searches to third parties. In the following, we present the most relevant
work to several concepts and tools that we use.

Session hijacking. Since their early appearances, the use of cookies to maintain au-
thenticated sessions has lead the way to session hijacking attacks (see for instance [19]).
These attacks are quite simple: an attacker monitoring network traffic may sniff an au-
thentication cookie and replay it to impersonate another user. For this reason, sensitive
web applications should always employ secure cookies, i.e., authentication cookies that
are only transmitted over encrypted channels. However, this simple countermeasure is
not always effective. For instance, in 2008 the Cookiemonster attack [24] highlighted
vulnerabilities derived from an improper mixed support of secure and insecure connec-
tions. In response to this work, Google sett HTTPS in Gmail by default [26]. Although
this attack—as well as simple session hijacking—could not be be used to hijack the
Web History, it is an interesting example of vulnerabilities in web applications that do
not properly provide mixed HTTP/HTTPS support.

Privacy Threats. Recent work has discussed potential privacy threats related to cloud
service providers. For instance, [14] discussed potential threats and countermeasures
associated with many forms of web activity—focusing on Google—related to the in-
formation collected by service providers. However, as opposed to our work, this paper
focuses on the privacy threats against the service provider. Another direction was taken
in [16, 15] to assess user perception on alleged privacy threats by interviewing users.
Among the other interesting results, it has been shown that more than 80% of users
admitted to having conducted searches for information they would not want disclosed
to their current or future employer. Finally, independently of our work, it was recently
shown that popular online applications may leak private data to a network eavesdrop-
per even over encrypted web connections [13]. In particular, an adversary could exploit
the autocompletion mechanism of popular search engines to infer the victim’s search
queries. When a user types the first letter in a search query, the search engine sends that
character to the server, and the server replies with a list of suggested completions. As
the size of that list depends on the character typed, an attacker can deduce which letter
was typed. When the second letter is entered, another request is sent to the server, and
another encrypted response sent back to the client, which allows the attacker to infer the
second character; and so on. As a result, the attacker guesses the search query, despite
the communication is encrypted. This result is complementary to our work: It allows
recovering search requests over encrypted channels. However, the attack does not work
if the victim is logged-in and the suggestions received are personalized. In contrast, our
attack retrieves parts of the victim’s search history using these personalized suggestions,
although our attack does not work over encrypted links.

Limiting personal information disclosure. Several techniques have been proposed to
avoid user profiling and reduce the amount of information potentially leaked. For in-
stance, the Firefox extension Trackemenot [20] periodically issues randomized search-
queries to search engines to populate a user’s search history with (non-clicked) queries

15

and hide real queries. However, this would not prevent the Historiographer from retriev-
ing “clicked” queries from the history and retrieve sensitive information.

7 Discussion

This paper has presented a study of the private information disclosed to third parties
from web searches. We showed that the well known session hijacking attack is still
applicable to many Google services, and we presented the Historiographer, an attack
that reconstructs Google’s search histories from simple web searches. We have validated
our technique through a large-scale experimental analysis.

We argue that solutions should be quickly deployed to protect users against these
two types of attacks. The session hijacking attack is harmful not only because it allows
an attacker to collect a lot of private information, including sometimes the search his-
tory, but also because it can be exploited to add potentially compromising entries [25].
It can also be used to modify the search results displayed to the victim. In fact, Google
allows to delete or promote—i.e., show as first—results using a button associated to
them. An adversary hijacking a session cookie can perform searches on the victim’s
behalf and influence the results corresponding to these searches as she wishes. For in-
stance, this attack can be a powerful tool for censorship, as it can be used to remove or
promote some pages displayed after a Google search.

The Historiographer can be used to reconstruct part of the Web History, when, for
example, the simple session hijacking attack is not applicable. In addition, it can be used
as an oracle to perform fargeted checks, e.g., to verify the existence in the search history
of specific keywords. The Historiographer is an amplification attack, and therefore is
much more powerful than a simple eavesdropping attack: It not only allows an attacker
to eavesdrop on the victim’s search requests, but also allows him to retrieve the victim’s
previous search requests, possibly performed from different networks and even different
computers. Also, the Historiographer is non-destructive, i.e., it does not affect user data.
The number of potential victims is very high, since any signed-in user is at risk as soon
as she issues a single Google search request from an unencrypted network, such as an
open wireless network at an airport or a cafe.

These attacks deserve serious attention since Web Histories contain sensitive infor-
mation. Any information leaked from Web search histories could endanger user pri-
vacy. Information retrieved from the search history could also be combined with other
publicly available data, such as that published on social networks to accurately pro-
file and/or identify target users. Furthermore, since the Historiographer also works for
Google searches performed from mobile devices and such searches contain also local-
ized results, one could use location-based services to also track users’ movements and
locations.

Although the Historiographer builds on features specific to the Google architecture,
our goal is not to attack Google nor any particular service provider. Instead, we high-
light the general problem of protecting the privacy of sensitive data when using a mixed
architecture with both secure and insecure connections. As mentioned in [8], Google is
not the only provider which leaves its customers vulnerable to data theft and account
hijacking. As a matter of fact, the Bing search engine recently added a similar function-

16

ality to Personalized Suggestions. Users receive suggestions based on their previous
searches and they can access the full search history [6]. Differently from Google, Bing
only uses anonymous cookies for this purpose and stores the search history only up to
29 days. However, in Bing the full history is accessible via a simple session hijacking.
We defer to future work a complete analysis of Bing and other search engines.

8 Afterword

While this paper was under submission (March 2010) we disclosed it to Google to
allow them to react to it. Google has been very responsive to our research and has
taken some actions to fix some of the highlighted issues. After receiving a preliminary
report, Google temporarily disabled the personalized suggestions (note, however, that
they were never disabled on smart phones), and switched the Web History and Book-
mark services to HTTPS (thus, preventing session hijacking on these services) 8. Later
on, Google countered the Historiographer attack by encrypting back-end server requests
associated with the personalized Maps and Search suggestion services. We provide a de-
tailed description and discussion on the possible shortcomings of this solution in [11].
We also detail a possible way the Historiographer could work against Google’s solu-
tion, albeit with a different and slightly more powerful attacker. It is also noteworthy
that the proposed solutions do not prevent potential leakage resulting from personalized
results (see Section 4.3). Furthermore, as of today (beginning of May), searches con-
ducted from smart phones are still vulnerable (see Section 4.4) and session hijacking is
still effective on the following services: Reader, Contacts and Portfolio.

References

1. Tor: anonymity online. http://www.torproject.org/.
2. LiveJournal. http://www.livejournal.com/support/fagbrowse.bml?
fagid=135, Retrieved February 2010.

3. Personalized search for everyone. http://googleblog.blogspot.com/2009/
12/personalized-search-for-everyone.html, Retrieved February 2010.

. Privoxy. http://www.privoxy.org/, Retrieved February 2010.

. Torbutton. http://www.torproject.org/torbutton/, Retrieved February 2010.

. Bing Autosuggest. http://bit.1ly/bxPk9g, Retrieved March 2010.

. User Agent Switcher firefox plugin. https://addons.mozilla.org/en-US/
firefox/addon/59, Retrieved March 2010.

8. A. Acquisti et al. Ensuring adequate security in Google’s cloud based ser-
vices. http://www.wired.com/images_blogs/threatlevel/2009/06/
google—letter—final2.pdf, 2009.

9. A. Whitten (Google). HTTPS security for web application.
http://googleonlinesecurity.blogspot.com/2009/06/
https-security-for-web—-applications.html, 2009.

10. M. Barbaro and T. Zeller. A face is exposed for AOL searcher no. 4417749. New York Times,
9:2008, 2006.

U Y N

8For more details on the ongoing development of this project, refer to http://planete.

inrialpes.fr/projects/private-information-disclosure-from-web-searches.

17

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

C. Castelluccia, E. D. Cristofaro, and D. Perito. The historiographer reloaded. Technical
report, INRIA, May 2010.

R. Cellan-Jones. Web creator rejects net tracking. http://news.bbc.co.uk/2/hi/
7299875 . stm, 2008.

S. Chen, R. Wang, X. Wang, and K. Zhang. Side-Channel Leaks in Web Applications: a
Reality Today, a Challenge Tomorrow. In IEEE Security and Privacy Symposium’10, 2010.
G. Conti. Googling considered harmful. In Workshop on New Security Paradigms, pages
76-85, 2006.

G. Conti. Googling Security: How Much Does Google Know About You? Addison-Wesley,
20009.

G. Conti and E. Sobiesk. An honest man has nothing to fear: user perceptions on web-based
information disclosure. In SOUPS 07, pages 112—121, 2007.

C. Farkas and S. Jajodia. The inference problem: a survey. ACM SIGKDD Explorations
Newsletter, 4(2):6-11, 2002.

J. Ginsberg, M. Mohebbi, R. Patel, L. Brammer, M. Smolinski, and L. Brilliant. Detecting
influenza epidemics using search engine query data. Nature, 457(7232):1012-1014, 2008.
R. Graham. SideJacking with Hamster. http://erratasec.blogspot.com/2007/
08/sidejacking-with—-hamster_05.html, 2007.

D. Howe and H. Nissenbaum. TrackMeNot. http://mrl.nyu.edu/~dhowe/
trackmenot/, 2008.

Jesse James Garrett. Ajax: A New Approach to Web Applications. http://www.
adaptivepath.com/ideas/essays/archives/000385.php, 2005.

D. Kristol and L. Montulli. RFC2109: HTTP State Management Mechanism. /ETF, 1997.
D. Kristol and L. Montulli. RFC2965: HTTP State Management Mechanism. /ETF, 2000.
M. Perry. CookieMonster: Cookie Hijacking. http://fscked.org/projects/
cookiemonster, 2008.

J. Robertson. Internet Virus Frames Users For Child Porn. http://www.
huffingtonpost.com/2009/11/09/internet-virus-frames—use_n_
350426 .html, 2009.

S. Schillace. Default https access for Gmail. http://gmailblog.blogspot.com/
2010/01/default-https-access—for-gmail.html, Retrieved February 2010.

18

