
Anonymous Webs of Trust

Michael Backes1,2, Stefan Lorenz1, Matteo Maffei1, and Kim Pecina1

1 Saarland University, Saarbrücken, Germany
2 Max Planck Institute for Software Systems (MPI-SWS)

Abstract. Webs of trust constitute a decentralized infrastructure for es-
tablishing the authenticity of the binding between public keys and users
and, more generally, trust relationships among users. This paper intro-
duces the concept of anonymous webs of trust – an extension of webs of
trust where users can authenticate messages and determine each other’s
trust level without compromising their anonymity. Our framework com-
prises a novel cryptographic protocol based on zero-knowledge proofs, a
symbolic abstraction and formal verification of our protocol, and a proto-
typical implementation based on the OpenPGP standard. The framework
is capable of dealing with various core and optional features of common
webs of trust, such as key attributes, key expiration dates, existence of
multiple certificate chains, and trust measures between different users.

1 Introduction

Over the last years, the Web has evolved into the premium forum for freely dis-
seminating and collecting data, information, and opinions. Not all information
providers, however, are willing to reveal their true identity: For instance, some
may want to present their opinions anonymously to avoid associations with their
race, ethnic background, or other sensitive characteristics. Furthermore, people
seeking sensitive information may want to remain anonymous to avoid being stig-
matized or other negative repercussions. The ability to anonymously exchange
information, and hence the inability of users to identify the information providers
and to determine their credibility, raises serious concerns about the reliability of
exchanged information. Ideally, one would like to have a mechanism for assigning
trust levels to users, allowing them to anonymously exchange data and, at the
same time, certifying the trust level of the information provider.

Webs of trust. Webs of trust (WOT) constitute a well-established approach to
bind public keys to their owners and, more generally, to establish trust relation-
ships among users in a decentralized manner: Each participant decides which
public keys are considered trustworthy. This trust is expressed by signing the
trustworthy public keys along with a set of user and key attributes (e.g., user
name and key expiration date). These certificates can be chained in order to
express longer trust relationships:3 For instance, the certificate chain
3 In the OpenPGP standard [13], trust relationships may be transitive and their valid-
ity is ruled by trust signatures, which we describe in Appendix A. In our setting, the



sig((pk1,A1), sk2), sig((pk2,A2), sk3)

says that the owner of pk3 has certified the binding between the public key pk2
and the set A2 of attributes, and the owner of pk2 has certified the binding be-
tween pk1 and A1. Such certificate chains are a salient technique for expressing
transitive trust relationships, e.g., to use webs of trust to implement friendship
relations in social networks such as Facebook, where transitive friendship rela-
tions are common; in this example, the owner of pk1 would be a friend of a friend
of the owner of pk3.

After receiving a signature on message m that can be verified using pk1, the
owner of pk3 knows that m comes from a user of trust level 2 bound to the
attributes A1.4 Hence for authenticating a message in the context of a WOT,
the sender has to find a chain of certificates starting with a certificate released
by the intended recipient and ending with a certificate for the sender’s key.

Our contributions. In this work we introduce the concept of anonymous webs
of trust – an extension of webs of trust that allows users to authenticate messages
and determine each other’s trust level without compromising their anonymity.
Our framework comprises:

– a cryptographic protocol based on the Camenisch-Lysyanskaya signa-
ture scheme [14] and a novel zero-knowledge proof 5 that allows users
to efficiently prove the existence of certificate chains without com-
promising user anonymity. For instance, given the certificate chain
sig((pk1,A1), sk2), sig((pk2,A2), sk3) and a message m that the owner of pk1
wants to authenticate with the owner of pk3, our protocol allows the owner
of pk1 to prove a statement of the form “there exist certificates C1, C2, a
signature S, keys K1,K2, and attributes A1, A2 such that (i) C1 is a certifi-
cate for (K1, A1) that can be verified with key K2, (ii) C2 is a certificate
for (K2, A2) that can be verified with key pk3, and (iii) S is a signature on
m that can be verified with K1”. This statement reveals only the length of
the chain, i.e., the trust level of the sender, the authenticated message m,
and the public key pk3 of the intended recipient. We provide a prototypical

trust relationship is more sophisticated and, in fact, it is parametrized by a number
of factors including the length of the chain (i.e., the longer the chain, the smaller
the conveyed trust). This allows us to accommodate fine-grained trust models, as
discussed in Section 4.

4 For the sake of simplicity, we identify the trust level of a certificate chain with its
length here. In Section 4, we will consider the more sophisticated trust measure
proposed in [18].

5 A zero-knowledge proof combines two seemingly contradictory properties. First, it
is a proof of a statement that cannot be forged, i.e., it is impossible, or at least
computationally infeasible, to produce a zero-knowledge proof of a wrong statement.
Second, a zero-knowledge proof does not reveal any information besides the bare fact
that the statement is valid [29]. A non-interactive zero-knowledge proof is a zero-
knowledge protocol consisting of one message sent by the prover to the verifier.



implementation of our protocol as an extension of the OpenPGP standard.
The tool is freely available at [6].

– a number of extensions of our protocol to achieve fine-grained anonymity
and trust properties. In some situations, a controlled release of additional
information is desired or even required, e.g., proving that the keys involved
in a chain have not expired. We propose variants of our zero-knowledge
proof that allow for selectively revealing additional properties of the certifi-
cate chains, such as the validity of the keys with respect to their expiration
date, the existence of multiple certificate chains, and the trust level that the
certificate chains are assigned according to a realistic trust model. These
extensions demonstrate the expressiveness and generality of our approach.
The potential application scenarios of our protocol include distributed so-
cial networks, where people may want to share opinions or information in
an anonymous fashion while being able to prove their trust relationships,
applications for anonymous message exchange, and services for anonymous
yet trustworthy reports or reviews.

– a symbolic abstraction and a formal verification of our protocol. We specify
our protocol in the applied pi-calculus [3], and we formalize the trust prop-
erty as an authorization policy and the anonymity property as an observa-
tional equivalence relation. We consider a strong adversarial setting where
the attacker has the control over the topology of the web of trust, some of
the protocol parties, and the certificate chains proven in zero-knowledge by
honest parties. Security properties are verified using ProVerif [11], an auto-
mated theorem prover based on Horn clause resolution that provides security
proofs for an unbounded number of protocol sessions and protocol parties.

Related work. Although the setting is different, our approach may at a first
glance resemble the delegatable anonymous credential scheme [9]. This protocol
relies on an interactive protocol between each pair of users along the certificate
chain. In contrast, our protocol is fully non-interactive, and provers do not need
any interactions with other principals except for the intended recipient. In ad-
dition, our approach allows the prover to selectively reveal partial information
on attributes in the certificate chain, which is crucial to achieve anonymity in
realistic trust models without compromising their expressiveness.

Group signature schemes [19,37,5,10] provide a method for allowing a member
of a group to anonymously sign a message on behalf of the group. In contrast to
our approach, these schemes require the presence of a group manager; moreover,
two users in the same group are completely interchangeable. A similar argument
holds for HIBE/HIBS schemes [27,12], where anonymity could be obtained by
replacing user identifiers with generic anonymous attributes.

Ring signature schemes [34,31,32] are similar to group signatures but do not
require a group manager. As for group signatures, two users in the same group
are completely interchangeable. It would be interesting, nevertheless, to explore
the usage of ring signature schemes to achieve k-anonymity in webs of trust.

Social networks constitute a particularly promising application scenario for
our protocol; we thus briefly relate our approach to recent works on privacy



and anonymity in social networks. The (somewhat) orthogonal problem of cre-
ating encrypted data that can be read by people who are n degrees away in a
social network has been recently addressed [25]. Several techniques have been
proposed to keep the social network graph private while enforcing access control
policies based on trust degrees [22,21,41]. In contrast to our approach, the pro-
posed protocols are interactive, similar to the delegatable anonymous credential
scheme [9]. In other works, trust relationships are instead assumed to be public,
e.g., [35,4,17]. Our approach does not put any constraints on the way certificates
are distributed (for instance, they could be exchanged by private communica-
tion). We just assume that the prover can retrieve the certificates composing the
chain proven in zero-knowledge. In the specific context of webs of trust such as
GnuPG [38], public keys and attached certificates are uploaded on key servers
and are thus publicly available. Finally, the recently proposed Lockr protocol [40]
achieves access control and anonymity in social networks and file-sharing appli-
cations, such as Flickr and BitTorrent. Lockr provides weaker anonymity guar-
antees compared to our framework, since the prover has to reveal her identity to
the verifier; moreover, Lockr does not support certificate chains but only direct
trust relationships.

Outline of the paper. Section 2 introduces the notion of anonymous webs
of trust and provides a high-level overview of our protocol. Section 3 describes
the cryptographic setup and describes the implementation. Section 4 presents
extensions of our protocol that accommodate some advanced properties of webs
of trust. Section 5 proposes a symbolic abstraction of our protocol and conducts
a formal security analysis. Section 6 concludes and gives directions of future
research. The full-version of this paper is available at [6].

2 Anonymous Webs of Trust

In this section, we introduce the notion of anonymous webs of trust and we give
an overview of our protocol.

A web of trust is a decentralized public-key infrastructure. Each user u holds
a public key pku and a secret key sku. Trust is distributed via certificates. User
u expresses her belief that a given public key pkv actually belongs to user v by
signing pkv along with a set Av of user and key attributes. Hence, certificates
establish the relation between public keys and users and, depending on the ap-
plications, they can also be used to witness specific trust relationships between
users. These certificates are attached to the signed public key and uploaded all
together onto key servers. Every user having access to such a server can partici-
pate in the web of trust.

Trust into public keys not directly signed by a user is established using cer-
tificate chains. A certificate chain from A to B consists of all the certificates that
link (pkA,AA) to (pkB,AB), thus establishing a trust relation between those keys.

Definition 1 (Certificate Chain). A certificate chain or simply chain from
(pk1,A1) to (pk`,A`) is a sequence of certificates C = (C1, ...,C`−1) of length



A B
C

sig(pkB , skA) sig(pkC , skB)

S

m
Transmission of message m

Trust relation certified by S sig(pkI , skJ): J ’s signature on I’s key

Witnesses: α1 ← pkB α2 ← sig(pkB , skA) α3 ← pkC α4 ← sig(pkC , skB)

ZK (∃α1, . . . , α4 : ver(α1, α2, pkA) ∧ ver(α3, α4, α1))

Fig. 1. Protocol for anonymous proof of a certificate chain of length 2

` − 1, where Ci = sig((pki+1,Ai+1), ski) and ` ≥ 2. We say that (pk`,A`) has
trust level `−1. We assume to know the binding between sk1 and (pk1,A1), which
can be captured by an additional self-generated certificate sig((A1, pk1), sk1).

The fundamental idea of our approach is to provide anonymity in webs of
trust by deploying zero-knowledge proofs to demonstrate the existence of valid
certificate chains without revealing any information that might compromise the
anonymity of users. We consider a setting where users want to anonymously
exchange messages, yet guaranteeing the receiver the trust level of the sender.

For the sake of simplicity, we initially focus on certificates on public keys
without attributes. In Section 4, we will extend our zero-knowledge proof scheme
to certificates binding a key to a set of attributes, and subsequently show how
to selectively hide some of them while revealing the others.

In order to authenticate a message m with the owner of pk1, the owner of pk`
has to retrieve a certificate chain from pk1 to pk` and to prove in zero-knowledge
the existence of this chain as well as the knowledge of a signature on message m
done with the signing key corresponding to pk`. Notice that the signature cannot
be sent in plain, since this would compromise the anonymity of the sender. If
we denote by ver(m,C, pk) the successful verification of certificate C on message
m with public key pk, the statement that the owner of pk` has to prove can be
formalized by the following logical formula:

ver(pk2,C1, pk1) ∧
[∧`−1

i=2 ver(pki+1,Ci, pki)
]
∧ ver(hash(m), sig(hash(m), sk`), pk`) (1)

which can be read as “the verification of signature C1 on message pk2 with
verification key pk1 succeeds and for all i from 2 to ` − 1, the verifications of
Ci on pki+1 with pki succeed and the verification of the signature on the hash
of m with pk` succeeds.” For efficiency reasons, the sender signs the hash of the
message she is willing to authenticate. Since the proof should not reveal the user
identities, we weaken this statement by existentially quantifying over all secret
witnesses:6

∃ α1, ..., α2`−1 :

ver(α1, α2, pk1) ∧
[∧`−1

i=2 ver(α2i−1, α2i, α2i−3)
]
∧ ver(hash(m), α2`−1, α2`−3)

(2)

6 Here and throughout the paper, we use the convention introduced in [16] that Greek
letters denote those values that are kept secret by the proof.



This statement only reveals the public key pk1 of the intended recipient, the hash
of the authenticated message m, and the length of the chain (i.e., the trust level
of the sender). The zero-knowledge proof of this statement is sent to the verifier,
who, after successful verification, will authenticate message m as coming from a
principal of level `−1. Figure 1 schematically shows our protocol for a certificate
chain of length 2. To execute this algorithm, we solely assume that the prover
can efficiently retrieve the certificates composing the chain. In an established
web of trust, public keys and attached certificates are usually uploaded on key
servers and are thus publicly available. Our approach, however, is general and
does not put any constraints on the way certificates are distributed (for instance,
they could be exchanged by private communication). We just require that the
prover has access to the certificate chain linking her key to the verifier’s one.

3 Cryptographic Protocol

For implementing the ideas described in the previous sections, we need (i) a
digital signature scheme that allows for efficient zero-knowledge proofs and (ii)
an expressive set of zero-knowledge proofs that can be combined together in con-
junctive and disjunctive forms. For signing messages, we rely on the Camenisch-
Lysyanskaya signature scheme [14] while, for proving statements about certifi-
cate chains, we propose a novel non-interactive zero-knowledge proof of knowl-
edge based on Σ-protocols [30]. We first review the basic building blocks and
subsequently describe the construction of our zero-knowledge proof scheme.

3.1 Camenisch-Lysyanskaya Signature

This signature scheme was introduced in [14] together with some zero-knowledge
proofs. None of them, however, deals with situations in which every value in-
volved in the verification (and, in particular, the verification key) must be kept
secret, as required by the statements considered in this paper. This circumstance
required us to develop a novel zero-knowledge proof.

We will now give a short overview of this signature scheme. A public key is
a tuple pk = (a, b, c, n) where n = p · q is a special RSA modulus and a, b, c are
random elements from a large subgroup of Z∗n. The corresponding secret key is
sk = p. Since factorizing n is assumed to be hard, the attacker cannot efficiently
compute sk. To sign a given message m ∈ [0, ..., 2`m), one chooses a random
prime e of length `e ≥ `m + 2 and a random number s ∈ [0, ..., 2`m+`n+`) where
`n is the bit-length of n and ` is a security parameter. In practice, ` = 160 is
considered secure. Finally, one computes v such that:

v ≡n (am · bs · c)1/e (3)

Here and throughout this paper, we write v ≡n u to say that u is equivalent to v
modulo n. Notice that the factorization of n is used to efficiently compute 1/e.
The signature on message m is the tuple sigm = (e, s, v). Given pk = (a, b, c, n),



m, and sigm = (e, s, v), the verification of the signature sigm is performed by
checking that 2`e−1 < e < 2`e along with the following equivalence:

ve ≡n (am · bs · c) (4)

This equation constitutes the cryptographic instantiation of the symbolic pred-
icate ver(m, sigm, pk) discussed in Section 2. Under the strong RSA assump-
tion, the Camenisch-Lysyanskaya signature scheme is secure against existential
forgery attacks. Security against existential forgery is the standard notion of
security when dealing with signature schemes.

3.2 Zero-Knowledge Proofs and Σ-Protocols

Zero-knowledge proofs were first introduced in [30] and have since then become
a key element of many cryptographic protocols. A zero-knowledge proof is an
interactive proof system (P, V ) between two parties: The prover P and the ver-
ifier V . Both parties obtain the statement to be proven as input, the prover
additionally receives a witness to the given statement. Besides the usual com-
pleteness and soundness properties, the zero-knowledge property ensures that
even a malicious verifier cannot learn any information on the prover’s witness.7
Our zero-knowledge scheme builds on a class of zero-knowledge protocols, called
Σ-protocols [28,20], which allow one to prove certain properties of committed
values without opening the commitments. We briefly review below the basic
building blocks of our scheme.

Σ-protocols and their properties. The proofs outlined below belong to the
class of Σ-protocols, i.e., protocols composed of three message exchanges: com-
mitment, challenge, and response, sent by the prover, the verifier, and the prover
respectively. These protocols enjoy the special soundness and the special honest
verifier statistical zero-knowledge (SHVSZK) properties [28,20].

Special soundness is a strong form of proof of knowledge and guarantees that
a prover is in possession of a witness. Honest verifier zero-knowledge is a variant
of the zero-knowledge property where the verifier chooses the challenge uniformly
at random from the according challenge space and, in particular, independently
of the commitment sent by the prover.8 We write {PK(α̃) : S} to denote a proof
of knowledge of witnesses α̃ for statement S.

As shown in [20], Σ-protocols can be combined together to prove logical
conjunctions and disjunctions of their respective statements.
7 The zero-knowledge property is formalized using a simulator that, without having
access to the witness to a given statement, creates simulated proof transcripts that
are indistinguishable from actual protocol transcripts. Intuitively, this guarantees
that the proof cannot be used to gain any information on the witness.

8 In general, zero-knowledge implies honest-verifier zero-knowledge but the converse
does not necessarily hold. In our setting, however, focusing on honest verifiers does
not restrict the power of the attacker since the proof will be eventually made non-
interactive using the Fiat-Shamir heuristic [24], which lets the prover herself choose
the challenge by using the random oracle, without interacting with the verifier.



Lemma 1 (Logical Combination of Σ-protocols [20]). Assume that
(P1, V1) and (P2, V2) are SHVSZK and have special soundness and overwhelm-
ing completeness for relations R1 and R2 respectively. Assume that M1 ⊇ LR1

and M2 ⊇ LR2 where LR := {(x, y) | xRy}. Assume that for both schemes, the
verifier accepts the output of the simulator with overwhelming probability.

Then there exist SHVSZK proof schemes for the relations R∧ := R1 ∧M1,M2

R2 and R∨ := R1 ∨M1,M2
R2.

Intuitively, theMi represent well-formed inputs and are needed for completeness
reasons.

Commitments. A commitment scheme consists of the commit phase and the
open phase. Intuitively, it is not possible to look inside a commitment until it is
opened (hiding property) and the committing principal cannot change the con-
tent while opening (binding property). We use the integer commitment scheme
described in [33]. In the following, we let JcK denote the value committed to in c.

Range proofs. We use the range proofs proposed in [26]. A range proof guar-
antees that a certain committed value lies in the interval (A,B), where A and
B are integers. This proof will be denoted by {PK(α) : JcK = α ∧A < α < B}
Notice that this proof does not reveal α, just the commitment c and the bounds
A and B of the interval.

Proofs of arithmetic operations. Our protocol also uses some of the pro-
tocols presented in [15] for proving sums, multiplications, and exponentiations
of committed values in zero-knowledge (i.e., without opening the commitments
and revealing the witnesses). These proofs will be denoted by

{PK(α, β, δ, ν) : JcaK = α ∧ JcbK = β ∧ JcdK = δ ∧ JcnK = ν ∧ α+ β≡νδ}
{PK(α, β, δ, ν) : JcaK = α ∧ JcbK = β ∧ JcdK = δ ∧ JcnK = ν ∧ α · β≡νδ}
{PK(α, β, δ, ν) : JcaK = α ∧ JcbK = β ∧ JcdK = δ ∧ JcnK = ν ∧ αβ≡νδ}

3.3 Our Protocol

Our goal is to compute the verification equation (4) in zero-knowledge. This is
achieved by the zero-knowledge protocol (5). We first recompute the exponenti-
ations in the signature verification equation, i.e., τ1 , am, τ2 , bs, τ4 , ambs,
and τ3 , ve, and check if ve ≡n ambsc (cf. line (a)). We then test whether the
signed message and the verification prime number are in the appropriate ranges
(cf. line (b)). This protocol constitutes the cryptographic instantiation of the
symbolic proof for the statement ∃ αm, αsig, αpk : ver(αm, αsig, αpk) discussed in
Section 2 with αm = µ, αsig = (ν, σ, ε), and αpk = (α, β, γ, η).

PK(α, β, γ, ε, η, µ, ν, σ, τ1, τ2, τ3, τ4) : JcaK = α ∧ JcbK = β∧
JccK = γ ∧ JcnK = η ∧ JcmK = µ ∧ JcvK = ν ∧ JcsK = σ ∧ JceK = ε
∧Jc(am)K = τ1 ∧ Jc(bs)K = τ2 ∧ Jc(ve)K = τ3 ∧ Jc(ambs)K = τ4
τ1 ≡η αµ ∧ τ2 ≡η βσ ∧ τ3 ≡η νε ∧ τ4 ≡η τ1 · τ2 ∧ τ3 ≡η τ4 · γ (a)
∧ 0 ≤ µ < 2`m ∧ 2`m+1 < ε < 2`m+2 (b)

 (5)



Zero-knowledge proofs for single chain elements are combined together in
conjunctive form to prove the existence of a valid certificate chain, as formalized
in equation (2). In particular, every occurrence of value u is instantiated with
the same commitment cu. This ensures the equality of the values appearing in
different chain element proofs. We reveal the public key of the verifier and the
hash of the signed message by opening the corresponding commitments.

Theorem 1. Let ca, cb, cc, cm, cs, cv, ce, and cn be integer commitments and
let c(am), c(bs), c(ve), and c(ambs) be auxiliary commitments. Then, the protocol
from equation (5) is a special honest verifier statistical zero-knowledge proof with
special soundness that the values committed to in ca, cb, cc, cm, cs, cv, ce, and
cn fulfill the Camenisch-Lysyanskaya signature scheme verification equation.

Proof. The completeness follows from inspection of the protocol and the verifi-
cation equation of the signature scheme. Special soundness and SHVSZK follow
from the special soundness and the SHVSZK property of the individual proofs
by applying Lemma 1.

Finally, we apply the Fiat-Shamir heuristic [24] to make our protocol non-
interactive.

3.4 Implementation

We implemented our protocol as an extension of the OpenPGP standard. Our
system relies on key servers that provide standard OpenPGP functionality and
additionally maintain the certificates from the anonymous web of trust. The
authenticity of anonymous web of trust keys is established by OpenPGP certifi-
cates. Arithmetic operations are performed by using MIRACL [36]. The imple-
mentation is in Java and comprises roughly 6000 lines of code. A prototypical
implementation is freely available at [6].

4 Partial Disclosure: Beyond the All-or-Nothing Barrier

The cryptographic protocol described so far allows the prover to show the ex-
istence of a certificate chain without revealing anything other than the length
of the chain. In some situations, however, the length of the chain might reveal
too much about the prover’s identity while in some other scenarios, users might
desire more precise trust measures, even at the price of sacrificing a little their
anonymity. There is indeed an inherent trade-off between anonymity and trust.
In this section we develop extensions of our protocol that allow users to fine-tune
the degree of anonymity and trust.

Hiding the chain length. The length of the chain might actually reveal some
information about the sender, depending on the topology of the web of trust. For
instance, in the extreme scenario where the intended recipient has certified just
one key and the length of the chain is 1, the intended recipient knows exactly the



identity of the sender. In this case, the prover can arbitrarily increase the length
of the chain proven in zero-knowledge by attaching self-generated certificates.
Note that the keys used in these certificates need not be uploaded onto a server
as the verifier does not need them to check the proof and, after the proof is
generated, these keys can be discarded. Indeed, a proof for a certificate chain of
length n does not guarantee that the prover is n hops away from the verifier,
but that she is at most n hops away.

Partial release of secrets. To achieve fine-grained trust properties, we now
consider certificate attributes, such as user name and key expiration date, and
show how to reveal some of them while keeping the others secret. For instance, we
might want to reveal the key expiration date while hiding confidential informa-
tion such as the user name. We recall that participants in a web of trust place the
signature on the concatenation of a public key and a set of attributes. Intuitively,
instead of proving ∃ αm, αsig, αpk : ver(αm, αsig, αpk), we would like to prove a
statement of the form ∃ αS, αsig, αpk, αK, αA.ver(αS, αsig, αpk) ∧ αS = (αK, αA)
and then reveal (part of) the attributes αA. The concatenation of the public
key and the attributes is implemented as b = k · 2` + A where ` is an a pri-
ori fixed upper bound on the length of the attribute set. The idea is to split b
in zero-knowledge and to reveal some of the components to the verifier. Given
commitment ckA on public key k and attributes A, commitment ck on k, and
commitment cA on A, we execute the following zero-knowledge protocol:{

PK(α, κ, τ) : JckK = κ ∧ JcAK = α ∧ JckAK = τ ∧ τ = κ · 2` + α ∧ 0 ≤ α < 2`
}

We can then open cA and release all the attributes A to the verifier or apply the
protocol again on cA to select which attributes have to be revealed.

Dynamic trust relationships and key expiration. Since trust relationships
may vary over time, it is important to provide users with the possibility to
periodically update their certificates. Our system incorporates two distinct key
expiration mechanisms.

The first mechanism is based on a global version number that is attached to
all public keys as an attribute. Periodically after a fixed interval, all keys have
to be generated from scratch, re-signed, and tagged with the updated version
number. Proving a key valid translates into showing that it is tagged with the
most recent version number. This version number is revealed using our partial
secret release protocol. As the interval is globally fixed, revealing the version
number does not leak any information about the key.

In order to provide the user with the possibility to independently decide the
validity of each certificate, we also support a second mechanism based on a key
expiration date. Users can use our partial secret release protocol to selectively
reveal the expiration date of a key. Since the exact expiration date might uniquely
identify the public key, one can also prove {PK(ε) : JceK = ε ∧ current date <
ε < ub} given a commitment ce on the expiration date attribute ε and a suitable
upper bound ub for all possible key expiration dates.

Notice that the OpenPGP standard [13] incorporates a key revocation mech-
anism, which is implemented by a special signature (also called revocation sig-



99%95%
95% 99%

95%80%

(a) (b) (c)

B

C1

C2

A

D

A B C A

B

C

Z

Fig. 2. Webs of trust

nature) that is attached to the revoked key by the revoking principal. Although
conceptually appealing, such a revocation mechanism is not compatible with our
framework since there is no way to prove in zero-knowledge that a certain key
has not been revoked. In particular, even if revoked, the key and the according
certificates could still be used in our zero-knowledge proof.

Conjunctive and disjunctive statements over certificate chains. Σ-
protocols allow us to prove logical conjunction and disjunction of statements.
Proving a conjunctive statement over certificate chains strengthens trust at the
price of decreasing anonymity guarantees, whereas a disjunctive statement en-
hances the anonymity guarantees but diminishes trust.

In a way of example, consider Figure 2 (a) where A is trusted by both C1 and
C2, and D is only trusted by C2. Assume A is interested in authenticating to a
party B trusting both C1 and C2 and suppose also that A does not know the
public key of B. If A proves that she is trusted by C1 or C2, a curious principal
will not be able to distinguish whether the message originated from D or A. The
trust guarantee provided by the proof, however, may be low if, for instance, the
link between C2 and D is weak (cf. the following discussion on trust measures).

A proof that A is trusted by C1 and C2 strengthens the trust guarantee.
One can, however, compute the intersection of the principals trusted by C1

and C2, potentially reducing the anonymity guarantees. In this example, the
intersection uniquely identifies A as the prover. This example shows that there
is often an inherent trade-off between trust and anonymity. The expressiveness of
our zero-knowledge proof scheme is crucial to fine tune the security requirements
according to the application scenario.

Trust measures. In the following, we extend our approach to trust measures.
We will focus in particular on the trust model from [18]. The examples in this
section are intentionally borrowed from [18] in order to show the applicability of
our framework to existing trust models. Consider the web of trust in Figure 2 (b).
As shown by the weight of the two links, the trust of B in C is higher than the
trust of A in B. The trust measure proposed in [18] is based on the multiplication
of the trust values of the individual links. Therefore the trust degree provided
by the chain between A and C is 95% · 99% = 94.05%.

We devise a proof that reveals the trust degree provided by a given chain,
without disclosing the weight of individual links, since this might compromise
the anonymity of participants. In case even the exact trust degree is considered



too informative on the identity of the parties involved in the chain, we can
approximate this value using range proofs (cf. key expiration).

In addition to proving the validity of the certificate chain of Figure 2 (b), the
prover executes the following protocol:

{PK(α, β, γ) : JctK = α ∧ Jct1K = β ∧ Jct2K = γ ∧ α ≡P β · γ}

where ct1 and ct2 are the commitments to the certificate attributes 95 and 99, P
is a large publicly known prime, and ct is a commitment to 9405, which is opened
by the prover. Since we cannot reason on rational numbers and consequently on
divisions,9 the verifier has to perform the remaining computation on the value
JctK = 9405, namely, 1− (1− 9405/10000) = 94.05%.

We now show how our protocol can be extended to deal with even more
complex scenarios. Consider the graph in Figure 2 (c): Z has to show that there
exist two distinct paths from A to Z. The total trust degree is computed as
1− (1− 95% · 99%) · (1− 80% · 95%) ≈ 98.6%.

The corresponding zero-knowledge proof is computed as follows. Given the
commitments cs1 , cs2 , cs3 , and cs4 on the certificates certAB , certAC , certCZ ,
and certBZ , where certIJ denotes the certificate issued by I on J ’s public key,
and the commitments ct1 , ct2 , ct3 , and ct4 on the corresponding trust values, in
addition to showing that both chains are valid we run the following protocol:{

PK(α1, α2, α3, α4, β1, β2) : Jct1K = α1 ∧ Jct2K = α2 ∧ Jct3K = α3 ∧ Jct4K = α4∧
Jcs1K = β1 ∧ Jcs2K = β2 ∧ β1 6= β2 ∧ JcrK ≡P (Jc10000K− α1 · α3) · (Jc10000K− α2 · α4)

}
Proving Jcs1K 6= Jcs2K ensures that the first two signatures, and therefore the two
chains, are different. The rest of the proof computes in zero-knowledge the total
trust value as follows: JcrK = (10000−95 ·99) ·(10000−80 ·95) = 1428000 (c10000
is a commitment to 10000). The verifier then computes (108−JcrK)/108 ≈ 98.6%.
Although the numbers grow quickly with the chain length and the number of
parallel paths, P � 10100 is large enough for any reasonably sized chain.

5 Formal Verification

The cryptographic proof from Section 3 ensures that our scheme enjoys the
special soundness and honest verifier statistical zero-knowledge properties. It is
important to verify, however, that the protocol as a whole guarantees the in-
tended trust and anonymity properties. We conducted a formal security analysis
by modeling our protocol in the applied pi-calculus [1], formalizing the trust
property as an authorization policy and the anonymity property as an obser-
vational equivalence relation, and verifying our model with ProVerif [11,2], a
state-of-the-art automated theorem prover that provides security proofs for an
unbounded number of protocol sessions. We model zero-knowledge proofs fol-
lowing the approach proposed in [7], for which computational soundness results
9 Computing 1/m for a given m results in a number u such that m · u = 1 mod q,
e.g., 1/4 = 5 mod 19.



A B C

TRUST(A, B) TRUST(B, C)

(ZKP, m)
AUTH2(A, (ZKP, m)) SEND2(C, A, (ZKP, m))

AUTH2(A, (ZKP, m)) =⇒ TRUST(A, B)&TRUST(B, C)&SEND2(C, A, (ZKP, m))

Fig. 3. Trust policy

exist [8]. For easing the presentation, in this section we focus on certificate chains
without attributes.

Attacker model. In our analysis, we consider a standard symbolic Dolev-Yao
active attacker who dictates the certificates released by each party (i.e., the at-
tacker controls the web of trust), the certificate chains proven in zero-knowledge,
and the proofs received by each verifier.

Verification of trust. We partition the set of parties into honest and compro-
mised. Honest parties generate a fresh key-pair, publish the public component,
and engage in three distinct activities: Certificate generation, proof generation,
and proof verification.

We decorate security-related protocol events with logical predicates, which
constitute the building blocks of the authorization policy formalizing the trust
property (cf. Figure 3). The event TRUST(x, y) describes the point in the proto-
col where the honest party associated with public key x releases a certificate for
public key y. The event COMPR(x) tracks the compromise of the party associ-
ated with public key x (i.e., this party is under the control of the attacker, which
also knows the corresponding private key). The event SENDi(x, y, z) describes
the point in the protocol where the party associated with public key x sends a
zero-knowledge proof for a certificate chain of length i to the party associated
with public key y to authenticate message z. Finally, the event AUTHi(x, y)
describes the point in the protocol where the party associated with public key
x authenticates message y as coming from a party of trust level i. The trust
property is formalized as the following authorization policy:

AUTH2(id2, x)⇒ SEND2(id1, id2, x) & TRUST(id2, id3) & TRUST(id3, id1)) (1)
| (TRUST(id2, id3) & TRUST(id3, id1) & COMPR(id1)) (2)
| (TRUST(id2, id3) & COMPR(id3)). (3)

For the sake of simplicity, we focus on certificate chains of length 2: The
extension to arbitrary chain lengths is straightforward. This policy says that
in all execution traces, the event AUTH2(id2, x) has to be preceded by either
(1) SEND2(id1, id2, x) and TRUST(id2, id3) and TRUST(id3, id1) (i.e., all par-
ties are honest), or (2) TRUST(id2, id3) and TRUST(id3, id1) and COMPR(id1)
(i.e., all parties except for the prover are honest), or (3) TRUST(id2, id3) and
COMPR(id3) (i.e., the party trusted by the verifier is compromised and the at-
tacker has chosen to lengthen the certificate chain by an additional, possibly



A B B� C �C
≈

(ZKP, m) (ZKP�, m)

A

Fig. 4. Anonymity game

fake, certificate). In other words, this policy says that whenever the verifier au-
thenticates a message as coming from a party of trust level i, then indeed a
party of trust level i or less has started a protocol session with the verifier to
authenticate that message.

This authorization policy is successfully verified by ProVerif and the analysis
terminates in 3 seconds. The formal analysis highlighted a couple of important
requirements for the safety of our protocol. First, the verifier has to check that the
authenticated message is not a public key,10 otherwise the following attack would
be possible: The attacker gathers a certificate chain of length i + 1 and builds
a zero-knowledge proof for a certificate chain of length i, authenticating the
public key signed in the i+ 1-th certificate as coming from the party associated
with the public key signed in the i-th certificate. For a similar reason, signatures
on messages other than public keys cannot be sent in plain or must be tagged
differently from the signatures proven in zero-knowledge.

Verification of anonymity. Intuitively, we formalize the anonymity property
as a cryptographic game where two principals act in a web of trust set up by the
attacker and one of them authenticates by proving in zero-knowledge a certificate
chain chosen by the attacker. If the attacker cannot guess which of the two
principals generated this zero-knowledge proof, then the protocol guarantees
anonymity. Our model includes an arbitrary number of honest and compromised
parties as well as the two (honest) principals engaging in the anonymity game.

The anonymity game is defined by two distinct processes that are replicated
(i.e., spawned an unbounded number of times) and in parallel composition (i.e.,
concurrently executed). In the first process, each of the two principals releases
certificates as dictated by the attacker. Since the attacker controls also the certifi-
cates released by the other parties in the system, both honest and compromised
ones, the attacker controls the topology of the whole web of trust. In the sec-
ond process, the two principals receive two (possibly different) certificate chains
from the attacker. If both certificate chains are valid and of the same length, we
non-deterministically choose one of the two principals and we let it output the
corresponding zero-knowledge proof. The observational equivalence relation ≈
(cf. Figure 4) says that the attacker should not be able to determine which of
the two principals output the zero-knowledge proof.

ProVerif successfully verifies this observational equivalence relation. This
implies that our protocol guarantees the anonymity of users even against our
strong adversarial model. Since processes are replicated and the two principals

10 We recall that parties sign the hash of messages and these are shorter than keys.



may output an unbounded number of zero-knowledge proofs, our protocol ad-
ditionally provides unlinkability, that is, the attacker is not able to tell if two
zero-knowledge proofs come from the same principal or not.

6 Conclusion

We have proposed a cryptographic protocol for anonymous communication in
webs of trust. We reconcile trust and anonymity, two seemingly conflicting re-
quirements, using a novel zero-knowledge proof that allows the sender to prove
the existence of a certificate chain without revealing her identity and the re-
ceiver to verify the trust level of the sender. The zero-knowledge proof scheme is
general and accommodates different aspects of webs of trust, such as key expira-
tion, trust measures, and existence of multiple certificate chains. We conducted
a formal security analysis of our protocol, showing that trust and anonymity are
guaranteed even in a strong adversarial setting.

Our approach inherently requires that the certificates comprising the certifi-
cate chain are accessible to the prover, since they have to be proven in zero-
knowledge. While public relationships are not a problem in a company (e.g.,
boss, employee, trainee, etc.), there might be privacy issues in other settings,
e.g., in the context of social networks where users may want to keep their social
relationships secret. We stress that our approach does not require the whole
relationship graph to be public; only the certificates used in the proof need to
be accessible to the prover.

In a distributed social network, for instance, we envision the following local
certificate distribution mechanism: A expresses her friendship with B by signing
B’s public key and sending the corresponding certificate CAB to him. If A wants
her profile to be available only to her friends (this corresponds to a “friends
only” policy in Facebook [23]), then B is expected to keep CAB to himself.
Should A instead opt for a “friends of friends” policy (which is also available in
Facebook [23]), then A authorizes B to release CAB to his friends in order to let
them anonymously authenticate with A (with a zero-knowledge proof of length
2). B’s friends might express interest in authenticating with A, after looking at
a preview of A’s profile, which could be made available by B.

In general, there is an inherent trade-off between the privacy of the relation-
ship graph and the anonymity guarantees of our scheme. On the one hand, if
the relationship graph is fully private, then the prover does not know how many
other principals have her own trust level. Hence, in the extreme scenario in which
the verifier and all the principals in the chain have issued just one certificate,
the prover is just anonymous in the set of principals occurring in the chain (due
to the chain enlargement technique discussed in Section 4). On the other hand,
if the relationship graph is public, as in GnuPG, the prover can be certain of
her anonymity guarantees. As a future work, it would be interesting to investi-
gate techniques to solve this tension, e.g., by selectively disclosing parts of the
relationship graph in order to ensure meaningful anonymity properties.



Acknowledgments This work was partially supported by the initiative for
excellence and the Emmy Noether program of the German federal government
and by Miur Project SOFT (Security Oriented Formal Techniques).

References

1. M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. In
FOSSACS’01, volume 2030 of LNCS, pages 25–41. Springer, 2001.

2. M. Abadi, B. Blanchet, and C. Fournet. Automated verification of selected equiv-
alences for security protocols. In LICS’05, pages 331–340. IEEE, 2005.

3. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In POPL’01, pages 104–115. ACM, 2001.

4. R. Ashri, S. D. Ramchurn, J. Sabater, M. Luck, and N. R. Jennings. Trust evalu-
ation through relationship analysis. In AAMAS’05, pages 1005–1011. ACM, 2005.

5. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In CRYPTO’00, volume 1880 of
LNCS, pages 255–270. Springer, 2000.

6. M. Backes, S. Lorenz, M. Maffei, and K. Pecina. Anonymous webs of trust (tool
and long version), 2010. Available at http://www.lbs.cs.uni-sb.de/awot/.

7. M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-calculus and
automated verification of the direct anonymous attestation protocol. In SSP’08,
pages 202–215. IEEE, 2008.

8. M. Backes and D. Unruh. Computational soundness of symbolic zero-knowledge
proofs against active attackers. In CSF’08, pages 255–269. IEEE, 2008.

9. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and
H. Shacham. Randomizable proofs and delegatable anonymous credentials. In
CRYPTO’09, volume 5677 of LNCS, pages 108–125. Springer, 2009.

10. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of
dynamic groups. In CT-RSA’05, volume 3376 of LNCS. Springer, 2005.

11. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In
CSFW’01, pages 82–96. IEEE, 2001.

12. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In EUROCRYPT’05, volume 3494 of LNCS, pages 440–
456. Springer, 2005.

13. J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP message
format. In Request for Comments, volume 4880. IETF, 2007.

14. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In
SCN’02, volume 2576 of LNCS, pages 268–289. Springer, 2002.

15. J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the
product of two safe primes. In EUROCRYPT’98, volume 1592 of LNCS, pages
107–122. Springer, 1998.

16. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In CRYPTO’97, volume 1294 of LNCS, pages 410–424. Springer, 1997.

17. B. Carminati, E. Ferrari, and A. Perego. Rule-based access control for social
networks. In OTM’06, volume 4278 of LNCS, pages 1734–1744. Springer, 2006.

18. G. Caronni. Walking the web of trust. In WETICE’00, pages 153–158. IEEE,
2000.

19. D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT’91, volume 547
of LNCS, pages 257–265. Springer, 1991.

http://www.lbs.cs.uni-sb.de/awot/


20. R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In CRYPTO’94, volume 839 of LNCS,
pages 174–187. Springer, 1994.

21. J. Domingo-Ferrer, A. Viejo, F. Sebé, and U. González-Nicolás. Privacy homo-
morphisms for social networks with private relationships. Computer Networks,
52(15):3007–3016, 2008.

22. J. Domingo-Ferror. A public-key protocol for social networks with private rela-
tionships. In MDAI’07, volume 4617 of LNCS, pages 373–379. Springer, 2007.

23. facebook. http://www.facebook.com/.
24. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification

and signature problems. In CRYPTO’87, volume 263 of LNCS, pages 186–194.
Springer, 1987.

25. K. Frikken and P. Srinivas. Key allocation schemes for private social networks. In
WPES’09, pages 11–20. ACM, 2009.

26. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove mod-
ular polynomial relations. In CRYPTO’97, volume 1294 of LNCS, pages 16–30.
Springer, 1997.

27. C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In ASI-
ACRYPT’02, volume 2501 of LNCS, pages 548–566. Springer, 2002.

28. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001.

29. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the
ACM, 38(3):690–728, 1991.

30. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

31. J. Herranz. Identity-based ring signatures from rsa. Theoretical Computer Science,
389(1-2):100–117, 2007.

32. Lance Cottrell, Pr0duct Cypher, Hal Finney, Ian Goldberg, Ben Laurie, Colin
Plumb, or Eric Young. Signing as one member of a set of keys. http://www.
abditum.com/ringsig/.

33. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In CRYPTO ’91: Proceedings of the 11th Annual International Cryptol-
ogy Conference on Advances in Cryptology, volume 576 of LNCS, pages 129–140.
Springer, 1991.

34. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. Communications
of the ACM, 22(22):612–613, 2001.

35. J. Sabater-Mir. Towards the next generation of computational trust and reputation
models. In MDAI’06, volume 3885 of LNCS, pages 19–21. Springer, 2006.

36. M. Scott. Multiprecision Integer and Rational Arithmetic C/C++ Library. http:
//www.shamus.ie/.

37. D. X. Song. Practical forward secure group signature schemes. In CCS’01, pages
225–234. ACM, 2001.

38. The GNU Privacy Guard Team. GnuPG. http://www.gnupg.org/.
39. The GNU Privacy Guard Team. The GNU Privacy Handbook. http://www.gnupg.

org/gph/en/manual.pdf.
40. A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman. Lockr: better privacy for

social networks. In CoNEXT’09, pages 169–180. ACM, 2009.
41. D.-W. Wang, C.-J. Liau, and T.-S. Hsu. Privacy protection in social network data

disclosure based on granular computing. In Fuzzy’06, pages 997 – 1003. IEEE,
2006.

http://www.facebook.com/
http://www.abditum.com/ringsig/
http://www.abditum.com/ringsig/
http://www.shamus.ie/
http://www.shamus.ie/
http://www.gnupg.org/
http://www.gnupg.org/gph/en/manual.pdf
http://www.gnupg.org/gph/en/manual.pdf


S(n,t) S(n−1,t) S(1,t)S(2,t)

S(i,j) : Trust signature with transitivity level i and trust level j

Fig. 5. Trust signature chain

A Trust Model

One of the core motivations behind webs of trust as public key infrastructures
is the fact that there is no central authority one has to trust. Every participant
bases trust decisions on her own policy.

However, this poses problems: Consider a simple web of trust where Alice
signed Bob’s key and Bob signed Charlie’s key. Alice trusts Bob only marginally,
i.e., she is not convinced that her signing policy is fully compatible with Bob’s
policy. What does this say about Charlie’s key? Probably Alice should not accept
it as a valid key if it is only signed by Bob. In the following, we use trust and
validity on the basis of the GnuPG Handbook [39]: Trust denotes the belief
that the owner of a key acts in accordance with our signing policy and validity
denotes our belief that a key actually belongs to the designated owner.

Our work is based on the OpenPGP standard [13], which stipulates a method
for conveying and expressing trust, namely, trust signatures. Such signatures
allow the signer to assert a transitivity level and a trust level. The former rules
the transitivity of trust relationships while the latter allows one to publicly
state the amount of trust set in the owner of a key. (Typical trust values are
unknown, no trust, marginal, and full.) For instance, a level one trust signature
on key k means that k can be used to sign another key k′, which will inherit
the same trust level as k. Key k′, however, is not trusted to sign further keys.
In general, a level n trust signature asserts that the owner of a key is trusted to
issue level n− 1 trust signatures. Figure 5 depicts a trust signature chain with a
constant trust level. Note that the OpenPGP standard does not require the trust
level to remain constant throughout a chain. In practice, common transitivity
levels are 0 (direct friendship relation) and 1 (friend of a friend relation). A
level zero signature is equivalent to a standard signature in the web of trust.
Higher transitivity levels may be useful in certain applications where they have
a clear and meaningful interpretation (e.g., reflecting the hierarchical structure
of a company). PGP, since version 5, as well as GnuPG, depending on user
preferences, use transitivity levels and trust levels to calculate the validity of
keys. The specific details of these computations are implementation dependent.

Our approach is compatible with the trust signature mechanism and a variety
of validity calculation algorithms. In fact, we can selectively reveal both transi-
tivity levels and trust levels in our zero-knowledge proofs as well as compute in
zero-knowledge the validity of keys as described in Section 4.


	Anonymous Webs of Trust
	 Michael Backes, Stefan Lorenz, Matteo Maffei, and Kim Pecina 

