
Echolot and Leuchtfeuer

Measuring the Reliability of Unreliable Mixes

Klaus Kursawe1 and Peter Palfrader2 and Len Sassaman1

1 Katholieke Universiteit Leuven
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{len.sassaman,klaus.kursawe}@esat.kuleuven.be
2 Paris Lodron Universität Salzburg

Salzburg, Austria
ppalfrad@cosy.sbg.ac.at

Abstract. In a mix-net, information regarding the network health and
operational behavior of the individual nodes must be made available
to the client applications so they may select reliable nodes to use in
each message’s path through the mix-net. We introduce the concept of
a pinger, an agent which tests the reliability of individual mixes in the
mix-net, and publishes results for the mix clients to evaluate.
We discuss the security concerns regarding pingers, including the issues
regarding anonymity set preservation, information disclosure, and node
cheating. We present our software Echolot, the most comprehensive and
widely adopted pinger for the Mixmaster anonymous remailer network.
To address a serious anonymity weakness potentially introduced by the
careless deployment of pingers, we present Leuchtfeuer, a new protocol
enhancement for mix-nets. Leuchtfeuer eliminates the active and pas-
sive intersection attacks that are possible when different users obtain
conflicting reliability statistics about the mix-net.

1 Introduction

Chaum [8] introduced the concept of mixes as a method of providing secure
anonymous network communication. The publicly accessible mix networks, such
as the “Type I” Cypherpunk remailers [13], the “Type II” Mixmaster [19] net-
work, and the “Type III” Mixminion network [10], as well as the low-latency
network anonymity service Tor [12], are operated on a volunteer basis and are
prone to intermittent failure of individual nodes. It is therefore necessary for mix
client software to have an accurate view of the health of the nodes in the mix
network. This information is gathered by sending test messages through each
node and observing the success or failure of the mix to successfully transmit the
message. In a similar fashion, links between mixes are examined by sending mes-
sages through every combination of two consecutive mixes. Since the overhead
and operational complexity involved in monitoring an entire network of mixes is
too great for the average user, reliability testing servers, or pingers, perform this
function and publish their results in a machine-parseable format. The results are



2 Klaus Kursawe and Peter Palfrader and Len Sassaman

downloaded and interpreted by the mix clients. Pingers track additional infor-
mation as well, such as the average latency provided by each mix, changes in
the key information and capabilities of the mixes, and so forth.

In this paper we give an overview of the different pinger systems that have
been developed for the Mixmaster network, and describe the problems they at-
tempt to address, as well as their relative success at doing so. We present Echolot,
our pinger implementation which more adequately addresses the problem of re-
liability monitoring than the other pingers. Finally, we explain the problem of
pinger inconsistency, an issue which poses significant security implications and
is shared by all existing pingers and mix clients. To solve this, we present the
pinger agreement protocol Leuchtfeuer.

2 Related work

2.1 rlist

Raph Levien introduced the concept of a monitoring service for anonymous
remailers. His software rlist [16] was at first designed only to work with the
Cypherpunk remailer network; support for the Mixmaster network was added
later.

Once started, rlist would run indefinitely, regularly sending simple test mes-
sages through remailers and building statistics files.

2.2 pingstats

Pingstats [9], developed between 2000 and 2003 by a programmer using the
pseudonym of cmeclax, is a pinger for both Cypherpunk and Mixmaster remail-
ers. It consists of a C program which computes the statistics and a collection of
shell scripts that manage the creation, sending, and receiving aspect of pinging,
as well as help with collecting keys of known remailers and making a list of their
capabilities. These programs are called from Cron, a Unix daemon that executes
programs at previously specified times.

Pingstats employs random tokens in message payloads as a counter-measure
to cheating mixes (see section 3 below).

Pingstats presents a more timely view of the state of the network by using
weighted pings for its reliability calculation. Thus, older ping results are given
less weight than more recent data.

2.3 remlist

Christian Mock wrote remlist [18] at about the same time as cmeclax developed
pingstats. Mock’s pinger also generated non-deterministic ping payloads but did
not do any weighting of data. Remlist’s main distinguishing feature was the use
of MySQL [1], a relational database, as its storage backend.



Echolot and Leuchtfeuer 3

2.4 Mixminion directory server

Mixminion[10] generalized the concept of pingers, defining a directory server
component of the Mixminion system which is responsible for the distribution of
all information about remailer availability, performance, and key material. The
designers of the Mixminion system considered the attacks on the independent
pinger model, and specified that directory servers be synchronized as well as
redundant.

Mixminion publishes signed capability blocks in the directory server, consist-
ing of the supported mix protocol versions, mix’s address, long-term (signing)
public key, short-term (message decryption) public key, remixing capability, and
batching strategy.

3 Veracity attacks

A mix which is otherwise honest (in that it correctly performs mixing duties
without breaking the anonymity of the messages transmitted through it) may
attempt to convince a pinger to provide false information regarding the perfor-
mance of the mix by identifying the source address of pings and treating the
pinger messages differently than normal messages. While this manipulation will
not change basic results such as the operational status of a defunct mix, it could
allow a mix to alter the latency statistics reported for its operation.

We experimented in Echolot 1.x with a technique intended to discourage such
cheating by creating ping messages which originate and terminate at a local mix
that also mixes normal messages, so that the target mix cannot distinguish
between user messages and pinger messages. Unfortunately, systems such as
Mixmaster have a minimum distance between hops which is considered when
creating a mix chain, and thus messages which consist of the mix chain A,B,A
will still be distinguishable as pinger messages, since no properly functioning mix
client would generate this chain. If a pinger were to create a chain of A,B,C,A,
neither mixes B or C would be able to tell that the message contained pinger
information, but the results would only indicate the combined latency of the
mixes B and C, as well as the health of both B and C and the link between
those mixes. It would not provide any useful information about B or C alone.

The pinger message data (or pings) itself should not be deterministic, lest a
mix attempt to “back-fill” the results for pings sent during a period when the
mix was offline. This can be prevented by the inclusion of random tokens in the
message payload of the ping, so that pings returned to a pinger without bearing
the token of an outstanding ping are discarded without being collated.

4 Echolot

The first version of Echolot [22] was written in 2001. It sent pings through a
local Mixmaster node in order to prevent the nodes being tested from learning



4 Klaus Kursawe and Peter Palfrader and Len Sassaman

that a message contained a ping. Other than that it was fairly similar to other
pinger software in existence at the time.

Echolot 2.x, a complete rewrite, followed in 2002. Instead of a being a group
of programs with order-of-execution dependencies and potential race conditions
as its predecessor (and all other existing pingers) were, Echolot 2.x was built as
a single daemon. In addition to the normal single hop pings, this version also
featured automated node discovery. The following year Echolot 2.1 was released,
adding the capability for chain pinging.

Echolot is the most widely used pinger for the Types 1 and 2 remailer net-
works. As of this writing, there are over a dozen Echolot pingers operating pub-
licly [20].

4.1 Reliability measurement aspects

Echolot tests multiple areas of failure in the remailer networks and collates this
data in a format the Mixmaster software can process, allowing the mix clients
to make as much use of the available network resources as possible without
preventable packet loss.

The most basic test of reliability is the “single ping” test, wherein the known
nodes of the mix-net are each periodically sent individual messages encrypted
using the network-specific packet format, and the response times and success
rates are tallied. These results allow the mix client to make general assumptions
about the overall behavior of the node being tested.

When performing a “chain ping” test, Echolot creates a message of path
length equal to two for all combinations of any two remailers in the network,
and tests each of these pairings. If both remailers consistently return single pings,
but fail to return chained pings, one can deduce that the failure is occurring at
the link between the two nodes. Thus, either remailer can be reliably used, as
long as they are not selected to be adjacent nodes in the message path.

Similarly, the latency value observed from the transmission of a chain ping
until its return at the pinger measures the combined latency of the two nodes.
If this is significantly different than the sum of the single-ping latencies for each
node, the mix-net client could make determinations about the suitability of that
pairing of nodes in a chain. As no mix-net clients exist which make use of the
latencies of chain pings, Echolot does not currently report them.

4.2 Node discovery

Distributed mix-nets consisting of independent operators often do not allow for
a guaranteed means for nodes to communicate join and exit events to the other
nodes in the network. In the case of Mixmaster, there is no central control
structure for tracking the existence of functional nodes, and the components in
the system must devise a way of obtaining this information. Often, the human
operator of a node joining or exiting the network will announce the status change
to other node operators and users via the “remops” mailing list or by posting



Echolot and Leuchtfeuer 5

to USENET. Just as often, nodes will come into existence or cease operation
without any warning or notification at all.

Echolot regularly queries each remailer for copies of its current keys, a report
of its capabilities, and a list of the other remailers known to it. If a quorum of
remailers know about a new node in the remailer network that was previously
unknown to this Echolot pinger, the pinger will automatically add the new ad-
dress to the list of remailers, request information about keys and capabilities,
and start pinging the address.

Remailers that have not responded to any requests for an extended duration
of time are also removed automatically.

Echolot’s automation of most routine maintenance tasks produces a more
accurate report about the remailer network than would be possible if it relied
on intervention by the pinger operator. Additionally, since the remailer network
infrastructure is operated by volunteers, it is especially important to minimize
the effort necessary to operate components of the network to attract and retain
volunteer operators. While the bandwidth, disk storage, and computation re-
sources required to operate a pinger are negligible for most potential volunteers,
even as little as one hour a month of human administration time would likely be
too costly for many.

4.3 Echolot algorithm

Echolot’s approach for determining remailer reliability is as follows: Distributed
over the course of a day, Echolot sends several pings through each remailer,
recording the time when they were sent. For pings already received, the time
interval between the sending of the ping and its return to the pinger is recorded.

The “reliability” of a remailer is basically the quotient of pings received and
pings sent, with some skewing in place to put more emphasis on more recent
data while still being fair to remailers with higher latencies: rel :=

P
wi·rcvdiP

wi
,

where rcvdi is 1 if a ping was received and 0 otherwise.
The weight wi of a ping is made up of two factors: w1i ·w2i. The first of them,

w1i is strictly a function of the ping’s age: Pings younger than 24 hours have a
weight of 0.5; after 24 hours w1 is 1.0 for a while until the weight decreases to
zero for pings older than 12 days. See table 1 for the exact numbers used in the
Echolot software.

age [days]: 1 2 3 4 5 6 7 8 9 10 11 12

weight w1: 0.5 1.0 1.0 1.0 1.0 0.9 0.8 0.5 0.3 0.2 0.2 0.1
Table 1. Weight of pings based on their age

The second part of a ping’s weight also considers this node’s latency behavior
over the last 12 days. If a ping already has returned, its w2 is 1.0. However,
should it still be outstanding, Echolot computes the ping’s age, again with some



6 Klaus Kursawe and Peter Palfrader and Len Sassaman

constant skewing factors: ageskewed := (now − send − 15min) · 0.8. The weight
w2 is now the percentage of pings returned with a latency lower than ageskewed

within the past 12 days.
To illustrate this, assume a ping was sent two hours ago, which makes

ageskewed 84 minutes. If all pings returned from this node were faster than 84
minutes, then w2 is 1.0. If only a third of pings were received within that time
frame, then w2 is 0.33. If no ping was ever faster than 84 minutes, then w2 is
zero.

This weighting based on past behavior was introduced to accurately report
the reliability of remailers that have vastly different latencies. There exist Mix-
master nodes which return pings within minutes of sending, while others often
take many hours to forward a message [21].

In addition to reliability, Echolot also reports a node’s latency. The latency
reported is simply the median of latencies of all pings received within the last
12 days.

Chain-Pinging: In addition to single-hop pings, Echolot also performs chain
pinging to uncover cases where two remailers A and B perform well when tested
individually but for obscure reasons,1 messages sent through A to B fail to arrive
at their destinations.

Since pinging every two-hop chain on a frequent basis would put an unneces-
sary load on the remailer network, Echolot contents itself with only testing each
chain once a week. Chains that warrant closer attention (so called “interesting
chains”) are pinged more often—daily.

Echolot reports a chain to be broken if

– at least 3 pings were sent to test the chain, and
– the resulting chain reliability is far smaller than could be expected from the

nodes’ individual performance: received pings
sent pings <= relA · relB · 0.3.

Chains are considered interesting by Echolot when

– fewer than 3 pings have been sent without any returning, or
– the chain is currently reported broken.

Because Echolot pings chains that it considers working only once a week, it
may take a while before it realizes that a previously working chain is now broken.
Fortunately, experience with the currently deployed Mixmaster network shows
that broken chains do not change very often. [?] FIXME, Peter!

1 Broken chains may be unidirectional or bidirectional, depending on their root cause.
We have observed broken chains which have resulted from both hardware faults and
configuration errors impacting the network path between the two nodes, as well as
mistakes in the configuration of the remailer’s host server. Others have been due to
misconfigurations in anti-spam measures in place on one or both of the remailers’
underlying infrastructure. Most broken chains, though, are unexplained.



Echolot and Leuchtfeuer 7

5 Anonymity set attacks based on pinger data

A mix network in which users obtain their view of the network’s heath and status
from multiple independent sources opens the system to partitioning attacks [25]
against the users, based on differences in the mix selection based on the results
of the different pingers. In a system of entirely honest pingers, this attack is
feasible for an adversary operating in the passive observer model.

Suppose Alice retrieved her network health information from pinger 1, and
Bob retrieved his information from pinger 2. An observer watching the network
local to Alice or Bob would know which pinger the user under observation chose.
If the information provided by both pingers differed in some manner, the delta
would contain mixes that, if chosen by Alice or Bob, would betray which pinger
had been used to obtain this information. A message processed by a mix con-
tained only in the results provided by pinger 1 could not have been sent by Bob,
who obtains his results from a pinger lacking that information.

Additionally, differences in pinger results for mix latency could lead to more
subtle variations in mix path selection, which may aid an attacker.

If a pinger is operated by an attacker, it becomes possible to specifically
target individual users by providing them with unique information about the
network in order to partition them into an anonymity set of size 1. Users can
attempt to prevent against this attack by obtaining their pinger results from a
widely-published location, such as Usenet, though this does not completely solve
the partitioning attack problem, and introduces additional reliability constraints
on the quality of the pinger information.

Additionally, many users retrieve from the pinger updated keys for the re-
mailers at the same as time they update their stats. The pinger2 could manipu-
late the user into using keys other than those the user intended to. An attacker
who controlled both the pinger used by his target and a number of mixes in
the network could observe the target’s messages moving through his mixes by
performing a key-swapping attack with the pinger. By providing the target with
a public key other than the one generally available for the mixes he controls, the
target’s messages would be easily distinguishable when processed by his mixes.

6 Creating a consensus directory

The solution to the partitioning attacks mentioned in the previous section in-
volves providing all clients with the same view of the network. Each pinger should
calculate its results for the status of the network and compare these results with
those of the other pingers. The pingers then must agree on a compromise result
which reflects an accurate view of mix availability and provides every client with
a consistent information with which to calculate message paths.

Since the infamous FLP impossibility proof [14], it is known that a simple
problem such as reaching consensus in the presence of faulty parties – even if the

2 or an attacker performing a man-in-the-middle attack on the data retrieval session.



8 Klaus Kursawe and Peter Palfrader and Len Sassaman

worst they can do is to crash – is rather hard, and a significant amount of re-
search has been put into securing distributed systems against faulty parties [24,
11]. In the mix-net scenario, the main parties for the agreement protocols are
the pingers, i.e., the parties that maintain a database on the active mixes, their
authentication keys and some of their properties. They need to agree on a con-
sistent status of the mixes and then deliver it on request to the clients. As the
clients should not be forced to contact more pingers than needed, each honest
mix should be able to prove that the result it forwards to the client is in fact
the genuine outcome of the agreement.

Depending on the attack model, the solutions can be rather complex, and
in many implementations weaker attack models are chosen to allow for simpler
protocols. In the Mixminion protocol, for example, the agreement protocol can
easily be circumvented by one (or several) parties stopping the communication
after a while – a condition that may be constructed even if none of the involved
pingers is actually corrupt. The honest parties may recognize they are in a bad
condition and alert the administrator, but it is left to human interference to
actually recreate consensus; as the disagreement may be created without any
party behaving obviously dishonestly, this may place quite some burden on the
administration.

The protocol suite presented here will guarantee a consensus independent
of timing assumptions, as long as fewer than a third of all pingers behave in
an actively malicious fashion. For additional security, one can still add tests
along the lines of the Mixminion protocol to detect inconsistencies and alert the
administrators; however, if more than a third of the pingers are actively corrupt,
the system is in a sufficiently bad state that its survival is questionable.

6.1 The Tools

In this section, we introduce the basic building blocks needed for our protocol.
Due to lack of space, we do not give a formal model here. The protocols we choose
were mostly developed within the MAFTIA project [3]; using new randomization
techniques, these protocols are the first practical protocols that can deal with
the maximum possible number of corruptions, and do not require any timing
assumptions.

Binary Byzantine Agreement. The basic protocol behind our consensus
protocols is a binary Byzantine agreement protocol [15, 6], which allows parties
to agree on a simple binary value. In addition to agreement, the output value also
must depend on the input values; in our case, this means it must be proposed
by at least one non-corrupted pinger. We also want to obtain a proof of the
outcome, so one single pinger can prove to an external party what the outcome
of a particular protocol instance was.

Verifiable Multivalued Byzantine Agreement. A multivalued Byzantine
agreement protocol [5] allows the pingers to agree on any bit-string, rather than



Echolot and Leuchtfeuer 9

only a binary value. As there is a (potentially) infinite universe of possible values,
a multivalued Byzantine agreement protocol can no longer guarantee that the
output of the protocol is the input of some honest party – this would only be
possible if all honest parties propose the same value. It is, however, possible
to enforce that all honest parties verify the value prior to agreement, and thus
guarantee that it satisfies some properties, e.g., that it has the expected format,
or contains proper signatures that certify its validity.

Broadcast protocols. Broadcast protocols [5] are used to send messages from
one sender to a number of receivers. In the simplest version, the sender simply
sends the message to every other party (Note that in the Mixminion protocol,
the receivers poll the messages, rather than the sender pushing them; for our
purpose, this does not pose a significant difference). This simple protocol does
not give any guarantees to the receivers, however; some may receive different
messages, or no message at all.

A consistent broadcast, or c-broadcast, guarantees that all parties that do
receive a particular broadcast receive the same value [17]. It does not, however,
guarantee that all parties on the group receive anything in the first place.

A reliable broadcast, or r-broadcast, additionally guarantees that all parties
receive the broadcast [2]. Our model being asynchronous, there is no guaran-
tee about the time; the only guarantee is that if one honest party receives the
broadcast, eventually all other ones will.

An atomic broadcast [7, 23] primitive additionally guarantees that all honest
parties receive all messages in the same order. This is a rather powerful synchro-
nization mechanism, that deals with many uncertainties of the asynchronous net-
work and the attackers. In principle, it is possible to build the entire database
on top of such a protocol; for this paper, however, we have chosen dedicated
protocols.

Threshold signatures. Threshold signatures [26] allow parties to issue shares
of a signature, which then – given enough shares are available – can be combined
into one single signature. The nice property is that a threshold signature outputs
the same constant length signature, independent of the actual number of parties
or the subset of parties that did the actual signing. This not only preserves space
and bandwidth, but also solves the key distribution system. A client does not
need to know the public key of any individual pinger, nor the identity of the set
of pingers, but can verify that a certain message was signed by a certain number
of pingers by verifying against one, static, public key. The disadvantage is that
the internal management of the group of pingers becomes more complex. If an
old pinger is disabled, its key share must be invalidated. Similarly, a new pinger
needs to get a new key-share, and all thresholds need to adapt.

6.2 The database update functions

Due to the different character of the data in the database, the pingers need four
different protocols to maintain their databases in a consistent state.



10 Klaus Kursawe and Peter Palfrader and Len Sassaman

Update set of mixes. The main functionality of our protocols is to maintain a
consistent set of mixes. Furthermore, a client should easily be able to obtain that
set, i.e., each pinger can prove that he gives out the correct set. This is where the
threshold signatures are used; there is only one signature for all pingers, but a
minimum of two thirds are needed to generate the signature. Thus, a client only
needs one public key to verify she got a correct set of mixes, without needing to
know which parties are in the actual set of pingers.

Protocol UpdateMixes

r-broadcast new list L of mixes
wait for (n− t) r-broadcasts
receive a set L′ of mixes

run multivalued BA protocol, using L′ as an input
receive a set L′′ of (n− t) lists
let L′′′ be the set of mixes that have been proposed by t + 1 parties in the set
threshold-sign (date, L′′′) using a threshold signature scheme, getting the sig-

nature share σi

r-broadcast the signature share σi

wait for (n− t) such shares
combine the shares to retrieve σ

Update set of pingers. The protocol that updates the set of pingers is similar
to the one that updates the set of mixes. However, for this protocol it is important
to also update the shared keys, so that the old parties cannot participate in any
signing process anymore, while the new parties get shares that allow them to
participate. An appropriate re-sharing protocol is described in [4].

Update database (externally). With this function, the pingers can update
information about a mix, most prominently its performance data. In the simplest
case, this data is binary; in this case, a simple binary Byzantine agreement can
be performed to determine a common value that has been proposed by at least
one honest party. To avoid communication overhead, the agreements needed for
all data on all mixes can be bundled; this leads to a protocol with message size
linear in the total number of data items, and a running time logarithmic in the
number of pingers.

Update database (internally). This function is used to allow a mix to up-
date database information about itself. Most commonly, this will be used to
install a new key pair once the old one expires. It is relatively straightforward
to implement this functionality, as the mix already has a key to authenticate it-
self. Assuming this is implemented properly (i.e., the signed messages are tagged
properly), this can safely be used for database updates.

The update protocol would be a simple r-broadcast of a signed message re-
questing the update. This way, it is guaranteed that all pingers receive the same
request, and the database stays consistent. To avoid race conditions, the mix



Echolot and Leuchtfeuer 11

also needs to maintain a serial number, so that all parties can be assured to re-
ceive all updates in the same order. Note that there exist protocols that can also
enforce that all pingers receive all update requests in the same order; however,
implementing this here may be overkill.

6.3 Attack Model

It is known that a simple problem such as agreement is quite hard in an asyn-
chronous environment if some parties crash or otherwise do not follow the pro-
tocol. The only way around is to either rely on timing assumptions, or to use a
randomized algorithm.

Our choice is for randomization, for two reasons: Firstly, the randomized
model appears to be better adapted to the Byzantine setting, where the cor-
rupted parties actively try to disrupt the protocol. Secondly, we can expect real-
istic attacker in our scenario to launch denial of service attacks on the network,
which timing based protocols have difficulties dealing with.

The price to pay for the fully asynchronous network model is a lower toler-
ance. It can easily be shown that nothing useful can be done once a third or
more of all parties are corrupted. [?] FIXME, Klaus! In the mix-net scenario,
the main parties for the agreement protocols are the pingers; they need to agree
on a consistent status of the mixes and then deliver it on request to the clients.
As the clients should not be forced to contact more pingers than needed, each
honest mix should be able to prove that the result it forwards to the client is in
fact the genuine outcome of the agreement.

6.4 The Functionality

The primitives we have described can be utilized by the mix-net’s independent
components to perform basic network maintenance operations. Mixes can an-
nounce their existence to a small selection of pingers. After the pingers perform
several instances of the UpdateMixes protocol, all the pingers will have learned
the address of the new mixes and independently confirmed their validity by
sending the mixes a query which will result in the automatic return of their
keys. After verifying a new mix exists, adding the mix’s keys (which have been
obtained directly from the mix itself), and confirming that the mix is properly
forwarding packets by sending pings through it, the pingers will add the new
mix to their list of known mixes. Once enough pingers list the new mix and its
operational details, it will be included in the consensus directory. The current
Echolot pingers are able to add and remove mixes without human intervention,
and Leuchtfeuer has been designed to integrate with the current pinger behavior.

Leuchtfeuer restricts the information provided by pingers in one area where
Echolot and the previously deployed pingers were unconstrained: in order to
achieve consensus on the data associated with a mix, latency must be represented
as one of a limited set of values, as opposed to being directly reported in units of
time. Pingers should categorize individual mixes as being either “high” or “low”
latency, and report them as such.



12 Klaus Kursawe and Peter Palfrader and Len Sassaman

Pingers using Leuchtfeuer will record reliability and performance information
about the mixes as they currently do, though the interval between publication of
updates available to mix clients will increase significantly. As opposed to being
updated every five minutes, as is the current default in Echolot, Leuchtfeuer
pingers will create a threshold signature on the consensus directory and pub-
lish the signed directory for the clients every 12 hours. While this potentially
increases the risk of lost packets due to a mix going offline immediately after a
consensus directory in which it was still listed is published, it limits the ability
of a passive attacker to perform intersection attacks based on short-term pinger
result fluctuations.

Current mix clients do not perform any authentication on the data obtained
by pingers, while in the Leuchtfeuer protocol, clients will need to verify the
threshold signature to confirm that the consensus directory is authentic. This
will not add noticeable additional complexity to the user experience.

7 Conclusions and future work

We have described a device called a pinger, a necessary component of anonymity
networks based on unreliable mixes. As background, we presented a summary
of the pinger software that has been created since the inception of the public
anonymous remailer networks.

We have detailed a number of techniques used to ensure the results reported
by a pinger are accurate and comprehensive, and emphasized specific technical
requirements necessitated by the economic considerations of the public anony-
mous remailer networks. We have implemented and released our own pinger
software which incorporates these techniques, and as a result has become the
dominant pinger solution in use on the Mixmaster network.

We have designed an agreement protocol suitable for use in the asynchronous
setting presented by the public remailer networks, which enables mutually-
untrusting pingers to come to present a unified view of the state of the remailer
network, including the names, network addresses, and public keys of the exist-
ing mixes, which can be authenticated by the mix client by verifying just one
cryptographic signature on the consensus data. Our protocol greatly restricts
an attacker’s ability to exploit information about a user’s information service or
directory to perform intersection attacks against him, and reduces the impact
that pingers operated by an adversary can have on the mix-net.

Acknowledgments

Peter Palfrader would like to thank Lucky Green and Colin Tuckley for authoring
and continuing to update Echolot’s end user documentation, Orange admin for
work on the HTML templates that make up Echolot’s output, and BiKiKii Ad-
min, noisebox Admin and many nameless testers for providing valuable feedback
during Echolot’s development.



Echolot and Leuchtfeuer 13

Len Sassaman would like to thank Bill Stewart, Nick Mathewson, and numer-
ous attendees of the erstwhile San Francisco Bay Area Cypherpunks meetings for
their insightful discussions of the mechanics of pingers. We also thank Mered-
ith L. Patterson for reviewing a draft of this paper and for providing helpful
comments.

Len Sassaman’s work was supported in part by the EU within the PRIME
Project under contract IST-2002-507591.

References

1. MySQL AB. Mysql. http://www.mysql.com/.

2. Gabriel Bracha. An asynchronous [(n−1)/3]-resilient consensus protocol. In Proc.
3rd ACM Symposium on Principles of Distributed Computing (PODC), pages 154–
162, 1984.

3. Christian Cachin, editor. Specification of Dependable Trusted Third Parties. De-
liverable D26. Project MAFTIA IST-1999-11583, January 2001. Also available as
Research Report RZ 3318, IBM Research.

4. Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asyn-
chronous verifiable secret sharing and proactive cryptosystems. In ACM Confer-
ence on Computer and Communications Security, pages 88–97, 2002.

5. Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and
efficient asynchronous broadcast protocols. Cryptology ePrint Archive, Report
2001/006, March 2001. http://eprint.iacr.org/.

6. Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in Con-
stantinople: Practical asynchronous Byzantine agreement using cryptography. In
Proc. 19th ACM Symposium on Principles of Distributed Computing (PODC),
pages 123–132, 2000. Full version available from Cryptology ePrint Archive, Re-
port 2000/034, http://eprint.iacr.org/.

7. Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In Proc.
Third Symp. Operating Systems Design and Implementation (OSDI), 1999.

8. David Chaum. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM, 4(2), February 1981.

9. cmeclax. pingstats, 2000 - 2003. http://ixazon.dynip.com/˜cmeclax/pingstats.html.

10. George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a
Type III Anonymous Remailer Protocol. In Proceedings of the 2003 IEEE Sympo-
sium on Security and Privacy, May 2003.

11. Yves Deswarte, Laurent Blain, and Jean-Charles Fabre. Intrusion tolerance in
distributed computing systems. In Proc. 12th IEEE Symposium on Security &
Privacy, pages 110–121, 1991.

12. Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-
Generation Onion Router. In Proceedings of the 13th USENIX Security Symposium,
August 2004.

13. Hal Finney. New remailer... Mailing list post, October 1992.
http://cypherpunks.venona.com/date/1992/10/msg00082.html.

14. Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2):374–
382, April 1985.



14 Klaus Kursawe and Peter Palfrader and Len Sassaman

15. Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals
problem. ACM Transactions on Programming Languages and Systems, 4(3):382–
401, July 1982.

16. Raph Levien. rlist, 1995. ftp://ftp.zedz.net/pub/crypto/remailer/rlist.tar.gz.
17. Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems. Distributed

Computing, 11(4):203–213, 1998.
18. Christian Mock. remlist – remailer config and ping tool, 2001.

http://www.tahina.priv.at/˜cm/hacks/index.en.html.
19. Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman. Mixmaster Protocol

— Version 2, December 2004. http://www.abditum.com/mixmaster-spec.txt.
20. Peter Palfrader. Canonical List of All Pingers.

http://www.noreply.org/allpingers/.
21. Peter Palfrader. Latency reports on Mixmaster remailers.

http://www.noreply.org/latency/.
22. Peter Palfrader. Echolot: a pinger for anonymous remailers, 2001-.

http://www.palfrader.org/echolot/.
23. Michael Reiter. Secure agreement protocols: Reliable and atomic group multicast

in Rampart. In Proc. 2nd ACM Conference on Computer and Communications
Security, 1994.

24. Fred B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22(4), December 1990.

25. Andrei Serjantov, Roger Dingledine, and Paul Syverson. From a trickle to a flood:
Active attacks on several mix types. In Fabien Petitcolas, editor, Proceedings of
Information Hiding Workshop (IH 2002). Springer-Verlag, LNCS 2578, October
2002.

26. Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, Advances
in Cryptology: EUROCRYPT 2000, volume 1087 of Lecture Notes in Computer
Science, pages 207–220. Springer, 2000.


