Tor:

Anonymous Communications for the Dept of Defense...and you.

Roger Dingledine
Free Haven Project
Electronic Frontier Foundation

http://tor.eff.org/

17 September 2005

Talk Outline

- Motivation: Why anonymous communication?
 - -Myth 1: This is only for privacy nuts.
 - -Myth 2: This stuff enables criminals.
- Tor design overview
- Hidden servers and rendezvous points
- Policy issues raised
- Open technical issues and hard problems

Bad people are doing great

- Trojans, viruses, 'sploits
- Botnets, zombies
- Phishing -> funding
- Collect user information -> spam better
- Corporate espionage -> extortion -> funding

Public Networks are Vulnerable to Traffic Analysis

- In a Public Network (Internet):
- Packet (message) headers identify recipients
- Packet routes can be tracked

Encryption does *not* hide routing information.

- Journalists, Dissidents, Whistleblowers (Indymedia, bloggers, Iran, Tibet)
- Censorship resistant publishers/readers (libraries)
- Socially sensitive communicants:
 - -Chat rooms and web forums for abuse survivors, people with illnesses

You:

- Where are you sending email (who is emailing you)
- What web sites are you browsing
- -Where do you work, where are you from
- -What do you buy, what kind of physicians do you visit, what books do you read, ...

- Corporations: (Google, Wal-Mart, ...)
 - -Who's talking to the company lawyers? Are your employees looking at monster.com?
 - Hiding procurement suppliers or patterns
 - –Competitive analysis
- Law Enforcement: (In-q-tel, Nye Kripos)
 - Anonymous tips or crime reporting
 - -Surveillance and honeypots (sting operations)

Government

Government Needs Anonymity? Yes, for...

- Open source intelligence gathering
 - Hiding individual analysts is not enough
 - That a query was from a govt. source may be sensitive
- Defense in depth on open and *classified* networks
 - Networks with only cleared users (but a million of them)
- Dynamic and semitrusted international coalitions
 - Network can be shared without revealing existence or amount of communication between all parties
- Elections and voting

Anonymity Loves Company

- You can't be anonymous by yourself.
 - Can have confidentiality by yourself.
- A network that protects only DoD network users won't hide that connections from that network are from DoD.
- You must carry traffic for others to protect yourself.
- But those others don't want to trust their traffic to just one entity either. Network needs *distributed trust*.
- Security depends on diversity and dispersal of network.

And yes criminals

And yes criminals

But they already have it.

We need to protect everyone else.

Privacy and Criminals

- Criminals have privacy
 - Motivation to learn
 - Motivation to buy
 - –Identity theft
- Normal People, Companies, Governments, Police don't
- The worst of all possible worlds

Privacy and Crackers

- Crackers have privacy
 - Break into system
 - Destroy the logs
 - –Repeat as needed
 - -They don't use or need our software
- Normal People, Companies, Governments, Police don't
- The worst of all possible worlds

Anonymous From Whom? Adversary Model

- Recipient of your message
- Sender of your message
- => Need Channel and Data Anonymity
- Observer of network from outside
- Network Infrastructure (Insider)
- => Need Channel Anonymity
- Note: Anonymous authenticated communication makes perfect sense
- Communicant identification should be inside the basic channel, not a property of the channel

Focus of Tor is anonymity of the communication pipe, not what goes through it

How Do You Get Communication Anonymity?

- Many technical approaches
- Overview of two extensively used approaches
 - -Mixes
 - -Proxies

What does a mix do?

Randomly permutes and decrypts inputs

What does a mix do?

Key property: Adversary can't tell which ciphertext corresponds to a given message

Basic Mix (Chaum '81)

Encryption of Message

Ciphertext = $E_{PK1}[E_{PK2}[E_{PK3}[message]]]$

Basic Chaum-type Mix

One honest server preserves privacy

What if you need quick interaction?

- Web browsing, Remote login, Chat, etc.
- Mixnets introduced for email and other high latency apps
- Each layer of message requires expensive public-key crypto

- Channels appear to come from proxy, not true originator
- Appropriate for Web connections, etc.:
 SSL, TLS, SSH (lower cost symmetric encryption)
- Examples: The Anonymizer
- Advantages: Simple, Focuses lots of traffic for more anonymity
- Main Disadvantage: Single point of failure, compromise, attack

Onion Routing Traffic Analysis Resistant Infrastructure

- Main Idea: Combine Advantages of mixes and proxies
- Use (expensive) public-key crypto to establish circuits
- Use (cheaper) symmetric-key crypto to move data
 - Like SSL/TLS based proxies
- Distributed trust like mixes
- Related Work (some implemented, some just designs):
 - ISDN Mixes
 - Crowds, JAP Webmixes, Freedom Network
 - Tarzan, Morphmix

Tor

Tor

The Onion Router

Tor

Tor's Onion Routing

Numbers and Performance

- Running since October 2003
- 250 nodes on six continents
- Volunteer-based infrastructure
- Fifty thousand+ (?) users
- Nodes process 1-100 GB / day application cells
- Network has never been down

Tor Circuit Setup

• Client Proxy establishes session key + circuit w/ Onion Router 1

Tor Circuit Setup

- Client Proxy establishes session key + circuit w/ Onion Router 1
- Proxy tunnels through that circuit to extend to Onion Router 2

Tor Circuit Setup

- Client Proxy establishes session key + circuit w/ Onion Router 1
- Proxy tunnels through that circuit to extend to Onion Router 2
- Etc

Tor Circuit Usage

- Client Proxy establishes session key + circuit w/ Onion Router 1
- Proxy tunnels through that circuit to extend to Onion Router 2
- Etc
- Client applications connect and communicate over Tor circuit

Tor Circuit Usage

- Client Proxy establishes session key + circuit w/ Onion Router 1
- Proxy tunnels through that circuit to extend to Onion Router 2
- Etc
- Client applications connect and communicate over Tor circuit

Tor Circuit Usage

- Client Proxy establishes session key + circuit w/ Onion Router 1
- Proxy tunnels through that circuit to extend to Onion Router 2
- Etc
- Client applications connect and communicate over Tor circuit

Where do I go to connect to the network?

- Directory Servers
 - Maintain list of which onion routers are up, their locations, current keys, exit policies, etc.
 - Directory server keys ship with the code
 - Control which nodes can join network
 - Important to guard against "Sybil attack" and related problems
 - These directories are cached and served by other servers, to reduce bottlenecks
 - Need to decentralize, get humans out of the loop, without letting attackers sign up 100,000 nodes.

Some Tor Properties

- Simple modular design, restricted ambitions.
 - -~40K lines of C code
 - Even servers run in user space, no need to be root
 - -Flexible exit policies, each node chooses what applications/destinations can emerge from it
 - -Server usability is key to adoption. Without a network, we are nothing.

Some Tor Properties

- Simple modular design, restricted ambitions.
 - -Just anonymize the pipe
 - Can use, e.g., privoxy as front end if desired to anonymize data
 - -SOCKS compliant TCP: includes Web, remote login, mail, chat, more
 - No need to build proxies for every application

Some Tor Properties

Lots of supported platforms:

Linux, BSD, MacOS X, Solaris, Windows, ...

(Tor servers on xbox, linksys wireless routers.)

- Deployment paradigm:
 - Volunteer server operators
 - No payments, not proprietary
 - -Moving to a P2P incentives model

Number of running Tor servers

Total traffic through Tor network

Location Hidden Servers

- Alice can connect to Bob's server without knowing where it is or possibly who he is
- Can provide servers that
 - Are accessible from anywhere
 - Resist censorship
 - Require minimal redundancy for resilience in denial of service (DoS) attack
 - Can survive to provide selected service even during full blown distributed DoS attack
 - Resistant to physical attack (you can't find them)

Policy issues

- Attacks we've seen:
 - -Ransom note via Hotmail
 - -Spam via Google Groups
 - –IRC jerks --> DDoS on Tor server
 - Vin Diesel movies
- Wikipedia, Slashdot
- SORBS / spam blacklists

Design Tradeoffs

- Low-latency (Tor) vs. high-latency (Mixminion)
- Packet-level vs stream-level capture
 - -IP packets reveal OS characteristics
 - Need application-level scrubbing; and DNS requests to local servers still leak info.
 - -Exit policies turn into IDS policies?!
- Padding vs. no padding (mixing, traffic shaping)
- UI vs. no UI (Contest!)
- AS-level paths and proximity issues

Design Tradeoffs

- Enclave-level onion routers / proxies / helper nodes
- Path length? (3 hops, don't reuse nodes)
- China?
- P2P network vs. static network

Get the Code, Run a Node! (or just surf the web anonymously)

- Current code freely available (free software license)
- Comes with a specification the JAP team in Dresden implemented a compatible Tor client in Java
- Chosen as the anonymity layer for EU PRIME project
- Design paper, system spec, code, see the list of current nodes, etc.
- http://tor.eff.org/