Synchronous Batching: From Cascades to Free Routes

Roger Dingledine The Free Haven Project

Vitaly ShmatikovPaul SyversonSRI InternationalNaval Research Laboratory

Presented at PET 2004, May 27, 2004

Reminder: What does a mix do?

Randomly permutes and decrypts inputs

Basic Mix Cascade

This paper is an update to:

The Disadvantages of Free MIX Routes and How to Overcome Them by Berthold, Pfitzmann, and Standke (PET 2000)

The controversy: free routes vs cascades

Should be: asynchronous vs synchronous

Special acknowledgement:

David Hopwood

Talk Outline

- The PET 2000 claims for cascades vs. free routes
- 3 topologies with synchronous batching
- Threat model
- Anonymity modeling methodology, results
- Synchronous batching (mixnet batching)
- Message delivery robustness
- Anonymity robustness

Cascade Free Route

Cascade Free Route

Cascade Free Route

Cascade Free Route

PET00 Claims: Position in Mix Route

- Assume one trustworthy mix, free routes have fixed length
- Adversary can partition messages in trustworthy mix's batch by how far along route they are
- PETs00 Claim: If only one mix is trustworthy, achievable anonymity is lower for free route than cascade
- Updated Claim: If only one mix is trustworthy, achievable anonymity is lower for asynchronous mixnet than for synchronous mixnet

PET00 Claims: Free Route Asynchrony

- Assume one trustworthy mix, free routes have fixed length
- Anonymity set of a message in free route limited to those entering network at same time through honest nodes
- Because of asynchrony, hard to make anonymity sets the same across batches (synchronize anonymity sets)
- PETs00 Claim: Can more easily construct intersection attacks on free-route mixnets
- Updated Claim: Can more easily construct intersection attacks on asynchronous mixnets

PET00 Claims: Probability of Unobservability

- Assume one trustworthy mix, free routes have fixed length
- PETs00 Comparison: 4-node cascade with 3 bad nodes vs. 20-node free-route mixnet with 75% bad nodes
- PETs00 Claim: non-trivial chance of fully compromised paths in free-route mixnet.
- Unfair comparison: In a 20-node cascade mixnet (i.e., 5 cascades) there is also a nontrivial chance of fully compromised paths
- See analysis below

PET00 Claims: Active Attacks

- Blending attacks: Trickle in target message while flooding with adversary message
- Countermeasures include
 - slowing attack (pool & other mixing strategies, dummy traffic)
 - preventing attack (threshold verifiable mix firing)
 - detecting &/or deterring attacker (reputation systems, ticket schemes, etc)
- These solutions apply to many topologies, not just cascades (only slowing is used in practice so far)

Synchronous Mixnet Topologies for Analysis

2x2 Cascade Network

2x2 Stratified Network

4x2 Free-Route Network

Topology and Threat Model

- Compare three topologies: each is a 16 node network
 - 4x4 cascade
 - 4x4 stratified
 - 16x4 free-route
- Adversary compromises mix nodes at random
- Adversary is passive
- Adversary observes all messages entering / leaving mixnet
- Adversary cannot observe links between honest mix nodes
 - Simplification for modeling
 - Will argue below that significance is small

Modeling methodology

- Mixing treated as probabilistic permutation of messages
- All N messages in mixnet batch enter in array of length N
- Good mixes permute messages, Bad mixes pass through without permuting
- Assumptions and topologies constrain choice of next mix
- Anonymity (entropy) based on probability a message exits mixnet in same position in array as entering
 - Use Markov chain to capture transitions
 - Calculate probabilities: PRISM probabilistic model checker

A mix permutes messages

Good mix

Bad mix

- t = number of current hop
- s= position in array of k messages in mix batch

Analysis Results

Average Entropy!?

- Prior anonymity work calculated entropy based on specific nodes being compromised (posterior distributions)
- We calculate anonymity based on fixed probability any node might be compromised (prior distributions)
- Effectively the average of possible node compromise

Why not just one cascade?

- Bandwidth of a single node is insufficient?
- A single cascade may not include as many jurisdictions as a user wants?
- A single cascade is not very robust (to network attacks, or nature).

Are all links actually balanced?

For *m* message in *u* buckets (nodes in layer) what are chances of less than *p* messages in a bucket?

Example:

m = 128, u = 4 (cascade or stratified) \Rightarrow

chances of less than 16 messages (vs. 32 expected) is .0006

$$m = 128$$
, $u = 16$ (free-route) \Rightarrow

chances of less than 16 messages is .48

m = 480, u = 16 (free-route)
$$\Rightarrow$$

chances of less than 16 messages is .01

(Mixmaster network currently gets over 1000 msg/hr)

Anonymity vs. Hops

Robustness of Message Delivery

	Topology	1 crash	$2 \operatorname{crash}$	$3 { m crash}$	4 crash
	16x16 free	36	12	04	01
Worst possible	4x4 cascade	75	50	25	00
adversary distribution	4x4 stratif.	75	50	25	00
	16x4 free	77	59	44	32
	16x16 free	36	12	04	01
Best possible	4x4 cascade	75	75	75	75
adversary distribution	4x4 stratif.	75	56	42	32
	16x4 free	77	59	44	32
	16x16 free	36	12	04	01
Expected percentage:	4x4 cascade	75	55	39	27
rand. adversary dist.	4x4 stratif.	75	55	39	27
	16x4 free	77	59	44	32

Table 1: Percent of messages delivered vs number of crashed nodes

Robustness of Anonymity

- Consider adversary that crashes nodes to reduce entropy
- No effect on cascades: all messages or none are delivered
- Stratified only affected by entry node failure
 - 1 fail: entropy reduces by .42
 - 2 fail: entropy drops by 1
 - 3 fail: entropy drops by 2
 - all fail: no information
- At worst stratified provides same entropy as cascades

Robustness of Anonymity

- Free Route is complicated: killing a node could block target messages later
- Assume very lucky adversary owning 4 nodes
 - Crashes all nodes without affecting target message at any layer
 - Remaining messages are .32 of original batch
- This is still better than the .25 of original batch a mix cascade processes

Synchronous Free-routes vs Asynchronous Free-routes

- Better protection against partitioning attacks
- No need for replay detection: just mark each message with its batch
- Easier to verify if messages are delivered
- But: cannot use any pooling strategy
 - More vulnerable to longterm statistical disclosure attack?
- Less robust against transient failure
 - In asynchronous design, a late message still arrives

Summary

- Previously, cascade topology was thought necessary to guard against certain powerful adversaries
- We have shown that other synchronous mixnet designs generally do as well or better than cascades
 - For anonymity with a passive adversary
 - For message delivery
 - For anonymity robustness with an active adversary